ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 66,   1   (1997)
pp.   135-147
SUPERREFLEXIVITY AND $J$-CONVEXITY OF BANACH SPACES
J. WENZEL
Abstract. 
A Banach space $X$ is superreflexive if each Banach space $Y$ that is finitely representable in $X$ is reflexive. Superreflexivity is known to be equivalent to $J$-convexity and to the non-existence of uniformly bounded factorizations of the summation operators $S_n$ through $X$. We give a quantitative formulation of this equivalence. This can in particular be used to find a factorization of $S_n$ through $X$, given a factorization of $S_N$ through $[L_2,X]$, where $N$ is `large' compared to $n$.
AMS subject classification. 
46B07, 46B10
Keywords. 
superreflexivity, summation operator, $J$-convexity
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE