ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 69,   1   (2000)
pp.   59-70

COMPARING A CAYLEY DIGRAPH WITH ITS REVERSE
M. ABAS


Abstract.  A Cayley digraph $G=C(\Gamma,X)$ for a group $\Gamma$ and a generating set $X$ is the digraph with vertex set $V(G)=\Gamma$ and arcs $(g,gx)$ where $g\in\Gamma$ and $x\in X$. The reverse of $C(\Gamma,X)$ is the Cayley digraph $G^-1=C(\Gamma,X^-1)$ where $X^-1=\x^-1; x\in X\$. We are interested in sufficient conditions for a Cayley digraph not to be isomorphic to its reverse and focus on Cayley digraphs of metacyclic groups with small generating sets.

AMS subject classification.  05C25
Keywords.  Cayley digraph, digraph isomorphism

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE