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BOUNDED PLATEAU AND WEIERSTRASS MARTINGALES

WITH INFINITE VARIATION IN EACH DIRECTION

P. F. X. M �ULLER

1. Introduction

In this note we discuss a dyadic model for real harmonic functions x1, . . . , xn
defined on the unit disk {z = u+ iv : |z| < 1} whose partial derivatives satisfy the
compatibility condition

m∑
i=1

x2
i,v =

m∑
i=1

x2
i,v and

m∑
i=1

xi,uxi,v = 0.

We restrict the discussion to the cases m = 2, 3, 4.
The problem we have in mind is the following. Suppose that |x(z)| ≤ 1, does it

then follow that there exists a ray R connecting 0 to eiθ such that∫
R

m∑
i=1

|xi,v(z)|+ |xi,u(z)| |dz| <∞?

For the case m = 2 J. Bourgain has shown in [1] that the answer is “yes”. Where
as for m = 4 (and hence for m ≥ 4) P. W. Jones has shown in [2] that the answer
is “no”. We now turn to m = 3. In [4] N. Nadirashvili constructs an example of
of three bounded harmonic functions satisfying

3∑
i=1

x2
i,v =

3∑
i=1

x2
i,v and

3∑
i=1

xi,uxi,v = 0.

and ∫
R

3∑
i=1

|xi,v(z)|+ |xi,u(z)| |dz| =∞

for every ray R connecting 0 to the boundary of the unit disk. The construction
uses hard analytic estimates and is highly combinatiorial in nature.
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The purpose of this note is to illustrate the method of Nadirashvili by isolating
the combinatorial pattern of his proof. This is done by studying martingale models
that are well adapted to the problem at hand.

When m = 2, x1 +ix2 is either holomorphic in the unit disk or antiholomorphic.
Recall that the discrete model for that is provided by a complex valued martingale
Fn = Gn + iHn such that the increments satisfy

En−1((Gn −Gn−1)2) = En−1((Hn −Hn−1)2) and

En−1(Gn −Gn−1)(Hn −Hn−1) = 0.

This is equivalent to En−1(F 2
n) = F 2

n−1. Martingales satisfying this condition
are called conformal martingales. Many authors have exploited the analogy be-
tween conformal martingales and analytic functions to obtain significant results in
complex analysis and probability. (See especially [3] and [5].)

In Section 2 we will introduce discrete analouges for triples of harmonic func-
tions satisfying the compatibility condition:

3∑
i=1

x2
i,v =

3∑
i=1

x2
i,v and

3∑
i=1

xi,uxi,v = 0.

These R3-valued martingales also extend the notion of conformal martingales. We
will isolate an example in this class of martingales that is uniformly bounded, yet
has infinite variation in each direction. The construction given below controls the
oscillations, that give rise to infinite variation, by exploiting orthogonality in R3.
(See Lemma 1 below.)

Harmonic functions x1, x2, x3 in the unit disk which satisfy the above compati-
bility conditions admit the so called Weierstrass representation. That means that
there are analytic function f , g in the unit disk such that

x1(z) = Re
∫ z

0

f(ζ)(1− g2(ζ)) dζ,

x2(z) = iRe
∫ z

0

f(ζ)(1 + g2(ζ)) dζ,

x3(z) = 2Re
∫ z

0

f(ζ)g(ζ)) dζ.

In Section 3 we will motivate and define an R3 valued martingale model for har-
monic function that are given by the Weierstrass representation.

This model provides another extension of the notion of conformal martingales
which is different from the one discussed in Section 2. Here too we will find an
example which is uniformly bounded and has infinite variation in each direction.
Again the construction starts by creating oscillation, (for the lower bounds on the
variation of the martingale) and then makes use of the resulting cancellation to
obtain pointwise upper estimates on the value of the martingale. At that point
the geometry of the Euclidian ball in R3 (uniform convexity) becomes crucial.
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2. Plateau Martingals

Let Ω be a metric space endowed with a probability measure P . Let the se-
quence of semicontinuous functions Fn : Ω → R3 be a martingale with respect to
the filtration Fn, n ∈ N. Then this martingale is called a Plateau martingale
provided that the martingale difference sequence Fn+1 − Fn admits the following
representation

(1) (Fn+1 − Fn)(w) = R1(w)g +R2(w)h, w ∈ Ω,

where g, h ∈ R3 satisfy

(2) |g| − |h| = 0 = 〈g, h〉,

and where Ri : Ω → R are independent random variables, independent of Fn,
measurable with respect to Fn+1 such that

(3) E(Ri|Fn) = 0 and E(R2
i |Fn) = 1, i ∈ {1, 2}.

We would like to point out that in the above definition 〈g, h〉 denotes the scalar
product in R3 of g and h.

Theorem 1. There exists a Plateau martingale Fn, n ∈ N, so that for every
w ∈ Ω

sup
n∈N
|Fn(w)| ≤ 4,(4)

∞∑
n=1

|(Fn+1 − Fn)(w)| =∞.(5)

The construction of this martingale uses the following elementary observation.

Lemma 1. Let n ∈ N. For F ∈ R3, there exist g, h ∈ R3 so that

〈F, g〉 = 〈F, h〉 = 0,

|g| − |h| = 0 = 〈h, g〉,

|ε1g + ε2h| =
1
n
, where ε1, ε2 ∈ {±1}.

Proof. Let E ⊆ R3 be the plane orthogonal to F that contains the origin.
Then choose g, h ∈ E such that 〈g, h〉 = 0 and |g| = |h| = 1/n

√
2. Then clearly

|ε1g + ε2h| =
√
|g|2 + |h|2 = 1/n. �

Proof of Theorem 1. We will build the Plateau martingal (Fn) on the interval
[0, 1] endowed with Lebesque measure. The filtration Fn will be the σ-algebra



328 P. F. X. M �ULLER

generated by the first 2n Rademacher functions r1, . . . , r2n. Let ∆n = Fn+1 − Fn
denote the martingale difference sequence. Applying Lemma 1 we will construct
(Fn) in such a way that for every w ∈ [0, 1]

〈Fn(w),∆n(w)〉 = 0,(6)

|∆n(w)| = 1
n
.(7)

(Recall that 〈·, ·〉 denotes scalar product in R3.)
By (6), (7) and induction we obtain for every w ∈ [0, 1],

|Fn+1(w)|2 = |(Fn + ∆n)(w)|2

= |Fn(w)|2 + |∆n(w)|2

=
n∑

m=1

|∆m(w)|2 =
n∑

m=1

1
m2

.

On the other hand, for every w ∈ [0, 1],

n∑
m=1

|∆m(w)| =
n∑

m=1

1
m
.

Hence (4) and (5) hold for martingales satisfying (6) and (7).
Summing up, we have observed so far that it suffices to construct a Plateau

martingale Fn : [0, 1] → R3 satisfying (6) and (7). We start the construction
by choosing F0 ∈ R3. We let r1 : [0, 1] → {±1} be the Rademacher function
which is 1 on [0, 1

2 ) and −1 on [ 1
2 , 1]. When continued periodically to R, the first

Rademacher function can be used to define the second Rademacher function by
setting r2(w) = r1(2w), w ∈ [0, 1].

By Lemma 1 there are g, h ∈ R3 so that

〈F0, g〉 = 〈F0, h〉 = 0(8)

|g| − |h| = 0 = 〈g, h〉(9)

|r1(w)g + r2(w)h| = 1
n
, for w ∈ [0, 1].(10)

We define F1 : [0, 1]→ R3 by

F1(w) = F0 + r1(w)g + r2(w)h, w ∈ [0, 1].

F1 is the σ-algebra generated by r1, r2.
The construction of Fn+1 follows the same pattern. We are given F1, . . . , Fn

so that (1), (2) and (3) as well as (6) and (7) are satisfied. The σ-algebra Fn
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is generated by the Rademacher functions r1, . . . , r2n. Let the halfopen interval
I ⊂ [0, 1) be an atom in Fn. Fn is constant on I, and we put FI = Fn(w), w ∈ I.
The Rademacher functions r2n+1, r2n are independent of Fn and satisfy

(11) E(ri|Fn) = 0 and E(r2
i |Fn) = 1; i ∈ {2n+ 1, 2n}.

By Lemma 1 there exist gI , hI ∈ R3, so that

〈FI , gI〉 = 〈FI , hI〉 = 0(12)

|gI | − |hI | = 0 = 〈gI , hI〉(13)

|r2n+1(w)gI + r2n(w)hI | =
1
n
, w ∈ I.(14)

Then on I we define Fn+1 by

Fn+1(w) = FI + r2n+1(w)gI + r2n(w)hI , w ∈ I.

As Fn(w) = FI for w ∈ I, we have for w ∈ I,

(15) Fn+1(w) = Fn(w) + r2n+1(w)gI + r2n(w)hI .

We obtain the definition of Fn+1 on the whole of [0, 1) by successively considering
the atoms I of Fn and applying the above construction. By (12) and (14), we
have for w ∈ [0, 1),

〈Fn(w),∆n(w)〉 = 0 and |∆n(w)| = 1
n
.

Moreover by (11), (13) and (15), the sequence F1, . . . , Fn+1 is a Plateau martingale,
when Fn+1 is defined as the σ-algebra generated by r1, . . . , r2n+2. This completes
the construction of a bounded Plateau martingale that is of infinite variation in
each direction.

3. Weierstrass Martingales

We first motivate our martingale model of harmonic functions given by the
Weierstrass representation.

Let f = a + iHa, g = m + iHm where a,m are real harmonic, and where H
denotes the Hilbert transform. We further abbreviate c = m2 − (Hm)2. Then
Hc = 2mHm. With this notation we have

f(1− g2) = a− ac+ 2HaHc

+ i(Ha− (cHa− aHc),
if(1 + g2) = −Ha− cHa− aHc

+ i(a+ ac−HaHc),
fg = am−HaHm+ i(aHm+mHa).
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To display the symmetries in the above expressions, we rewrite, using scalar prod-
ucts

f(1− g2) = a+
〈(

a

Ha

)
,

(
−c
Hc

)〉
+ iHa− i

〈(
a

Ha

)
,

(
0 1
−1 0

)(
−c
Hc

)〉
,

if(1 + g2) = −Ha−
〈(

a

Ha

)
,

(
0 1
−1 0

)(
−c
Hc

)〉
+ ia+ i

〈(
a

Ha

)
,

(
−c
Hc

)〉
,

fg =
〈(

a

Ha

)
,

(
m

−Hm

)〉
− i
〈(

a

Ha

)
,

(
0 1
−1 0

)(
m

−Hm

)〉
.

We conclude from this discussion that if we can find harmonic functions a,m
(hence c) so that the following integrals are bounded,∫ z

0

a dr,

∫ z

0

Hadr;∫ z

0

〈(
a

Ha

)
,

(
−c
Hc

)〉
dr;∫ z

0

〈(
a

Ha

)
,

(
−c
Hc

)〉
dr;∫ z

0

〈(
a

Ha

)
,

(
m

−Hm

)〉
,

∫ z

0

〈(
a

Ha

)
,

(
0 1
−1 0

)(
m

−Hm

)〉
,

then the harmonic functions x1, x2, x3 given by Weierstrass representation are also
bounded. Therefore they parametrize a bounded minimal surface. If moreover∫

γ

∣∣∣∣〈( a

Ha

)
,

(
−c
Hc

)〉∣∣∣∣+
∣∣∣∣〈( a

Ha

)
,

(
0 1
−1 0

)(
−c
Hc

)〉∣∣∣∣ ds =∞,

when γ connects 0 to the boundary of the unit disk, then the resulting minimal
surface is complete.

Now we tie these observation to the martingale model given below. We interpret
a + iHa as the infinitesimal increment of the analytic function

∫ z
0
a + iHa dz =∫ z

0
f dz and c+iHc as the infinitesimal increment of the analytic function

∫ z
0
g2 dz.

In the model we replace holomorphic functions by R2 valued conformal mar-
tingales and infinitesimal increments by martingale difference. Then the integral
expressions above will guide us to the formulation of the R3-valued martingales
in Weierstrass representation. We start by defining conformal martingales with
values in R2.

Let Ω be a metric space endowed with a probability measure P . Let the sequence
Fn : Ω→ R2 be a martingale with respect to the filtration Fn, n ∈ N. Then Fn is
called a conformal martingale if the martingale differences admit the representation

(Fn − Fn−1)(w) = R1(w)g +R2(w)h, w ∈ Ω
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where g, h ∈ R2 satisfy
|g| − |h| = 0 = 〈g, h〉

and where Ri : Ω → R are independent random variables, independent of Fn,
measurable with respect to Fn+1 such that

E(Ri|Fn) = 0 and E(R2
i |Fn) = 1, i ∈ {1, 2}.

(Here 〈g, h〉 denotes scalar product in R2.)
We say that (Fl, Gl,Ml) is a triple of conformal martingales if for each l there

exist independent random variables Ri : Ω → R as above, and the martingale
differences satisfy

Fl − Fl−1 = R1g +R2h

Gl −Gl−1 = R1m+R2n

Ml −Ml−1 = R1u+R2w

where |g| − |h| = |m| − |n| = |u| − |w| = 0 = 〈g, h〉 = 〈m,n〉 = 〈u,w〉.
The significance of the above setting is that one and the same pair R1, R2 of

independent random variables appears in the representation of ∆Fn,∆Gn and
∆Mn.

Now we are ready to define the notion of Weierstrass martingales.
Let (Xm, Ym, Zm) : Ω → R3 be a martingale. If there exists a triple

(Fm, Gm,Mm) of conformal martingales so that

Xm =
m∑
n=1

〈∆Fn,∆Gn〉,

Ym =
m∑
n=1

〈
∆Fn,

(
0 1
−1 0

)
∆Gn

〉
,

Zm =
∑
〈∆Fn,∆Mn〉,

where |∆Mn| ≤
√

∆Gn, then we say that (Xm, Ym, Zm) is a Weierstrass martingale
and (Fm, Gm,Mn) is its Weierstrass representation.

Theorem 2. There exists an uniformly bounded Weierstrass martingale with
infinite variation in each direction.

In the construction below we use again the Pythagorean theorem. We create
oscillation to ensure infinite variation and we use uniform convexity, as expressed
by the Pythagorean theorem when we give a pointwise estimate for the Weier-
strass martingale. This remark is made precise in the following proposition, which
describes our construction level by level. Theorem 2 follows from the next propo-
sition.
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Proposition 1. There exist conformal martingales Fk, Gk,Mk : [0, 1]→ R2 so
that |∆Mk| ≤

√
∆Gk and so that the following holds.

(1) For each k, |∆Fk| = k−2, and in R2 the vector(
〈∆Fk,∆Gk〉,

〈
∆Fk,

(
0 1
−1 0

)
∆Gk

〉)
has length 1

k .
(2) For each w ∈ [0, 1], the vector in R2 with the components

〈∆Fk(w),∆Gk(w)〉

and 〈
∆Fk(w),

(
0 1
−1 0

)
∆Gk(w)

〉
,

is orthogonal to V = (V1, V2), where

V1(w) =
k−1∑
l=1

〈∆Fl(w),∆Gl(w)〉,

V2(w) =
k−1∑
l=1

〈
∆Fl(w),

(
0 1
−1 0

)
∆Gl(w)

〉
.

(3) The partial sums

k∑
l=1

〈∆Fl,∆Gl〉

k∑
l=1

〈
∆Fl,

(
0 1
−1 0

)
∆Gl

〉
k∑
l=1

〈∆Fl,∆Ml〉

form martingales.

Proof. We let F0 = G0 = M0 = 0. Now we assume that F1, . . . , Fk−1,
G1, . . . , Gk−1 and M1, . . . ,Mk−1 have been determinded, and we let Fk−1 be the
σ-algebra generated by these functions.

We fix an atom I in Fk−1. Next we choose independent Rademacher functions
r1, r2 which are also independent of Fk−1. On I the martingales we whish to build
are of the following form:

Fk − Fk−1 = gr1 + hr2,
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where g, h ∈ R2, |g| − |h| = 0 = 〈h, g〉;

Gk −Gk−1 = mr1 + nr2,

where m,n ∈ R2, |m| − |n| = 0 = 〈m,n〉.
We will now determine the vectors g, h,m, n such that the conditions (1)–(3)

are satisfied. We first make a rather arbitrary choice to select m and n, then we
determine g, h depending on the history of Fl(w), Gl(w), w ∈ I, l ≤ k − 1. Here
we will use that Gl(w) = Gl(I) and Fl(w) = Fl(I) when l ≤ k − 1.

Finally we will choose ∆Mk depending on g and h. We start by putting m =
(k, 0) and n = (0, k). Now we determine g, h such that the orthogonality condition
(2) in Proposition 1 holds and so that the partial sums

p∑
l=1

〈∆Fl,∆Gl〉,

p∑
l=1

〈
∆Fl,

(
0 1
−1 0

)
∆Gl

〉
form martingales for p ≤ k.

By choice of m, n we have

(16) 〈∆Fk,∆Gk〉 = k(g1 + (h1 + g2)r1r2 + h2)

and

(17)
〈

∆Fk,
(

0 1
−1 0

)
∆Gk

〉
= k(g2 + (h2 − g1)r1r2 − h1).

Hence, if we choose g1 = −h2 and g2 = h1 then the random variables

〈∆Fk,∆Gk〉 and
〈

∆Fk,
(

0 1
−1 0

)
∆Gk

〉
are martingale differences. Moreover this choice gives |g| − |h| = 0 = 〈g, h〉. We
denote the quantities apearing in (16) resp. (17) by α(w) resp. β(w). By our
preliminary choice of g, h, we have for w ∈ I,

(18)
(
α(w)
β(w)

)
= 2r1(w)r2(w)

(
h1

h2

)
.

Our plan is now to use the remaining degree of freedom to ensure that V (w) =
(V1(w), V2(w)) is orthogonal to (α(w), β(w)), whenever w ∈ I. By definition,
V (w) is measurable with respect to Fk−1. Hence V (w) = V (I) for w ∈ I. Now
we choose h = (h1, h2) to be orthogonal to V (I). Consequently, by (18), the
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vector (α(w), β(w)) = ±h is orthogonal to V (I), when w ∈ I. Finally we let
|h1| = |h2| = 1/k2.

Summing up, we have now determined the coefficients of g, h,m, n. We have
done this so that Fk and Gk are conformal martingales, and so that the assertions
(1) and (2) of Proposition 1 hold. It remains to determine Mk so that, 〈∆Fk,∆Mk〉
is a martingale difference, and

Mk −Mk−1 = ur2 + wr2,

where u,w ∈ R2, and |u| − |w| = 〈u,w〉.
Expanding the scalar product we obtain

〈∆Fk,∆Mk〉 = g1u1 + h1w1 + g2u2 + h2w2 + r1r2(g1w1 + h1v1 + g2w2 + h2u2).

As g1 = −h2, g2 = h1 we see that the choice u1 = −αg2, u2 = αg2, w1 = +αg1

and w2 = +αg2, makes 〈∆Fk,∆Mk〉 a martingale difference. Moreover we have
|u| − |w| = 0 = 〈u,w〉, hence Mk is a conformal martingale. Finally we let α =√
k/
√

2 then |∆Mk| =
√
k ≤
√

∆Gk. This completes the proof of Proposition 1.�

Proof of Theorem 2. Let Fk, Gk and Mk be conformal martingales satisfying
conditions (1), (2) and (3) of Proposition 1 and let (Xk, Yk, Zk) be the correspond-
ing Weierstrass martingale. By Proposition 1 (1), for each w ∈ [0, 1] we have

∞∑
k=1

|∆Xk|(w) + |∆Yk|(w) + |∆Zk|(w)

≥
∞∑
l=1

|〈∆Fl(w),∆Gl(w)〉|+
∣∣∣∣〈∆Fl(w),

(
0 1
−1 0

)
∆Gl(w)

〉∣∣∣∣ =∞.

Again by condition (1) in Proposition 1, the martingale Fk is uniformly
bounded, and for Zk we have the simple estimate |Zk| ≤

∑k
l=1 l

−3/2.
To find bounds for Xk, Yk, we use the orthogonality condition (2) in Proposi-

tion 1. We write

(Xk, Yk) = (Xk−1, Yk−1) + (Xk −Xk−1, Yk − Yk−1)

and by Proposition 1.(2) for each w ∈ [0, 1], the vector (Xk−1(w), Yk−1(w)) is
orthogonal to ((Xk −Xk−1)(w), (Yk − Yk−1)(w)) in R2. Hence by induction and
the Pythagorean theorem:

|(Xk, Yk)|2 =
k∑
l=1

|(Xl −Xl−1, Yl − Yl−1)|2 =
k∑
l=1

l−2.

This estimate completes the proof of Theorem 2.
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