ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 68,   2   (1999)
pp.   337-344
CHARACTERIZATIONS OF SERIES IN BANACH SPACES
A. AIZPURU and F. J. PEREZ-FERNANDEZ
Abstract. 
In this paper we prove several new characterizations of weakly unconditionally Cauchy series in Banach spaces and in the dual space of a normed space. For a given series $\zeta$, we consider the spaces $\mathcalS(\zeta)$, $\mathcalS_w(\zeta)$ and $\mathcalS_0(\zeta)$ of bounded sequences of real numbers $(a_i)_i$ such that the series $\sum_i^a_ix_i$ is convergent, weakly convergent or $\ast$-weakly convergent, respectively. By means of these spaces we characterize conditionally and weakly unconditionally Cauchy series.
AMS subject classification. 
46B15, 46B99; Secondary 40A05, 46B45
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE