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RNP AND KMP ARE INCOMPARABLE

PROPERTIES IN NONCOMPLETE SPACES

G. LÓPEZ

Abstract. We exhibit an example in a noncomplete space of a closed, bounded and
convex subset verifying KMP and failing RNP and, another such example verifying
RNP and failing KMP.

We begin this note by recalling some definitions: (See [2] and [3]).

Let X be a normed linear space and let C be a closed, bounded and convex

subset of X.

C is said to be dentable if for each ε > 0 there is x ∈ C such that x /∈
co(C \B(x, ε)), where co denotes the closed convex hull and B(x, ε) is the closed

ball with centrum x and radius ε.

C is said to have the Radon-Nikodym property (RNP) if every nonempty subset

of C is dentable.

C is said to have the Krein-Milman property if every closed and convex subset,

F , of C verifies F = co(Ext F ), where Ext F denotes the set of extreme points

of F .

It is known that C has KMP if every closed and convex subset of C has some

extreme point. (Even in noncomplete spaces.)

The above definition of RNP working in noncomplete spaces and, today, the

most authors define RNP in Banach spaces as here.

For a Banach space X it is known that RNP implies KMP and the converse is

an well known open problem.

We prove that KMP does not imply RNP in noncomplete spaces. For this we

consider a closed, bounded and convex subset, STS, which appears in [1], of c0(Γ).

In [1] it is shown that STS0 = STS in c0(Γ).

Our goal is to prove that STS0 is a closed, bounded and convex subset of c00(Γ)

verifying KMP and failing RNP.

Now we descript briefly the set STS0 of c00(Γ).

Γ denotes the set of finite sequences of natural numbers and 0 denotes the empty

sequence in Γ.
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For α, β ∈ Γ we define α ≤ β if |α| ≤ |β| and αi = βi for 1 ≤ i ≤ |α|, where |α|
is the lenght of α. Of course |0| = 0 and 0 ≤ α ∀ α ∈ Γ.

c00(Γ) = {x ∈ RΓ : {α ∈ Γ : x(α) 6= 0} is finite}

For each α ∈ Γ we define bα ∈ c00(Γ) by bα(γ) = 1 if γ ≤ α and bα(γ) = 1 in

other case.

And STS0 = co{bα : α ∈ Γ} ⊂ c00(Γ).

So, STS0 is a nonempty closed, bounded and convex subset of c00(Γ).

Theorem. STS0 has KMP and fails RNP.

Proof. It is easy to see that

bβ ∈ co(A \B(bβ, 1)) ∀β ∈ Γ,

where A = {bα : α ∈ Γ}, because

lim
n→+∞

b(α,1) + . . .+ b(α,n)

n
= bα ∀ α ∈ Γ.

Then A is not dentable and so STS0 fails RNP.

Now let C be a nonempty closed and convex subset of STS0. We will see that

Ext (C) 6= ∅.
Let z ∈ C, and K = {x ∈ C : supp(x) ⊆ supp(z)}, where for each x ∈ C,

supp(x) = {α ∈ Γ : x(α) 6= 0}.
Now K is a nonempty, convex and compact face of C. The Krein-Milman

theorem says us that Ext (K) 6= ∅ and so, Ext (C) 6= ∅ because K is a face of C.�

Remark. As in [1] it is easy to see that STS0 fails PCP (the point of continuity

property) because {b(α,i)} converges weakly to bα when i → +∞, ∀α ∈ Γ and

‖b(α,i) − bα‖ = 1 ∀α ∈ Γ. (This is not inmediate because our environment space

is not complete.)

Now, we give an example of a closed, bounded and convex set in a noncomplete

space verifying RNP and failing KMP.

For this, we consider c0 the Banach space of real null sequences with the max-

imum norm and, c00 the nonclosed subspace of c0 of real sequences with a finite

numbers of terms nonzero. So, c00 is a noncomplete normed linear space. We

define:

F0 =

{
x ∈ c00 : |xn| ≤

1

n
∀ n ∈ N

}
Then F0 is a closed, bounded and convex subset of c00.

It is clear that F0 has not extreme points because if x ∈ F0 and k ∈ N such

that x(n) = 0 ∀ n ≥ k, then y = x+ 1
k
ek and z = x− 1

k
ek are elements of F0 such

that x = y+z
2 . (ek is the sequence with value 1 in k and value 0 in n 6= k.)



RNP AND KMP PROPERTIES IN NONCOMPLETE SPACES 173

Therefore, F0 fails KMP.

Let us see, now, that F0 has RNP. If C is a subset of F0, then C is a weakly

compact of c0, since the closure of F0 in c0, F is it. So C is dentable. (See

[2, Th. 2.3.6].)

Then F0 has RNP and fails KMP.
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