ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 68,   2   (1999)
pp.   205-211
ON TOPOLOGICAL SEQUENCE ENTROPY AND CHAOTIC MAPS ON INVERSE LIMIT SPACES
J. S. CANOVAS
Abstract. 
The aim of this paper is to prove the following results: a continuous map $% f\:[0,1]\rightarrow [0,1]$ is chaotic iff the shift map $\sigma _f\:\lim\limits_\leftarrow ([0,1],f)\rightarrow \lim\limits_\leftarrow ([0,1],f)$ is chaotic. However, this result fails, in general, for arbitrary compact metric spaces. $\sigma _f\:\lim\limits_\leftarrow ([0,1],f)\rightarrow \lim\limits_\leftarrow ([0,1],f)$ is chaotic iff there exists an increasing sequence of positive integers $A$ such that the topological sequence entropy $h_A(\sigma _f)>0$. Finally, for any $A$ there exists a chaotic continuous map $f_A\:[0,1]\rightarrow [0,1]$ such that $% h_A(\sigma _f_A)=0.$
AMS subject classification. 
58F03, 26A18
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE