ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 69,   2   (2000)
pp.   233-240
VECTOR ERGODIC THEOREM IN $L(X)\log L(X)$
K. EL BERDAN
Abstract. 
Let $X$ be a reflexive Banach space and $\Omega $ be a finite measure space. We prove the almost everywhere convergence of the vector multiparameter averages \frac1n_1\dots n_d\sum_0\leq k_1,\dots k_d<n_j\alpha _k_1^1\dots \alpha _k_d^dT_1^k_1\dots T_d^k_df for all $f\in L^p(X)$, $1<p<\infty $, and where $ ( \alpha _n^j) $ are bounded Besicovitch sequences $\left( j=1,\dots ,d\right) $ with $T_1,\dots ,T_d$ are linear operators acting on $% L^1(X)$ and satisfying certain conditions. For $d=2$, we obtain more general result. Indeed, in this case, we prove the convergence a.e. for $f\in L(X)\log L(X)$. The general case ($d>2$) requires integrability of the supremum of the norm of these averages. As applications, we give new proof of Zygmund-Fava's Theorem.
AMS subject classification. 
47A35
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE