ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 70,   2   (2001)
pp.   167-175
ON ALMOST SURE CONVERGENCE WITHOUT THE RADON-NIKODYM PROPERTY
N. Bouzar
Abstract. 
In this paper we obtain almost sure convergence theorems for
vector-valued uniform amarts and $C$-sequences without assuming
the Radon-Nikodym Property. Specifically, it is shown that if a
limit exists in a weak sense for these martingale generalizations,
then a.s. scalar and strong convergence follow. These results lead
to some new versions of the Ito-Nisio theorem. Convergence results
for random sequences taking values in a weakly compact space are
also presented.
AMS subject classification. 
Primary 60G48, 60G40
Keywords. 
Vector-valued random variable, stopping time, uniform amart, $C$-sequence,
scalar convergence
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE