ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 67,   2   (1998)
pp.   343-350

THE BLOW-UP RATE FOR A SEMILINEAR PARABOLIC EQUATION WITH A NONLINEAR BOUNDARY CONDITION
J. D. ROSSI


Abstract.  In this paper we obtain the blow-up rate for positive solutions of $u_t= u_xx -\lambda u^p $, in $(0,1) \times (0,T)$ with boundary conditions $ u_x (1,t) = u^q (1,t)$, $u_x (0,t) =0$. If $p<2q-1$ or $p=2q-1$, $0<\lambda<q$, we find that the behaviour of $u$ is given by $ u(1 ,t) \sim (T-t)^-\frac12(q-1)$ and, if $\lambda<0$ and $p \ge 2q-1$, the blow up rate is given by $ u(1 ,t) \sim (T-t)^-\frac1p-1$. We also characterize the blow-up profile in similarity variables.

AMS subject classification.  35B40, 35J65, 35K60
Keywords.  blow-up, asymptotic behaviour, nonlinear boundary conditions

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE