ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 69,   1   (2000)
pp.   127-135
THE STABILITY OF THE EQUATION $f(xy)-f(x)-f(y)= 0$ ON GROUPS
V. FA IZIEV
Abstract. 
Let $G$ be a group and let $E$ be a Banach space. Suppose that a mapping $f\:G\to E$ satisfies the relation $||f(xy)- f(x)- f(y) ||\le c $ for some $c>0$ and any $ x,y\in G$. The problem of existence of mappings $l \: G\to E$ such that the following relations hold 1) $l(xy)- l(x)- l(y) =0$ for any $ x,y\in G$; 2) the set $\\;||l(x) -f(x)||\; ;\forall x,y \in G $ is bounded is considered.
AMS subject classification. 
20M15, 20M30
Keywords. 
Equation, stability, pseudocharacter, group
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE