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A DARBOUX PROPERTY OF I1-APPROXIMATE PARTIAL
DERIVATIVES

R. CARRESE and E.  LAZAROW

Abstract. Some Darboux property for functions of two variables is studied. In par-

ticular, it is shown that I2-approximately continuous functions and I1-approximate
partial derivatives of separately I1-approximately continuous functions are Dar-

boux.

Let <(<2) denote the real line (the plane) and N -the set of all positive integers.
All topological notations, except for the case where a topology T is specifically
mentioned, are given with respect to the natural topology on < or <2.

Let S1(S2) denote the σ-field of sets of <(<2) having the Baire property. I1(I2)
will denote the σ-ideal of sets of <(<2) of the first category.

Recall that 0 is an I1-density point of a set A ∈ S1 if and only if, for each in-
creasing sequence of positive integers {nm}m∈N , there is a subsequence {nmp}p∈N
such that

{x : χnmp ·A∩[−1,1](x) 6→ 1} ∈ I1

where n ·A = {nx : x ∈ A} (see [8] and, for two variables, [2]).
A point x0 ∈ < is said to be an I1-density point of a ∈ S1 if and only if 0 is an

I1-density point of the set {x− x0 : x ∈ A}.
A point x0 ∈ < is said to be an I1-dispersion point of A ∈ S1 if and only if x0

is an I1-density point of < \A.
For each A ∈ S1, we denote

Φ1(A) = {x ∈ < : x is an I1-density point of A},
Ψ1(A) = {x ∈ < : x is an I1-dispersion point of A}.

In [8] it was proved that TI1 = {A ∈ S1 : A ⊂ Φ1(A)} is a topology on the real
line. Every function which is continuous with respect to the TI1-topology is called
an I1-approximately continuous function.

We say that x0 is a deep I1-density point of a set A if and only if there exists a
closed set F ⊂ A∪ {x0} such that x0 ∈ Φ1(F ). In [9] it was proved that if f is an
I1-approximately continuous function then, for every open set U , if x0 ∈ f−1(U),
then x0 is a deep I1-density point of the set f−1(U).

The following result will be useful (see [5]).
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Lemma 1. Let G be an open subset of the real line; then 0 is an I1-dispersion
point of G if and only if, for each n ∈ N , there exist k ∈ N and a real δ > 0 such
that, for any h ∈ (0, δ) and i ∈ {1, . . . , n}, there exist two numbers j, j′ ∈ {1, . . . , k}
such that

G ∩
(( i− 1

n
+
j − 1
nk

)
· h,
( i− 1

n
+

j

nk

)
· h
)

= ∅
and

G ∩
((
− i− 1

n
+

j′

nk

)
· h,−

( i− 1
n

+
j′ − 1
nk

)
· h
)

= ∅.

In [2], the definition of an I2-density point of a set A ∈ S2 was introduced.
The authors obtained analogous results as in [8], on the plane. They defined the
topology on the plane in the following way: TI2 = {A ∈ S2 : A ⊂ Φ2(A)} where

Φ2(A) = {(x, y) ∈ <2 : (x, y) is an I2-density point of A}.
We shall denote by Φ++

2 (A), for each A ∈ S2, the set of I2-density points of the set
A with respect to the first quarter on the plane. For the remaining quarters, we
use the symbols Φ−+

2 (A), Φ+−
2 (A) and Φ−−2 (A). By Ψ++

2 (A), Ψ−+
2 (A), Ψ+−

2 (A)
and Ψ−−2 (A) we denote sets of I2-dispersion points of the set A with respect to
each quarter on the plane, respectively [2]. Functions which are continuous with
respect to the TI2-topology will be called I2-approximately continuous.

In a similar way as Lemma 1 we may prove the following

Lemma 2. Let G be an open set on the plane; then (0, 0) ∈ Ψ++
2 (G) if and

only if, for each n ∈ N , there exist k ∈ N and a real number δ > 0 such that, for
any h ∈ (0, δ) and i, i′ ∈ {1, . . . , n}, there exist two numbers j, j′ ∈ {1, . . . , k} such
that

G ∩
(( i− 1

n
+
j − 1
nk

)
· h,
( i− 1

n
+

j

nk

)
· h
)

×
(( i′ − 1

n
+
j′ − 1
nk

)
· h,
( i′ − 1

n
+

j′

nk

)
· h
)

= ∅.

The definition of a separately I1-approximately continuous function was intro-
duced in the obvious manner in [10] and was considered in [10] and [1].

In [6], the definition of the I1-approximative derivative of a function f of
one variable was introduced. Many properties of I1-approximate derivatives and
I1-differentiable functions were considered there.

Definition 3 ([6]). Let f : < → < have the Baire property in a neighbourhood
of x0. The upper I1-approximate limit of f at x0 (I1-lim supx→x0

f(x)) is the
greatest lower bound of the set {y : {x : f(x) > y} has x0 as an I1-dispersion
point}. The lower I1-approximate limit, the right-hand and left-hand upper and
lower I1-approximate limits are defined similarly. If I1-lim supx→x0

f(x) =
I1-liminf x→x0f(x), their common value will be called the I1-approximate limit
of f at x0 and denoted by I1-lim supx→x0

f(x).

Let f : <2 → < and (x0, y0) ∈ <2. Put

U(x0,y0)(x) =
f(x, y0)− f(x0, y0)

x− x0
for x ∈ <, x 6= x0.
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Definition 4 ([6]). Let f : <2 → < be any function defined in some neighbour-
hood of (x0, y0) ∈ <2 and having there the Baire property in the direction of the ox
axis. We define the upper right I1-approximate partial derivative of f at (x0, y0)
in the direction of ox as the corresponding extreme limit of U(x0,y0)(x) as x tends
to x0 from the right. The other extreme I1-approximate partial derivatives in the
direction of ox are defined similarly. If all these derivatives are equal and finite,
we call their common value the I1-approximate partial derivative of f at (x0, y0)
and denote it by fI1,x(x0, y0).

In a similar way we can define the partial I1-approximate derivate in the direc-
tion of the oy axis.

The partial I1-approximate derivatives are considered in [3] and [4].

Definition 5. Let f : <2 → <. We shall say that f has the Darboux property
if and only if, for each open interval J ⊂ <2, f(J) is a connected set.

Definition 6 ([7]). A set D ⊂ <2 is Darboux if and only if
• for each x ∈ D, there exists a closed interval I such that x ∈ I and

int (I) ⊂ D,
• for two points x, y ∈ D, there are k ∈ N and Q1, Q2, . . . , Qk such that,

for each i ∈ {1, . . . , k}, int (cl (Qi)) ⊂ Qi ⊂ D, cl (Qi) is a closed interval,
x ∈ Q1, y ∈ Qk and Qi ∩Qi+1 6= ∅ for i = 1, . . . , k − 1.

Definition 7. Let f : <2 → <. We shall say that f is Darboux if and only if,
for every Darboux set Q, f(Q) is a connected set.

Definition 8. Let f : <2 → <. We shall say that f is a connected function if
and only if, for every connected set A, f(A) is connected.

By [2], we have the following theorem.

Theorem 9. Let f : <2 → < be an I2-approximately continuous function. Then
f has the Darboux property.

Corollary 10. Every open interval is a connected set with respect to the
TI2-topology.

Proposition 11. Every Darboux set is connected with respect to the
TI2-topology.

Proof. It is enough to prove that each set Q ⊂ <2, such that cl (Q) is a closed
interval and int (cl (Q)) ⊂ Q, is connected with respect to TI2 . We put A =
int (cl (Q)) and assume that Q \ A 6= ∅. We observe that if (x, y) ∈ Q \ A, then
(x, y) ∈ Φ++

2 (A) or (x, y) ∈ Φ−+
2 (A) or (x, y) ∈ Φ+−

2 (A). Therefore, for each
U ∈ TI2 such that (x, y) ∈ U , U ∩A 6= ∅.

We suppose that there exist two sets U1, U2 ∈ TI2 such that Q ∩ U1 6= ∅,
Q ∩ U2 6= ∅, Q ∩ U1 ∩ U2 = ∅ and Q ∩ (U1 ∪ U2) = ∅. Since A is TI2-connected,
therefore A ⊂ U1 or A ⊂ U2. We assume that A ⊂ U1. Thus ∅ 6= U2 ∩ A ⊂
U2 ∩ U1 ∩Q, a contradiction. Hence every Darboux set is TI2-connected. �
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Theorem 12. Let f : <2 → <2 be an I2-approximately continuous function.
Then f is a Darboux function.

Proposition 13. There exists a set A ⊂ <2 such that A is connected with re-
spect to the natural topology and A is not connected with respect to the
TI2-topology.

Proof. It is enough to show that there exist two disjoint nonempty sets A1 and
A2 such that A1 ∈ TI2 , A2 ∈ TI2 , and A1 ∪ A2 is a connected set with respect to
the natural topology.

Let

A1 =
{

(x, y) ∈ <2 : −1
2
x2 < y <

1
2
x2

}
and

A2 = (<2 \ {(x, y) ∈ <2 : −x2 ≤ y ≤ x2}) ∪ {(0, 0)}.
Then A1 ∈ TI2 and A1∪A2 is a connected set with respect to the natural topology.
We shall show that A2 ∈ TI2 . Since A2 \ {(0, 0)} is an open set we only prove that
(0, 0) ∈ Φ2(A2). It is obvious that (0, 0) ∈ Φ−+

2 (A2) and (0, 0) ∈ Φ−−2 (A2).
Let n ∈ N . We put k = 2 and δ = 1

2n . Let 0 < h < δ, (i1, i2) ∈ {1, . . . , n} ×
{1, . . . , n} and

(x0, y0) ∈
(
i1 − 1
n

h,
2i1 − 1

2n
h

)
×
(

2i2 − 1
2n

h,
i2
n
h

)
.

Then y0 > 2i2−1
2n h > (2i2 − 1)h2 ≥ h2 and 0 < x0 < h. Thus y0 > x2

0 and
(x0, y0) ∈ A2. Therefore there exists (j1, j2) = (1, 2) ∈ {1, 2} × {1, 2} such that(( i1 − 1

n
+
j1 − 1
nk

)
· h,
( i1 − 1

n
+
j1
nk

)
· h
)

×
(( i2 − 1

n
+
j2 − 1
nk

)
· h,
( i2 − 1

n
+
j2
nk

)
· h
)
⊂ A2.

Hence, by Lemma 2, (0, 0) ∈ Φ++(A2). In a similar way we can prove that
(0, 0) ∈ Φ+−(A2) and the proof of the proposition is completed. �

Proposition 14. There exists a function f : <2 → < such that f is I2-approxi-
mately continuous and is not a connected function.

Proof. Let A1, A2 be defined in the same way as in Proposition 13. Let f : <2 →
< be a continuous function at each (x, y) ∈ <2\{(0, 0)} such that f(A1) = {1} and
f(A2) = {0}. Since (0, 0) ∈ Φ2(A2) we have that f is I2-approximately continuous
on <2. By f(A1 ∪A2) = {0, 1}, we know that f is not connected. �

Lemma 15. Let [a, b] ⊂ < and let A1, A2 be two nonempty sets having the
Baire property such that [a, b] = A1 ∪ A2. Then A1 ∩ ((a, b) \ Ψ1(A2)) 6= ∅ or
A2 ∩ ((a, b) \Ψ1(A1)) 6= ∅.

Proof. First we assume that A1 ∩ A2 /∈ I1. Then, by [8], (a, b) ∩ A1 ∩ A2 ∩
Φ1(A1 ∩ A2) 6= ∅ and we choose x0 ∈ (a, b) ∩ A1 ∩ A2 ∩ Φ1(A1 ∩ A2). Then
x0 ∈ A1 ∩ ((a, b) \Ψ1(A2)).
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Now, let A1 ∩ A2 ∈ I1. We put B1 = (A1 \ (A1 ∩ A2)) ∩ (a, b) and B2 =
A2 ∩ (a, b). Then, by [8], Ψ1(B1) = Ψ2(A1) and Ψ1(B2) = Ψ1(A2). We suppose
that B1 ⊂ Ψ1(B2) and B2 ⊂ Ψ1(B1). Then B1 ⊂ Φ(B1) and B2 ⊂ Φ(B2).
Hence B1, B2 are open sets with respect to the TI1-topology, B1 ∪B2 = (a, b) and
B1 ∩B2 = ∅. This is impossible since (a, b) is a connected set the with respect to
the TI1-topology [8]. Thus B1∩ ((a, b)\Ψ1(B2)) 6= ∅ or B2∩ ((a, b)\Ψ1(B1)) 6= ∅,
and A1 ∩ ((a, b) \Ψ(A2) 6= ∅ or A2 ∩ ((a, b) \Ψ(A1)) 6= ∅. �

Lemma 16. Let f, g : < → < be I1-approximately continuous functions. If 0 is
not an I1-dispersion point of a set A ∈ S1 then there exists a sequence {yn}n∈N ⊂
A such that limn→∞ yn = 0, limn→∞ f(yn) = f(0) and limn→∞ g(yn) = g(0).

Proof. We may assume that 0 is not a right-side I1-dispersion point of the set
A ∈ S1. By Lemma 1, there exists n ∈ N such that, for any k ∈ N and a real
δ > 0, there exist h = h(k, δ) ∈ (0, δ) and i = i(h) ∈ {1, . . . , n} such that, for each
j ∈ {1, . . . , k}, ( (i− 1)k + j − 1

nk
h,

(i− 1)k + j

nk
h
)
∩A /∈ I.

Let p ∈ N . We put Cp =
{
y : |f(y)−f(0)| < 1

p

}
and Bp =

{
y : |g(y)−g(0)| < 1

p

}
.

Since f and g are I1-approximately continuous, 0 is a deep I1-density point of
Cp ∩ Bp. Therefore, by Lemma 1, there exist k1 ∈ N and δ1 > 0 such that, for
any i ∈ {1, . . . , n} and h ∈ (0, δ1), there exists j = j(i, h) ∈ {1, . . . , k1} such that( (i− 1)k1 + j − 1

nk1
h,

(i− 1)k1 + j

nk1
h
)
⊂ Cp ∩Bp.

Let δ0 = min
(

1
p , δ1

)
. We put h = h(k1, δ0), i = i(h) and j = j(i, h). Then we may

choose

yp ∈
( (i− 1)k1 + j − 1

nk1
h,

(i− 1)k1 + j

nk1
h
)
∩A ⊂ Cp ∩Bp.

Thus 0 < yp <
1
p , |f(yp)− f(0)| < 1

p and |g(yp)− g(0)| < 1
p .

Hence limp→∞ yp = 0, limp→∞ f(yp) = f(0) and limp→∞ g(yp) = g(0). �

Theorem 17. Let f : <2 → < be a separately I1-approximately continuous
function. If f is I1-approximately differentiable with respect to x at every point,
then fI1,x is a Darboux function.

Proof. By the assumption and by the result of [10], we have that f has the
Baire property. Therefore, by [3], fI,x has the Baire property, too.

First, we show that if I = [a, b] × [c, d], then fI1,x(I) is a connected set. If it
is not true, there exists x0 ∈ < and two nonempty sets A and B having the Baire
property, such that I = A∪B and fI1,x(A) ⊂ (−∞, x0) and fI1,x(B) ⊂ (x0,+∞).

For y ∈ [c, d], let Hy = {(x, y) : x ∈ [a, b]}. Since fI1,x(x, y), as a function
of x, has Darboux property, [6], we have that fI1,x(Hy) is a connected set. Then
Hy ⊂ A or Hy ⊂ B. Hence there exist A1, A2 such that A = [a, b]× A1 and B =
[a, b]×A2. By Lemma 15, we may assume that there exists a point y0 ∈ A1 which
is not an I1-dispersion point of A2. Thus, by the above and the I1-approximate
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continuity of the functions f(a, y) and f(b, y) as functions of y, we may choose a
sequence {yn}n∈N ⊂ A2 such that limn→∞ yn = y0, limn→∞ f(b, yn) = f(b, y0)
and limn→∞ f(a, yn) = f(a, y0) (see Lemma 16). Since, for each n ∈ N , f(x, yn) is
I1-approximately differentiable as a function of x, by the mean-value property [6],
we have that there exists zn ∈ (a, b) such that

f(b, yn)− f(a, yn)
b− a

= fI1,x(zn, yn).

Hence

lim
n→∞

fI1,x(zn, yn) =
f(b, y0)− f(a, y0)

b− a
.

Applying the mean-value property to the function f(x, y0), we can find z0 ∈ (a, b)
such that

f(b, y0)− f(a, y0)
b− a

= fI1,x(z0, y0).

Hence
lim
n→∞

fI1,x(zn, yn) = fI1,x(z0, y0).

Since {(zn, yn)}n∈N ⊂ B, we have that {fI1,x(zn, yn)}n∈N ⊂ fI1,x(B) ⊂ (x0,∞)
and fI1,x(z0, y0) ≥ x0. This contradicts the fact that fI1,x(z0, y0) ∈ f(A) ⊂
(−∞, x0).

To complete the proof, it suffices to show that, for each set Q such that
int (cl (Q)) ⊂ Q and cl (Q) is a closed interval, fI1,x(Q) is a connected set. If
Q is an open interval then Q = ∪n∈N [an, bn] × [cn, dn] where, for each n ∈ N ,
[an, bn]× [cn, dn] ⊂ [an+1, bn+1]× [cn+1, dn+1]. Since fI1,x([an, bn]× [cn, dn]) is a
connected set for each n ∈ N , therefore f(I1, x)(Q) is a connected set, too. If Q
is not an open interval, we may assume that there exists p0 ∈ Q \ int (Q). Let
I = [a, b] × [c, d] be an interval included in cl (Q), having p0 as a vertex. Say,
p0 = (a, d). We want to show that fI1,x(int (I) ∪ {p0}) is connected. Since int (I)
is an open interval, fI1,x(int (I)) is connected. Thus the proof will be completed
if we show that fI1,x(p0) is a limit of a sequence of points of fI1,x(int (I)). Since
fI1,x(x, d) has the Darboux property, there exists a sequence {xn}n∈N ⊂ (a, b)
such that limn→∞ xn = a and limn→∞ fI1,x(xn, d) = fI1,x(a, d).

Let n ∈ N . Then, by our assumption, there exists zn ∈ (a, b) \ {xn} such that∣∣∣∣f(zn, d)− f(xn, d)
zn − xn

− fI1,x(xn, d)
∣∣∣∣ < 1

3n
.

We assume that zn > xn. On the other hand, by the I1-approximate continuity
of f(zn, y) and f(xn, y) as functions of y, there exists yn ∈ (c, d) such that

|f(xn, d)− f(xn, yn)| < 1
3n
|xn − zn|

and
|f(zn, d)− f(zn, yn)| < 1

3n
|xn − zn|.

Then we have ∣∣∣∣f(xn, yn)− f(zn, yn)
xn − zn

− fI1,x(xn, d)
∣∣∣∣ < 1

n
.
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By the mean-value theorem for I1-approximate derivatives (see [6]), we can choose
a point tn ∈ (xn, zn) such that f(xn, yn)−f(zn, yn) = fI1,x(tn, yn)(xn−zn). Then
we have

|fI1,x(tn, yn)− fI1,x(xn, d)| < 1
n
.

Hence we have the sequence {(tn, yn)}n∈N ⊂ int (I) satisfying for each n ∈ N ,

|fI1,x(tn, yn)− fI1,x(xn, d)| < 1
n
.

Therefore limn→∞ fI1,x(tn, yn) = fI1,x(a, d). �
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2. Carrese R. and Wilczyński W., I-density points of plane sets, Ricerche di Matematica 34(I)
(1985), 147–157.

3. Carrese R. and  Lazarow E., Baire classes of some generalized partial derivatives, Tatra

Mountains Math. Publ. 8 (1996), 9–15.
4. , Differentiability of functions of two variables and Theorem of Stepanoff, to appear.

5.  Lazarow E., On the Baire class of I-approximate derivatives, Proc. Am. Math. Soc. 100(4)
(1987), 669–674.
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