ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 69,   2   (2000)
pp.   151-171
HOMOGENEOUS ESTIMATES FOR OSCILLATORY INTEGRALS
B. G. WALTHER
Abstract. 
Let $u(x,t)$ be the solution to the free time-dependent Schrodinger equation at the point $(x,t)$ in space-time $\R \sp n + 1$ with initial data $f$. We characterize the size of $u$ in terms $L \sp p (L \sp q)$-estimates with power weights. Our bounds are given by norms of $f$ in homogeneous Sobolev spaces $\sbsp n \dot s$. \endgraf Our methods include use of spherical harmonics, uniformity properties of Bessel functions and interpolation of vector valued weighted Lebesgue spaces.
AMS subject classification. 
42B15, 42B99, 35J10, 35B40, 35B65, 35P25, 33C10, 46B70
Keywords. 
Oscillatory Integrals, Weighted and Mixed Norm Inequalities, Global Smoothing and Decay, Time-dependent Schrodinger Equation, Bessel functions, Weighted interpolation spaces
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE