ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 69,   2   (2000)
pp.   137-144
ON LARGE RANDOM ALMOST EUCLIDEAN BASES
R. VERSHYNIN
Abstract. 
A new class of random proportional embeddings of $l_2^n$ into certain Banach spaces is found. Let $(\xi_i)_i=1^n$ be i.i.d. mean zero \Cramer random variables. Suppose $(x_i)_i=1^n$ is a sequence in the unit ball of a Banach space with $\E \| \sum_i \e_i x_i \| \ge \d n$. Then the system of $\[ cn\] $ independent random vectors distributed as $\sum_i \xi_i x_i$ is well equivalent to the euclidean basis with high probability ($c$ depends on $\xi_1$ and $\d$). A connection with combinatorial discrepancy theory is presented.
AMS subject classification. 
46B09, 05B20, 41A28
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE