ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 66,   2   (1997)
pp.   229-241
SUBASSOCIATIVE ALGEBRAS
A. CEDILNIK
Abstract. 
An algebra is subassociative if the associator $[x, y, z]$ of any three elements $x, y, z$ is their linear combination. In this paper we prove that any such algebra is Lie-admissible and that almost any such algebra is proper in the sense that there exists an invariant bilinear form $A$ for which there holds the following identity: $[x, y, z] = A(y, z)x - A(x, y)z$, which enables a close connection with associative algebras. We discuss also the improper subassociative algebras.
AMS subject classification. 
17A30, 17D25
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE