ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 68,   2   (1999)
pp.   337-344

CHARACTERIZATIONS OF SERIES IN BANACH SPACES
A. AIZPURU and F. J. PEREZ-FERNANDEZ


Abstract.  In this paper we prove several new characterizations of weakly unconditionally Cauchy series in Banach spaces and in the dual space of a normed space. For a given series $\zeta$, we consider the spaces $\mathcalS(\zeta)$, $\mathcalS_w(\zeta)$ and $\mathcalS_0(\zeta)$ of bounded sequences of real numbers $(a_i)_i$ such that the series $\sum_i^a_ix_i$ is convergent, weakly convergent or $\ast$-weakly convergent, respectively. By means of these spaces we characterize conditionally and weakly unconditionally Cauchy series.

AMS subject classification.  46B15, 46B99; Secondary 40A05, 46B45
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE