ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 69,   1   (2000)
pp.   59-70
COMPARING A CAYLEY DIGRAPH WITH ITS REVERSE
M. ABAS
Abstract. 
A Cayley digraph $G=C(\Gamma,X)$ for a group $\Gamma$ and a generating set $X$ is the digraph with vertex set $V(G)=\Gamma$ and arcs $(g,gx)$ where $g\in\Gamma$ and $x\in X$. The reverse of $C(\Gamma,X)$ is the Cayley digraph $G^-1=C(\Gamma,X^-1)$ where $X^-1=\x^-1; x\in X\$. We are interested in sufficient conditions for a Cayley digraph not to be isomorphic to its reverse and focus on Cayley digraphs of metacyclic groups with small generating sets.
AMS subject classification. 
05C25
Keywords. 
Cayley digraph, digraph isomorphism
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE