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A FUIJITA-TYPE THEOREM FOR THE LAPLACE EQUATION
WITH A DYNAMICAL BOUNDARY CONDITION

H. AMANN and M. FILA

Abstract. We find a critical exponent for global existence of positive solutions of
the Laplace equation on a half-space with a dynamical boundary condition.

1. Introduction

Given a nonempty open subset X of R™ we denote by BUC(X) the Banach
space of all bounded and uniformly continuous func'&ps on X, endowed with the
supremu norm [Td. We also put BUC..(X) := u [CHUC(X) ; u(x) =0 for
x X . Moreover, H" := R"~1 x (0, o) is the open upper half-space in R", and
its boundary oH" is identified with R" 1,

We fix ¢ [C(d, o0) and consider the following system:

Au=0 in H" % (0,00),
(1.0 O¢u —dpu =1 on dH" x (0, o0) ,
U(,O):¢ on aHn !

where A = 02 + .- + 92 is the Laplacian with respect to x = (x7xp) CRM! xR.
By a solution of (1.1) on [0, T) we mean a function

J O . -
(1.2) u CA0,T),BUCL(H") ncC! (0, T),BUC(H")

such that u(t) CCP(H™) n C1(HM) for t > 0, and u satisfies (1.1) point-wise, where
u(x, t) := u(t)(x). Note that this requires ¢ to belong to BUC..(R"™1). Of course,
each solution, being @lrmonic, is analytif;__in HM'for0<t<T.

A function u [Q [0, T), BUC+(H™) is a maximal solution of (1.1) if u is a
solution on [0, Tg) and [0, Tg) is a maximal interval with this property. If Tg = oo
and u is a solution on [0, o) then u is a global solution of (1.1).

The following theorem is the main result of this paper:
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Theorem. Problem (1.1) possesses for each ¢ CBIUC.(R"1) a unique max-
imal solution ug. If Ty < oo then ug ‘blows up’, that is,

Jim MO = e

1
Ifg<n (n—1)then gve{y nonzero maximal solution blows up in finite time (that
is, Ty < o0). If g >n (n—1) then there are solutions that exist globally as well
as solutions that blow up in finite time.

Observe, in particular, that each nonzero maximal solution blows up in finite
time if n = 1.

Intuitively, the above result can be explained as follows: If ¢ [T n BUC. then
the solution of the linear problem

Au=0 in H" x (0, 0),
(1.3) dtu—0n,u=0 on dH" x (0, o) ,
u(ro):q) on aHn 1

is global and decays with rate t*~", as will be shown in Section 2. On the other
hand, each solution of the ordinary di Iﬁbntiaﬁquati@ u = u blows up in finite
time with rate (T — /-0, where F:= T u(0),q . Therefore the solution g
(=n (n—1)) ofequation n—1=1 (q—1) can be expected to be a critical ex-
ponent for global existence.

Letlﬁ mention here that problem (1.1) possesses positive stationary states i[]
g=n (n—2) (cf. [H], [CSF], [CCFS)).

In the case of bounded domains, problems analogous to (1.1) have been studied
recently in [E1-3], [K], [FQ], for example. References to earlier work can be found
in [E1].

Beginning with the classical paper by Fujita [F], blow-up results of the above
type have been established for many classes of parabolic problems (see [L] for
a survey, and [DFL], [EL], [FL], [FLU], [GL1-2], [HY1-3], [KO], [LQ], [MS],
[MY], and [S] for some more recent results). ‘Fujita-type theorems’ are also known
for nonlinear Schrodinger and wave equations (also cf. [L] and the references given
therein). The interest in our (model) problem stems from the fact that system (1.1)
is equivalent to an evolution equation of the form

(1.4) u+Au=u’, t>0, u() = ¢

in BUC(R"1), where A is a pseudodi [Efkntial operator of degree 1 (see Section 2).
Thus the Theorem is a Fujita-type result for a new class of equations.
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2. Preliminaries

The case n = 1 is trivial. Therefore we assume henceforth that n = 2 and study
(1.1) by means of a ‘variation-of-constants formula’, which we establish now.

We denote by = Fu the (partial) Fourier transform with respect to xR
(in the space SR™!) of temperate distributions). Then the first equation in
(1.3) yields

QAT Xn, 1) = TP UEXn, 1) =0,  Xn,t>0.
Hence
1) (X0, ) = W0, e T,
and we infer from the second equation in (1.3) that
0:W(:)0, t) + [EY 0, t) =0, t>0.
Thus (50, t) = e~ tI&TgTor t = 0, and it follows from (2.1) that
(2.2) (I Xn, t) = e 0 DTG x, >0, t>0.

1
Put A(XY := 1T+ |xP? 2 for xR and ¢, := [Ar" 1, where CIdis the
normin L, := L(R"1) for 1 <r < oo, and let

(2.3) pe (XY =t e AT (X T) 1>0, x"CRM?.

Then {p: ; T >0} is the (n — 1)-dimensional Poisson kernel, and we deduce from
(2.2), by taking the inverse Fourier transform, that

2.4) u(:, Xn, t) = pxy+t LA = P (Xn + 1) , Xn=0, t>0,

denoting by I:PI(&I T=0 I:tlhﬁoisson convolution semigroup on R™™1, It is
well-known that P (t) ; T=0 is a strongly continuous analytic semigroup of
contractions on BUC(R"™1) whose negative infinitesimal generator equals the
BUC(R"1)-realization of A:=F1|€}F. By invoking standard properties of
this semigroup (e.g., [A]) it is not di Ccult to see that u, as given by (2.4), is a
global solution of (1.3) and the only one (in our class of solutions satisfying (1.2)).
Note that (2.3) and (2.4) also imply that if ¢ [Ih n BUC. then

m{t)Jd = o@t™"), t -~ oo,
and it is easily seen that this decay rate is exact.

Let y be the trace operator for 9H", that is, yw(x := w(x70) for w CTI(H™).
Then an obvious modification of the above considerations also shows that u is a
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solution of (1.1) on [0, T) iXM:=yu is a solution of (1.4) on [0, T). In fact, if v is
a solution of (1.4) on [0, T) then

(2.5) u(-, Xn, ) ;== P(Xp)v(t) , Xpn =0, t=0,

is its unique harmonic extension over H" %< [0, T) such that u(, -, t) is bounded
onH" for0<t<T.
As usual, we associate with (1.4) the Volterra integral equation

J
(2.6) vi)=P@®d+ P{—Tt)V(t)dT, t=0,
0

in BUC(R"1). Standard arguments guarantee that it possesses a unique maximal
solution

J O
2.7 vy [ [0, Ty), BUCL(R"Y)
and that
(2.8) lim Du(t)[d = o0
taT¢

if T < oo. Thus vy, is a mild solution of (1.4). Using Besov spaces and regularity
properties of the Poisson semigroup in these spaces it can be shown that vy is a
classiﬁl solution of (1.4), tlﬁt is, Vp(t) Cdbm(A) for t [0, Tg) and Avg belongs
to C (0, Tg), BUCL(R"1) , and vy satisfies (1.4) on [0, T) in the point-wise sense.
In fact, it can be shown that

CJ O _CJ -
(2.9) v [T (0,Ty), BUC(R"™) nC (0,Ty), BUCZ(R" )

where u [CBIUC? i CdFu [CBIUC for |a] < 2. Since we do not need these regularity
results for the blow-up considerations we refrain from giving details and refer the
interested reader to [A].

Note that (2.7) and (2.9) imply that ug, as defined by (2.5) with v replaced
by vg, is the unique maximal solution of (1.1). Moreover, (2.8) shows that the
supremum norm of ug(t) over H™ blows up as t — T, provided Ty is finite. Also
note that ug, is characterized by being the unique maximal solution of the integral
equation

-

u(, Xm, ) =PXn +t)d+ P (Xp +t—T1)ud(,0,1)dT, Xn=>0, t=0,
0

in BUC(H"), as follows from the semigroup property of P.

The above considerations prove the existence and uniqueness assertion of the
Theorem and also the fact that ug blows up if Ty is finite. It should be mentioned
that uniqueness is lost if we drop the condition that ug(t) be bounded on H" for
0<t<Ty. Indeed, if ¢ is a positive constant and g is any C*-function of one
variable satisfying g(O&Iz ¢ and g(él) =gi(t) for0<t<T, then

u(x,t) == g(t) —g%(t) xn +9(v) , (x,t) CH" < [0,T),

is a solution of (1.1).
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3. Blow-Up and Global Existence

Thanks to the observations in Section 2 it su [ced to study the blow-up be-
havior of the unique maximal solution of integral equation (2.6) in the Banach
space E = BUC(R”‘l)l:INote that Elis ordered by the positive cone E. =
BUC.(R" 1) and that P(t); t=0 is a positivity preserving semigroup on E.

For abbreviation we write (2.6) in the form

(3.1) u® =P@®)$ +P CAU)(L), t=0,

where f(u) := u%. Then we prove the following comparison principle:

mma Iljl Let v be a solution of (3.1) on [0,T] and suppose that w [1
C [0,T],E+ satisfies

3.2) w(t) = Py + P CH(w)(L) , O=st=<T,

for some Y [CH+. Then ¢ = ¢ impliesw =v .

Proof. Suppose that & 5(0 T] a@] aj ECI% 0], E+ I:florj = 0,1 with ag = a;.
Also suppose that u; I%ZI [0, 3], % satisfies u; = a; + P [H(u;j) on [0, 8] and that
Uj = limg . oo u}‘ in C [0,3], E+~ , where the sequence (uj‘-‘)kmjis obtained by the
iteration scheme u}) = a; and u}‘*l =a;+P Eﬂ(u}() fork [(Nland j =0,1. Then
ap = a;, the positivity of P, and the fact that T is increasing imply by induction
that u§ = uk for k CNL Hence ug = uj. O -

From (3.2) we infer the existence of b [Cl [0, T],E+ such that

w=b+P()y+P CHW)

on [0,T]. Thus
a =b+POY=P()p=a

and up :=w and uy :=v satisfy u; = a; + P H(u;) on [0, T]. Since T is locally
Lipschitz continuous it is well-known that there exists 8 [0, T] such that u; can
be obtained on [0, 8] by the above iteration scheme. Hence w|[0, 6] = v|[0, ] by
the first part of the proof. Since (3.1) is autonomous we can apply this argument
once more with ¢ and ¢ replaced by w(d) and v(d), respectively, to find that
w|[0,d1] = v|[0, 1] for some &, [(0, T]. Then standard arguments guarantee that
w = v as long as both solutions exist, that is, on all of [0, T]. 1

|
Since the Poisson kernel is positive and satisfies pe(xydx"=1 for t >0, it
follows from Jensen’s inequality that

P (0)u? = P (1)f(u) = pr CH(u) = f(p. [) = (pr CI)°
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for t =0 and u [CH,. Thus the proof of Theorem 5 in [W1] implies the existence
of a constant ¢ := c¢(q) such that

(3.3) tY@Dpp<c, 0<t<Ty, ¢[H,.

Using this estimate we can derive the following blow-up result along the lines of
the proof of Theorem 1 in [W2]. For the reader’s convenience we include the
details.

1
Lemma 2. If g <n (n— 1) then each nonzero solution blows up in finite time.
Proof. Suppose that ¢ [CEL-\{0} and T4 = co. Thanks to Lemma 1 we can
assume that ¢ [I}. Since t"~p; - ¢, point-wise as t — oo, it follows that

(3.4) Jim t""P () = cn [DIL]

point-wise. This contraﬁts (33)ifg<n %I —-1).
Suppose that g=n (n—1). From 1+ |x"—yP <21+ xP)A+ |yT) we
infer
P(D¢=p1 Cd=ap, ,

where a := 27"/2 [AI'"$ [1] Hence (3.1) implies
Up(t+1)=P(t+1)o=PMPQ)p=aP()pr =apt+1, t=0,

and

-
e+ DG EeernEE e Bler 1-feen

1

=a E{p+1) LT

0

(3.5)

for t = 0, since [PI(t)v L= vIIfor v [CEL by Fubini’s theorem. Note that
Op+1) F (T + 1)_1(:?1 (AT
since g =n (n—1). From this, together with (3.5) we deduce that
(3.6) tIim [ (t) 1= oo .
. L] .
On the other hand, (3.3) (with g = n (n — 1)) and (3.4) guarantee the existence of

a constant ¢ such that [l k= ¢ for any ¢ [CEL with T = oo. Thus, in particular,
[ (t) Lk= ¢ for t = 0, which contradicts (3.6). 1
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C1
Lemma 3. If g > n (n— 1) then there are global solutions.

Proof. Note that a:=n— (1 —1/9)"* > 0. Put ¢:=a@D/c, and v(t) :=
ct%pe for t > 0. Then py = —Ap¢ for t > 0 and

v(t) = act® Ip + ct%p = atv(t) — Av(t) , t>0.

-
It is easily verified that at~tv(t) = f v(t) so thatv + Av = f(v) on (0, o). From
this it follows that w(t) :=v(t+ 1) satisfies w(t) =P (t)v(1) + P CH(w)(t) for
t = 0. Now the assertion is a consequence of Lemma 1. 1

Lastly, suppose that ug is a solution on [0, T¢) for some ¢ [CEL\{0}. Then it
follows from (3.3) that there exists ko = 0 such that Tye < T¢ for k = ko. Hence
there exist solutions that blow up in finite time.
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