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EXISTENCE THEOREMS FOR A CLASS OF FIRST ORDER
IMPULSIVE DIFFERENTIAL INCLUSIONS

M. BENCHOHRA and S. K. NTOUYAS

Abstract. A fixed point theorem for condensing maps is used to investigate the
existence of solutions for a class of first order initial value problems for impulsive
differential inclusions.

1. Introduction

The theory of impulsive differential equations appears as a natural description of
several real processes subject to certain perturbations whose duration is negligible
in comparison with the duration of the process. Differential equations involving im-
pulse effects occurs in many applications: physics, population dynamics, ecology,
biological systems, biotechnology, industrial robotic, pharmacokinetics, optimal
control, etc. The reader can see for instance the book of Bainov and Simeonov
[2], Lakshmikantham, Bainov and Simeonov [14], Samoilenko and Perestyuk [19],
the thesis of Pierson Gorez [18] and the papers of Frigon and O’Regan [9], Liz
and Nieto [16], Vatsala and Sun [22] and Yujun and Erxin [23]. However very
few results are available for impulsive differential inclusions or related topics (see
for example the paper of Benchohra and Boucherif [3], [4], Erbe and Krawcewicz
[7], Frigon and O’Regan [10], Silva and R. B. Vinter [20] and Stewart [21]).

The fundamental tools used in the existence proofs of all above mentioned works
are essentially fixed point arguments, Nonlinear alternative of Leray-Schauder
type, Degree theory, Topological transversality theorem or the monotone itera-
tive technique combined with upper and lower solutions.

In this paper, we shall be concerned with the existence of solutions of the first
order initial value problem for the impulsive differential inclusion:

y′ ∈ F (t, y), t ∈ J, t 6= tk, k = 1, . . . ,m,(1.1)

y(t+k ) = Ik(y(t−k )), k = 1, . . . ,m,(1.2)

y(0) = y0,(1.3)

where F : J ×R −→ 2R is a compact convex valued multivalued map defined from
a single-valued function, J = [0, T ] (0 < T < ∞), y0 ∈ R, 0 = t0 < t1 < · · · <
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tm < tm+1 = T ; and Ik ∈ C(R,R) (k = 1, 2, . . . ,m). y(t−k ) and y(t+k ) represent
the left and right limits of y(t) at t = tk, respectively.

The multivalued map considered in this paper has been used by Chang [5],
Erbe and Krawcewicz [8], Frigon [11] and Klein-Thompson [13] for the study of
differential inclusions of second order.

In this paper we shall extend the above results to the impulsive case. We shall
give two existence results to (1.1)-(1.3). In our results we do not assume any type
of monotonicity condition on Ik, k = 1, . . . ,m, which is usually the situation in
the literature.

We use a fixed point approach to establish our existence results. In particular
we use a fixed point theorem for condensing maps as used by Martelli ([17]).

2. Preliminaries

In this section, we introduce notations, definitions, and results which are used
throughout the paper.
AC(J,R) is the space of all absolutely continuous functions y : J −→ R.
Condition

y ≤ z if and only if y(t) ≤ z(t) for all t ∈ J
defines a partial ordering in AC(J,R). If α, β ∈ AC(J,R) and α ≤ β, we denote

[α, β] = {y ∈ AC(J,R) : α ≤ y ≤ β}.
C(J,R) is the Banach space of continuous functions y : J −→ R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J} for all y ∈ C(J,R).

L2(J,R) denotes the Banach space of Lebesgue measurable functions y : J −→ R

for which
∫ T

0
|y(t)|2 dt < +∞, with the norm

‖y‖L2 =
(∫ T

0

|y(t)|2 dt
)1/2

for all y ∈ L2(J,R).

Finally H1(J,R) denotes the Banach space of functions y : J −→ R which are
absolutely continuous and whose derivative y′ (which exists almost everywhere) is
an element of L2(J,R) with the norm

‖y‖H1 = ‖y‖L2 + ‖y′‖L2 for all y ∈ H1(J,R).

In order to define the solution to (1.1)-(1.3) we shall consider the following
spaces.

Ω ={y : [0, T ] −→ R : y is continuous for t 6= tk, y(t+k ) and

y(t−k ) exist and y(tk) = y(t−k ), k = 1, . . . ,m }.
Evidently, Ω is a Banach space with the norm

‖y‖Ω = sup
t∈J
|y(t)|.

Ω1 := Ω ∩ ∪mk=0H
1(tk, tk+1). For y ∈ Ω1 we let ‖y‖Ω1 = ‖y‖H1 . Hence Ω1 is a

Banach space.
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Definition 2.1. By a solution to (1.1)-(1.3), we mean a function y ∈ Ω1
0 :=

{y ∈ Ω1 : y(0) = y0} that satisfies the differential inclusion

y′(t) ∈ F (t, y(t)) almost everywhere on J\{tk}, k = 1, . . . ,m,

and for each k = 1, . . . ,m the function y satifies the equations y(t+k ) = Ik(y(t−k )).

Let (X, ‖ · ‖) be a normed space. A multivalued map G : X −→ 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) is bounded in X for any bounded subset B of X (i.e. sup

x∈B
{sup{‖y‖ :

y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0)

is a nonempty, closed subset ofX, and if for each open setN ofX containingG(x0),
there exists an open neighbourhood M of x0 such that G(M) ⊆ N .
G is said to be completly continuous if G(B) = ∪x∈BG(x) is relatively compact

for every bounded subset B ⊆ X. G has a fixed point if there is x ∈ X such that
x ∈ G(x).

In the following CC(X) denotes the set of all nonempty compact convex subsets
of X.

An upper semi-continuous map G : X −→ 2X is said to be condensing [17] if
for any bounded subset N ⊆ X, we have α(G(N)) < α(N), with α(N) 6= 0, where
α denotes the Kuratowski measure of noncompacteness (see [1], [17]).

We remark that a compact map is the simplest example of a condensing map.
For more details on multivalued functions see the books of Deimling [6] and Hu
and Papagerogiou [12].

Definition 2.2. A function f : J × R −→ R is said to be Carathéodory if

(i) t 7−→ f(t, y) is measurable for each y ∈ R;
(ii) y 7−→ f(t, y) is continuous for almost all t ∈ J .

Definition 2.3. A function f : J ×R −→ R is said to be of typeM if for each
measurable function y : J −→ R, the function t 7−→ f(t, y(t)) is measurable.

Notice that a Carathéodory map is of type M.
Let f : J × R −→ R be a function. Define

f(t, y) = lim
u→y

inf f(t, u) and f(t, y) = lim
u→y

sup f(t, u).

Notice that for all t ∈ J , f is lower semi-continuous (l.s.c.) i.e. (for all t ∈ J ,
{y ∈ R : f(t, y) > α} is open for each α ∈ R) and f is upper semi-continuous
(u.s.c.) i.e. (for all t ∈ J , {y ∈ R : f(t, y) < α} is open for each α ∈ R).

Let f : J × R −→ R. We define the multivalued map F : J × R −→ 2R by

F (t, y) = [f(t, y), f(t, y)].

We say that F is of type M if f and f are of type M.
The following result is crucial in the proof of our main results:
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Theorem 2.4 ([17]). Let G : X −→ CC(X) be an u.s.c. and condensing map.
If the set

M := {v ∈ X : λv ∈ G(v) for some λ > 1}
is bounded, then G has a fixed point.

We need also the following result

Theorem 2.5 ([11] Prop. (VI. 1), p. 40). Assume that F is of type M and
for each k ≥ 0, there exists φk ∈ L2(J,R) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ φk(t) for |y| ≤ k.

Then the operator F : C(J,R) −→ 2L
2(J,R) defined by

Fy := {h : J −→ R measurable: h(t) ∈ F (t, y(t)) a.e. t ∈ J}

is well defined, u.s.c., bounded on bounded sets in C(J,R) and has convex values.

3. Main Result

We are now in a position to state and prove our first existence result for the
impulsive IVP (1.1)-(1.3).

Theorem 3.1. Let t0 = 0, tm+1 = T , and assume that F : J × R −→ CC(R)
is of type M. Suppose that the following hypotheses hold:
(H1) there exist {ri}mi=0 and {si}mi=0 with s0 ≤ y0 ≤ r0 and

si+1 ≤ min
[si,ri]

Ii+1(y) ≤ max
[si,ri]

Ii+1(y) ≤ ri+1;

(H2)
f(t, ri) ≤ 0, f(t, si) ≥ 0 for t ∈ [ti, ti+1], i = 1, . . . ,m.

(H3) there exists ψ : [0,∞)→ (0,∞) continuous such that ψ ∈ L2
loc([0,∞)) and

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ ψ(|y|) for all t ∈ J.

Then the impulsive initial value problem (1.1)-(1.3) has at least one solution.

Proof. This proof will be given in several steps.
Step 1: We restrict our attention to the problem on [0, t1], that is the initial

value problem

y′(t) ∈ F (t, y(t)), t ∈ (0, t1),(3.1)

y(0) = y0.(3.2)

Define the modified function f1 : [0, t1]× R −→ R relative to r0 and s0 by:

f1(t, y) =


f(t, r0), if y > r0;
f(t, y), if s0 ≤ y ≤ r0;
f(t, s0), if y < s0
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and the correponding multivalued map

F1(t, y) =


[f(t, r0), f(t, r0)], if y > r0;
[f(t, y), f(t, y)], if s0 ≤ y ≤ r0;
[f(t, s0), f(t, s0)], if y < s0

Consider the modified problem:

y′ ∈ F1(t, y), t ∈ [0, t1),(3.3)

y(0) = y0.(3.4)

We transform the problem into a fixed point problem. For this, consider the
operators L : H1([0, t1],R) −→ L2([0, t1],R) defined by L(y) = y′, j : H1([0, t1],R)
−→ C([0, t1],R), the completely continuous imbedding, and

F : C([0, t1],R) −→ 2L
2([0,t1],R)

defined by:

F(y) =
{
v : [0, t1] −→ R measurable : v(t) ∈ F1(t, y(t)) for a.e. t ∈ [0, t1]

}
.

Clearly, L is linear, continuous and invertible. It follows from the open map
theorem that L−1 is a linear bounded operator. F is by Theorem 2.5 well defined,
bounded on bounded subsets of C([0, t1],R), u.s.c. and has convex values. Thus,
the problem (3.3)-(3.4) is equivalent to y ∈ L−1Fj(y) := G1(y). Consequently,
G1 is compact, u.s.c., and has convex closed values. Therefore, G1 is a condensing
map.

Now, we show that the set

M1 := {y ∈ C([0, t1],R) : λy ∈ G1(y) for some λ > 1}

is bounded.
Let λy ∈ G1(y) for some λ > 1. Then y ∈ λ−1G1(y), where

G1(y) :=
{
g ∈ C([0, t1],R) : g(t) = y0 +

∫ t

0

h(s) ds : h ∈ F(y)
}
.

Let y ∈ λ−1G1(y), then there exists h ∈ F(y) such that for each t ∈ J

y(t) = λ−1y0 + λ−1

∫ t

0

h(s) ds.

Thus
|y(t)| ≤ |y0|+ ‖h‖L2 for each t ∈ [0, t1].

Now, since h(t) ∈ F1(t, y(t)), it follows from the definition of F1(t, y) and as-
sumption (H3) that there exists a positive constant h0 such that ‖h‖L2 ≤ h0. In
fact

h0 = max
{
|r0|, |s0|, sup

s0≤y≤r0
|ψ(y)|

}
.

We then have
‖y‖∞ ≤ |y0|+ h0 < +∞.
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Hence, Theorem 2.4 applies and so G1 has at least one fixed point which is a
solution on [0, t1] to problem (3.3)-(3.4).

We shall show that the solution y of (3.1)-(3.2) satisfies

s0 ≤ y(t) ≤ r0 for all t ∈ [0, t1].

Let y be a solution to (3.3)-(3.4). We prove that

s0 ≤ y(t) for all t ∈ [0, t1].

Suppose not. Then there exist σ1, σ2 ∈ [0, t1], σ1 < σ2 such that y(σ1) = s0

and
s0 > y(t) for all t ∈ (σ1, σ2).

This implies that

f1(t, y(t)) = f(t, s0) for all t ∈ (σ1, σ2),

and
y′(t) ∈ [f(t, s0), f(t, s0)],

then,
y′(t) ≥ f(t, s0) for all t ∈ (σ1, σ2).

This implies that

y(t) ≥ y(t1) +
∫ t

t1

f(s, s0)ds for all t ∈ (σ1, σ2).

Since f(t, s0) ≥ 0 for t ∈ [0, t1] we get

0 > y(t)− y(σ1) ≥
∫ t

σ1

f(s, s0)ds ≥ 0 for all t ∈ (σ1, σ2)

which is a contradiction. Thus s0 ≤ y(t) for t ∈ [0, t1].
Similarly, we can show that y(t) ≤ r0 for t ∈ [0, t1]. This shows that the problem

(3.3)-(3.4) has a solution y on the interval [0, t1], which we denote by y1. Then y1

is a solution of (3.1)-(3.2).

Step 2: Consider now the problem:

y′ ∈ F2(t, y), t ∈ (t1, t2),(3.5)

y(t+1 ) = I1(y1(t−1 )),(3.6)

where

F2(t, y) =


[f(t, r1), f(t, r1)], if y > r1;
[f(t, y), f(t, y)], if s1 ≤ y ≤ r1;
[f(t, s1), f(t, s1)], if y < s1.

Analogously, we can show that set

M2 := {y ∈ C([t1, t2],R) : λy ∈ G2(y) for some λ > 1}
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is bounded. Here the operator G2 is defined by G2 := L−1Fj where

L−1 : L2([t1, t2],R) −→ H1([t1, t2],R),

j : H1([t1, t2],R) −→ C([t1, t2],R)

the completely continuous imbedding, and F : C([t1, t2],R) −→ 2L
2([t1,t2],R) de-

fined by:

F(y) =
{
v : [t1, t2] −→ R measurable : v(t) ∈ F2(t, y(t)) for a.e. t ∈ [t1, t2]

}
.

We again apply the theorem of Martelli to show that G2 has a fixed point,
which we denote by y2, and so is a solution of problem (3.5)-(3.6) on the interval
(t1, t2].

We now show that

s1 ≤ y2(t) ≤ r1 for all t ∈ [t1, t2].

Since y1(t−1 ) ∈ [s0, r0] then (H1) implies that

s1 ≤ I1(y(t−1 )) ≤ r1, i.e. s1 ≤ y(t+1 ) ≤ r1.

Since f(t, r1) ≤ 0 and f(t, s1) ≥ 0 we can show that

s1 ≤ y2(t) ≤ r1 for t ∈ [t1, t2],

and hence y2 is a solution to

y′ ∈ F (t, y), t ∈ (t1, t2), y(t+1 ) = I1(y1(t−1 )).

Step 3: We continue this process and we construct solutions yk on [tk−1, tk],
with k = 3, . . . ,m+ 1 to

y′ ∈ F (t, y), t ∈ (tk−1, tk),(3.7)

y(t+k−1) = Ik−1(yk−1(t−k−1)),(3.8)

with sk−1 ≤ yk(t) ≤ rk−1 for t ∈ [tk−1, tk]. Then

y(t) =


y1(t), if t ∈ [0, t1)];
y2(t), if t ∈ (t1, t2];
...
ym+1(t), if t ∈ (tm, T ]

is a solution to (1.1)-(1.3). �

Using the same reasoning as that used in the proof of Theorem 3.1 we can
obtain the following result.

Theorem 3.2. Let t0 = 0, tm+1 = T , and suppose that F : J × R −→ CC(R)
is of type M. Suppose the following hypotheses hold.
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(H4) There are functions {ri}mi=0 and {si}mi=0 with ri, si ∈ C([ti, ti+1]) and
si(t) ≤ ri(t) for t ∈ [ti, ti+1], i = 0, . . . ,m. Also, s0 ≤ y0 ≤ r0 and

si+1(t+i+1) ≤ min
[si(t

−
i+1),ri(t

−
i+1)]

Ii+1(y)

≤ max
[si(t

−
i+1),ri(t

−
i+1)]

Ii+1(y)

≤ ri+1(t+i+1), i = 0, . . . ,m− 1;

(H5) ∫ wi

zi

f(t, si(t)) dt ≥ si(wi)− si(zi),∫ wi

zi

f(t, ri(t)) dt ≤ ri(wi)− ri(zi), i = 0, . . . ,m

with
zi < wi and zi, wi ∈ [ti, ti+1].

Then the impulsive initial value problem (1.1)-(1.3) has at least one solution.
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