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GENERALIZED DIFFERENCE

POSETS AND ORTHOALGEBRAS

J. HEDLÍKOVÁ and S. PULMANNOVÁ

Abstract. A difference on a poset (P,≤) is a partial binary operation 	 on P

such that b 	 a is defined if and only if a ≤ b subject to conditions a ≤ b =⇒
b 	 (b 	 a) = a and a ≤ b ≤ c =⇒ (c 	 a) 	 (c 	 b) = b 	 a. A difference
poset (DP) is a bounded poset with a difference. A generalized difference poset
(GDP) is a poset with a difference having a smallest element and the property
b	 a = c	 a =⇒ b = c. We prove that every GDP is an order ideal of a suitable
DP, thus extending previous similar results of Janowitz for generalized orthomodular
lattices and of Mayet-Ippolito for (weak) generalized orthomodular posets. Various
results and examples concerning posets with a difference are included.

0. Introduction

A difference (operation) on a partially ordered set (poset) P is a partial binary

operation 	 on P such that b 	 a is defined if and only if a ≤ b satisfying some

conditions. For example, b ∧ a′ is such an operation in an orthomodular poset. A

difference poset (DP) is a bounded poset equipped with a difference operation. For

example, every orthoalgebra (which is a natural generalization of an orthomodular

lattice or poset) is a difference poset.

An introduction to difference posets is in [K, Ch]. A basic theory of orthoal-

gebras can be found in [F, G, R]. An orthoalgebra (OA) is defined as a partial

binary algebra with a sum (operation) ⊕ on a set with two special elements. An

exact relationship between difference posets and orthoalgebras was pointed out

in [N, P]. A description of an orthoalgebra in terms of a difference operation on

a poset is given there. A description of an orthomodular poset, resp. a differ-

ence poset in terms of a sum operation on a set is given in [B, M], resp. [P] and

[F, B]. Yet more general approach is used in [K, R] when considering a difference

operation on an arbitrary set with a special element.

We define a generalized difference poset (GDP) as a poset with a smallest

element and with a difference operation subject to an additional condition in
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such a way that every order ideal of a difference poset is a generalized difference

poset. We prove that every generalized difference poset P is an order ideal of a

difference poset P̂ . Similar results were obtained in [J1] and [M-I] for generalized

orthomodular lattices (see also [B], [K]) and (weak) generalized orthomodular

posets, respectively.

After a definition of a generalized difference poset, a generalized orthoalgebra

(GOA) is then defined in a natural way and also by means of a difference operation.

A simpler structure with sum operation has been described in [Kr]. A weak

generalized orthomodular poset (WGOMP) is also characterized in terms of a

difference operation. It is shown that if P is a generalized difference poset then P̂

is an orthoalgebra if and only if P is a generalized orthoalgebra. Moreover, P̂ is

an orthomodular poset if and only if P is a weak generalized orthomodular poset,

and the construction of P̂ coincides with that in [M-I].

We conclude our paper with a series of examples of GDPs. In particular, we

study abelian groups with a special partial order introduced in [Ch] under the

name “orthomodular groups”. Actually, we study a generalization of orthomodu-

lar groups. We prove that an orthomodular group is always a generalized ortho-

modular poset (GOMP) (in [Ch], there is proved that an orthomodular group is

a WGOMP).

As a further generalization of an orthomodular group we study subsets of

abelian groups with a special partial order. We prove for example, that sets

of idempotents (projections) in rings (∗-rings) satisfying special conditions form

WGOMPs.

In another concrete example motivated by a theory of triple systems (alternative

and Jordan triples), we introduce a “triple group” as an abelian group endowed

with a ternary operation, and prove that the set of all tripotents in it forms a

WGOMP. As a special case, the set of all tripotents in a JBW*-triple ([Ba]) forms

a GOMP. Using triple groups, known partial orders on idempotents (projections)

in rings (∗-rings) are extended to tripotents and it is shown that they remain to

form WGOMPs.

For general theory of orthomodular lattices and orthomodular posets we refer

to [B], [K], [P, P].

1. Posets with a Difference

Definition 1.1. ([K, Ch]) Let (P,≤) be a partially ordered set (poset). A

partial binary operation 	 on P such that b 	 a is defined if and only if a ≤
b is called a difference on (P,≤) if the following conditions are satisfied for all

a, b, c ∈ P :

(D1) If a ≤ b then b	 a ≤ b and b	 (b	 a) = a.

(D2) If a ≤ b ≤ c then c	 b ≤ c	 a and (c	 a)	 (c	 b) = b	 a.
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Proposition 1.2. Let (P,≤,	) be a poset with a difference and let a, b, c, d ∈
P . The following assertions are true:

(i) If a ≤ b ≤ c then b	 a ≤ c	 a and (c	 a)	 (b	 a) = c	 b.
(ii) If b ≤ c and a ≤ c	b then a ≤ c and b ≤ c	a, and (c	b)	a = (c	a)	b.
(iii) If a ≤ b ≤ c then b	a ≤ c and a ≤ c	(b	a), and (c	(b	a))	a = c	b.
(iv) If a, b ≤ c and c	 a = c	 b then a = b.

(v) If d ≤ a, b ≤ c and c	 a = b	 d then c	 b = a	 d.
(vi) If a ≤ b, c ≤ d and b	 a = c	 a then b = c.

Proof. Conditions (i)–(v) are proved in [K, Ch]. To prove (vi) let a ≤ b, c ≤ d
and b	 a = c	 a. Then (d	 a)	 (d	 b) = b	 a = c	 a = (d	 a)	 (d	 c), hence

d	 b = d	 c and thus b = c. �

Remark 1.3. We show that it can be introduced another system of axioms not

using the order relation, this means that a poset with a difference operation can be

characterized as a set with a “difference” operation. Namely, let us observe that

according to Proposition 1.2(ii), every difference operation 	 on a poset (P,≤)

has the following properties (a, b, c ∈ P ):

(d1) If b	 a is defined then b	 (b	 a) is defined and b	 (b	 a) = a.

(d2) If (a	b)	c is defined then (a	c)	b is defined and (a	b)	c = (a	c)	b.
(d3) a	 b and b	 a are defined if and only if a = b.

And conversely, as shown in the following result, every nonempty set P equipped

with a partial binary operation 	 satisfying conditions (d1), (d2) and (d3), can

be endowed with a partial order ≤ (having but one meaning) in such a way that

	 becomes a difference operation on the poset (P,≤).

Proposition 1.4. If 	 is a partial binary operation on a nonempty set P

having properties (d1), (d2) and (d3) and if ≤ is a binary relation on P given by

a ≤ b if and only if b 	 a is defined, then ≤ is a partial order on P and 	 is a

difference on the poset (P,≤).

Proof. According to (d3), ≤ is reflexive and antisymmetric. To prove transi-

tivity let a, b, c ∈ P be such that a ≤ b and b ≤ c. Using (d1) and (d2) we

obtain

b	 a = (c	 (c	 b))	 a = (c	 a)	 (c	 b),

hence c	 a is defined, which means that a ≤ c. Thus ≤ is a partial order on P .

Condition (D1) follows from (d1) and condition (D2) is clear from the proof of

transitivity of ≤. Thus 	 is a difference on the poset (P,≤). �

Lemma 1.5. Let (P,≤,	) be a poset with a difference. If a, b ∈ P and a ≤ b,
then a	 a = b	 b.

Proof. Follows directly from Proposition 1.2(iii) if we put c = b. �
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Proposition 1.6. Every poset P with a difference can be written as a disjoint

union of posets with a difference, each of which contains a smallest element.

Proof. Let R be a binary relation on P defined by aRb iff a and b are compa-

rable, i.e., a ≤ b or b ≤ a. Clearly, R is reflexive and symmetric relation. Let R̃

denote the transitive closure of R, that is, aR̃b iff there are c1, . . . , cn in P with

a = c1, b = cn and ciRci+1 for i = 1, . . . , n − 1. Every equivalence class with

respect to R̃ is a poset with a difference, and Lemma 1.5 implies that each of them

contains its smallest element. �

Lemma 1.7. Let (P,≤,	) be a poset with a difference. If 0 is the smallest

element in P then for all a ∈ P , a 	 a = 0 and a 	 0 = a. Moreover, for all

a, b ∈ P with a ≤ b we have b	 a = 0 iff a = b and b	 a = b iff a = 0. If 1 is the

greatest element in P then 1	 1 is the smallest element in P .

Proof. If 0 is the smallest element in P and if a ∈ P then by Lemma 1.5,

a 	 a = 0 and then a 	 0 = a 	 (a 	 a) = a. If a, b ∈ P, a ≤ b and b 	 a = 0

then b = b 	 0 = b 	 (b 	 a) = a. If a, b ∈ P, a ≤ b and b 	 a = b then

0 = b	 b = b	 (b	 a) = a.

If 1 is the greatest element in P , then by Lemma 1.5, 1 	 1 is the smallest

element in P . �

Proposition 1.8. Let (P,≤) be a poset with the smallest element 0 and let 	
be a partial binary operation on P such that b	 a is defined iff a ≤ b. Then 	 is

a difference on (P,≤) if and only if the following two conditions are satisfied for

all a, b, c ∈ P :

(i) a	 0 = a.

(ii) If a ≤ b ≤ c then c	 b ≤ c	 a and (c	 a)	 (c	 b) = b	 a.

Proof. Assume that (i) and (ii) are satisfied. If a, b ∈ P with a ≤ b then from

0 ≤ a ≤ b it follows b	a ≤ b	0 = b and b	(b	a) = a	0 = a which proves (D1).

The converse assertion is clear. �

Let us note that in [D, P] there is the following characterization of a poset with

a difference having a smallest element, not using the order relation.

Proposition 1.8*. Let P be a set with a special element 0 endowed with a

partial binary operation 	. Let ≤ be a binary relation on P given by a ≤ b if and

only if b	a is defined. Then ≤ is a partial order on P with the smallest element 0

and 	 is a difference on (P,≤) if and only if the following conditions are satisfied

for all a, b, c ∈ P :

(01) a	 0 is defined, and a	 0 = a;

(02) a	 a is defined;

(03) If b	 a and c	 b are defined, then c	 a and (c	 a)	 (c	 b) are defined,

and (c	 a)	 (c	 b) = b	 a;
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(04) If 0	 a is defined, then a = 0.

Let us observe that every poset with a difference having a smallest element is

an RI-set in the sense of [K, R]. The converse is not true.

The following notion was introduced in [K, Ch] (see also [N, P]).

Definition 1.9. Let (P,≤,	) be a poset with a difference and let 0 and 1 be

the smallest and greatest elements in P , respectively. The structure (P,≤, 0, 1,	)

is called a difference poset (D-poset, DP).

Let us note that every interval [0, a] of (P,≤, 0,	), a poset with a difference

having a smallest element 0, is a difference poset ([0, a],≤, 0, a,	), where ≤ and

	 are inherited from P .

Let us observe that the following condition (a strengthening of (vi) in Proposi-

tion 1.2) need not be satisfied in a poset with a difference (P,≤,	), (a, b, c ∈ P ):

(C) If a ≤ b, c and b	 a = c	 a, then b = c.

A simplest such an example is on Fig. 1, where b	 a = c	 a = a, x	 x = 0 and

x	 0 = x for all x (by Lemma 1.7, 	 is a unique difference on the poset).

0

a

b c

Fig. 1

By Proposition 1.2(vi), condition (C) is however satisfied in every difference

poset (P,≤, 0, 1,	). In order to obtain a generalization (P,≤, 0,	) of a difference

poset embeddable in a difference poset it appears that it is necessary to include

condition (C) in a new definition (see the next paragraph).

Remark 1.10. Let (P,≤,	) be a poset with a difference satisfying condition

(C). This means that for every a, b ∈ P there is at most one c ∈ P such that

a = c	 b. Thus property (C) enables us to define a sum operation on P , that is,

a partial binary operation ⊕ on P given by (a, b, c ∈ P ):

(S) a⊕ b is defined and a⊕ b = c if and only if c	 b is defined and a = c	 b.

The sum operation ⊕ on P has as properties (a, b, c ∈ P ):

(S1) If a⊕ b is defined, then b⊕a is defined and a⊕ b = b⊕a (commutativity).

(S2) If a⊕ b and (a⊕ b)⊕ c are defined, then b⊕ c and a⊕ (b⊕ c) are defined

and (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity).

(S3) If a⊕ b and a⊕ c are defined and a⊕ b = a⊕ c, then b = c (cancellativity).
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(S4) For every a ∈ P there is b ∈ P such that a ⊕ b is defined and a ⊕ b = a

(zeros existence).

(S5) If a⊕ a and (a⊕ a)⊕ b are defined and if (a⊕ a)⊕ b = a, then a⊕ a = a

(zeros absorption).

To show conditions (S1)–(S5) we use properties (d1)–(d3) from Remark 1.3.

Condition (S1) follows by (d1). If a, b, c ∈ P and a⊕ b = c then a = c	 b, hence

c	 a = c	 (c	 b) = b, which means that b⊕ a = c.

If a, b, c, d, e ∈ P, a⊕ b = d and d⊕ c = e, then b = d	 a and d = e	 c, hence

by (d2), b = (e 	 c) 	 a = (e 	 a) 	 c. This means that b ⊕ c = e 	 a and then

a⊕ (b⊕ c) = e, which proves condition (S2).

If a, b, c, d ∈ P with a ⊕ b = a ⊕ c = d then b = d 	 a = c which shows

condition (S3).

By (d3) and (d1), for every a ∈ P , a⊕ (a	a) = a, which proves condition (S4).

To show (S5), let a, b ∈ P be such that (a ⊕ a) ⊕ b = a. Then a ⊕ a = a 	 b,
hence a = (a 	 b) 	 a. By (d1), a 	 (a 	 b) = b which by (d3) gives a 	 b = a.

Therefore a⊕ a = a.

Conversely, if (P,⊕) is a partial binary algebra having at least property (S3),

then a partial binary operation 	 on P is enabled by the cancellativity (S3): for

every a, b ∈ P there is at most one c ∈ P such that a⊕ c = b. 	 is then given by

the following condition (a, b, c ∈ P ):

(D) b	 a is defined and b	 a = c if and only if a⊕ c is defined and a⊕ c = b.

Let (P,≤) be a poset and let 	 be a difference operation on (P,≤). The

partial binary operation 	 on P will be called a cancellative difference on (P,≤)

if condition (C) is satisfied. The following result shows that there is a one to one

correspondence between posets with a cancellative difference 	 and partial binary

algebras with a sum operation ⊕ satisfying (S1)–(S5).

Theorem 1.11. If (P,≤,	) is a poset with a cancellative difference and if

a partial binary operation ⊕ on P is defined by (S), then conditions (S1)–(S5)

and (D) are satisfied. Conversely, if (P,⊕) is a partial binary algebra having

properties (S1)–(S5) and if a partial binary operation 	 on P is defined by (D),

then conditions (d1)–(d3), (C) and (S) are satisfied, that is, P becomes a poset

with a cancellative difference.

Proof. From 	 to ⊕. Conditions (S1)–(S5) are proved in Remark 1.10. If

a, b, c ∈ P then by (d1), b	a is defined and b	a = c if and only if b	 c is defined

and b	 c = a, which proves condition (D).

From ⊕ to 	. (d1) follows from (S1) and (d2) follows from (S1) and (S2). (S3)

implies (C). By (S4), for every a ∈ P , a	 a is defined. To finish the proof of (d3),

let a, b, c, d ∈ P be such that a	 b = c and b	 a = d. This means that b⊕ c = a

and a⊕d = b, hence a = (a⊕d)⊕ c and hence a⊕d = ((a⊕d)⊕ c)⊕d. From this,

using (S1), (S2) and (S3) we obtain d = (d⊕ d)⊕ c, which by (S5) gives d⊕ d = d.
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Hence d = d ⊕ c and thus a = a ⊕ (d ⊕ c) = a ⊕ d = b. By Proposition 1.4, P

is a poset with a cancellative difference. It remains to prove (S) to see that the

correspondence is one to one. But this is clear from (S1). �
Remark 1.12. Let (P,≤,	) be a poset with a cancellative difference. Consider

the sum operation⊕ on P given by condition (S) (see Remark 1.10). Two elements

a, b ∈ P are said to be orthogonal (in notation a ⊥ b) if a ⊕ b is defined, i.e. if

there is c ∈ P with a = c	 b, or equivalently, if there is a unique c ∈ P such that

a = c 	 b. The binary relation ⊥ on P is symmetric, i.e. for all a, b ∈ P , a ⊥ b

implies b ⊥ a (since ⊕ is commutative). ⊥ is called the orthogonality relation of

(P,≤,	).

If a, b, c ∈ P with a ≤ c 	 b then by (d1) and (d2) it follows a = (c 	 b) 	
((c 	 b) 	 a) = (c 	 ((c 	 b) 	 a)) 	 b, which means that a ⊥ b. Moreover,

a⊕ b = c	 ((c	 b)	 a). Since a⊕ b ≤ c, we get by (d1), c	 (a⊕ b) = (c	 b)	 a.
If a, b, c ∈ P with a⊕ b ≤ c then by (S) and Proposition 1.2(i), from b ≤ a⊕ b ≤ c
it follows a = (a ⊕ b) 	 b ≤ c 	 b. So, we have shown the following properties

(a, b, c ∈ P ):

(i) a ⊥ b if and only if a ≤ d	 b for some d ∈ P .

(i)*a ≤ b and b ⊥ c implies a ⊥ c.
(ii) If a ≤ c	 b then a⊕ b = c	 ((c	 b)	 a).
(iii) If a ≤ c	 b then (c	 b)	 a = c	 (a⊕ b).
(iii)*If a⊕ b ≤ c then c	 (a⊕ b) = (c	 b)	 a.

Let us note that a kind of orthomodularity holds in P (a, b ∈ P ):

(iv) If a ≤ b then b = a⊕ (b	 a).

In particular, a = a⊕ (a	 a) for every a ∈ P . Hence, if P has a smallest element

0, then for all a ∈ P :

(v) a⊕ 0 = a.

If a, b ∈ P and a⊕ b = 0 then a = 0	 b ≤ 0 which with 0 ≤ a, b gives a = b = 0.

Thus the following condition is satisfied for all a, b ∈ P :

(vi) a⊕ b = 0 =⇒ a = b = 0.

Another consequence of the ”orthomodular law” is as follows (a, b ∈ P ):

(vii) a ≤ b if and only if a⊕ c = b for some c ∈ P .

(vii)*a ≤ b if and only if a⊕ c = b for a unique c ∈ P .

Let us observe that if (P,⊕, 0) is a partial binary algebra with a special element

0 then in the presence of conditions (S1)–(S3), conditions (v) and (vi) imply con-

ditions (S4) and (S5). Thus we have the following consequence of Theorem 1.11.

Corollary 1.13. There is a one to one correspondence analogous to that in

Theorem 1.11, between posets with a cancellative difference having a smallest ele-

ment 0 and partial binary algebras with a sum operation and with a special element

0 having properties (S1)–(S3) and (v), (vi).
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Remark 1.14. Let (P,≤, 0, 1,	) be a difference poset. Then for all a, b ∈ P
it is true:

a⊕ b is defined iff a ≤ 1	 b and

a⊕ b = 1	 ((1	 b)	 a),

a ⊥ b iff a ≤ 1	 b (equivalently, b ≤ 1	 a).

Consider a unary operation ′ on P given by: a′ = 1	 a, a ∈ P . Then a′′ = a and

a ≤ b implies b′ ≤ a′ for all a, b ∈ P . A smallest example showing that P need not

be orthocomplemented is a three element chain 0 < a < 1 (by Lemma 1.7, there

is a unique way to make it into a difference poset) with a = 1	 a, x	 x = 0 and

x	 0 = x for all x.

A more precise relationship between D-posets and orthocomplemented posets

is as follows. If (P,≤, 0, 1,	) is a D-poset and ′ is a unary operation on P given

by a′ = 1	 a, a ∈ P , then (P,≤, 0, 1,′ ) is an orthocomplemented poset if and only

if for all a ∈ P , a ≤ 1	 a implies a = 0. The latter condition is considered below

in a connection with orthoalgebras (see Proposition 3.2). On the other hand, to

characterize those orthocomplemented posets (P,≤, 0, 1,′ ) for which there can be

defined a (unique) difference 	 on P such that a′ = 1	 a for all a ∈ P , is not so

easy.

2. Generalized Difference Posets

From the preceding paragraph we have enough results about posets with a

difference to introduce the following definition.

Definition 2.1. Let (P,≤,	) be a poset with a cancellative difference contain-

ing a smallest element 0. The system (P,≤, 0,	) is called a generalized difference

poset (GDP).

In what follows we shall use also abbreviations as generalized D-poset, general-

ized DP and GD-poset.

Let us observe that every order ideal J of a difference poset (P,≤, 0, 1,	) is a

generalized D-poset (J,≤, 0,	) where ≤, 0 and 	 are inherited from P .

The set R+ of all nonnegative real numbers with the usual difference of numbers

is an example of a generalized difference poset. More generally, the positive cone

G+ of any partially ordered abelian group (G,+, 0,≤) with the usual difference of

group elements is a generalized difference poset.

Remark 2.2. Let (P,≤, 0,	) be a GDP. According to Lemma 1.7 and Propo-

sition 1.2(ii), P is an abelian RI-poset in the sense of [K, R]. Conversely, by

Propositions 1.2(i) and 1.3(ii) of [K, R], every abelian RI-poset is a GD-poset.

Remark 2.3. Following the previous version of [F, B], call a system (P,⊕, 0),

where 0 ∈ P and ⊕ is a partial binary operation on P a cone if conditions



GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS 255

(S1)–(S3) from Remark 1.10 and conditions (v), (vi) from Remark 1.12 are satis-

fied. According to Corollary 1.13, generalized difference posets are in a one to one

correspondence with cones. Cones arose as a convenient generalization of so called

effect algebras (see the next paragraph for a definition) which are in an analogous

one to one correspondence with difference posets (see [F, B]).

Our aim is to show that every generalized difference poset is an order ideal

(with special properties) of a difference poset. Similar results have been already

obtained for particular structures: generalized orthomodular lattices (which are

order ideals of orthomodular lattices) [J1] and (weak) generalized orthomodular

posets (which are order ideals of orthomodular posets) [M-I]. Another related

result was obtained for so called relatively orthomodular lattices (which are dual

ideals (with special properties) of generalized orthomodular lattices) [H].

Let (P,≤ 0,	) be a generalized difference poset. Let P ] be a set disjoint from

P with the same cardinality. Consider a bijection a 7→ a] from P onto P ] and let

us denote P ∪P ] = P̂ . Define a partial binary operation 	∗ on P̂ by the following

rules (a, b ∈ P ):

(i) b	∗ a is defined iff b	 a is defined and b	∗ a = b	 a.
(ii) b] 	∗ a is defined iff a⊕ b is defined and b] 	∗ a = (a⊕ b)].
(iii) b] 	∗ a] is defined iff a	 b is defined and b] 	∗ a] = a	 b.

Define a binary relation ≤∗ on P̂ as follows: x ≤∗ y if and only if y	∗ x is defined.

We are to show that the system (P̂ ,≤∗, 0, 0],	∗) is a difference poset. With

respect to Proposition 1.4 and Lemma 1.7, it suffices to prove that 	∗ has proper-

ties (d1), (d2) and (d3) from Remark 1.3, that 0] 	∗ x is defined for every x ∈ P̂
and that 0] 	∗ 0] = 0. This is done in the next theorem.

Theorem 2.4. (P̂ ,≤∗, 0, 0],	∗) is a difference poset.

Proof. 0] 	∗ 0] = 0 since 0 	 0 = 0. 0] 	∗ x is defined for every x ∈ P̂ since

a ⊕ 0 and a	 0 are defined for all a ∈ P . x	∗ x is defined for every x ∈ P̂ since

a 	 a is defined for every a ∈ P . If x, y ∈ P̂ and if x	∗ y and y 	∗ x are defined

then clearly x = y.

It remains to prove conditions (d1) and (d2). In the rest of the proof we recall

results from Remark 1.10 and Remark 1.12.

1) If a, b ∈ P , a	b is defined, x = a] and y = b], then by (iv), x = (b⊕(a	b))] =

y 	∗ (a	 b) = y 	∗ (y 	∗ x).

If a, b ∈ P, a⊕b is defined and x = b] then by (S), a = (a⊕b)	b = x	∗(a⊕b)] =

x	∗ (x	∗ a).

2) If a, b, c ∈ P , c ⊕ (b ⊕ a) is defined and x = a], then by (S1) and (S2),

(x	∗b)	∗c = (b⊕a)]	∗c = (c⊕(b⊕a))] = (b⊕(c⊕a))] = (c⊕a)]	∗b = (x	∗c)	∗b.

If a, b, c ∈ P , c	(b⊕a) is defined, x = a] and y = c], then by (iii)*, (x	∗b)	∗y =

(b⊕ a)] 	∗ y = c	 (b⊕ a) = (c	 a)	 b = (x	∗ y)	∗ b.
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If a, b, c ∈ P , (b	a)	c is defined, x = a] and y = b], then by (iii), (x	∗y)	∗c =

(b	 a)	 c = b	 (c⊕ a) = (c⊕ a)] 	∗ y = (x	∗ c)	∗ y. �

Consider a unary operation ′∗ on P̂ given by: x′∗ = 0] 	∗ x, x ∈ P̂ . That is,

if a ∈ P then a′∗ = a] and (a])′∗ = a. Let us note that (P̂ ,≤∗) contains P as

an order ideal with the property: if a, b ∈ P and a ⊥∗ b then a ⊕∗ b ∈ P . (The

sum operation ⊕∗ on P̂ and the orthogonality relation ⊥∗ on P̂ are defined in

(P̂ ,≤∗,	∗) as in Remark 1.10 and Remark 1.12.) Indeed, if a, b ∈ P with a ⊥∗ b,
then a ≤∗ b′∗ = b] and a⊕∗b = 0]	∗(b]	∗a) = 0]	∗(a⊕b)] = (a⊕b)	0 = a⊕b ∈ P
(see Remark 1.14). Moreover, P is an order ideal of P̂ which has the following

property: for every x ∈ P̂ , either x ∈ P or x′∗ ∈ P .

As we have already observed, every order ideal J of a D-poset D is a GDP.

The orthogonality relation ⊥J in J coincides with the orthogonality relation ⊥ in

D if and only if J is closed under the sum ⊕ of D. Indeed, it is clear that ⊥J is

always contained in ⊥. Now, if J is closed under ⊕ and if a, b ∈ J are such that

a ⊥ b, then a ⊕ b ∈ J and a = (a ⊕ b) 	 b, i.e. a ⊥J b. Conversely, if a ⊥J b

whenever a, b ∈ J and a ⊥ b, then a ≤ c 	 b for some c ∈ J , hence a⊕ b ≤ c (see

Remark 1.12(iii)) and thus a⊕ b ∈ J .

Proposition 2.5. Let D be a D-poset and let P be a proper order ideal in

D closed under ⊕ and such that for every a ∈ D, a ∈ P or 1 	 a ∈ P . Denote

a] = 1	a, a ∈ P . Then the D-poset (P̂ ,≤∗, 0, 0],	∗) coincides with (D,≤, 0, 1,	).

Proof. Since P is proper, for every a ∈ D we have either a ∈ P or 1 	 a ∈ P .

It is now clear that P ] = D \ P . Let ′ be the following unary operation on D:

a′ = 1	 a, a ∈ D. By Remark 1.14, for all a, b ∈ D, a⊕ b is defined if and only if

a ≤ b′ and moreover, a⊕ b = (b′ 	 a)′. Hence from a′ ≤ b′, which is equivalent to

b ≤ a, it follows b′ 	 a′ = (a′ ⊕ b)′ = (b⊕ a′)′ = a	 b. According to the definition

of (P̂ ,≤∗, 0, 0],	∗) the proof is now clear. �

3. Generalized Orthoalgebras and (Weak)

Generalized Orthomodular Posets

As observed in [K, Ch], orthoalgebras (see [F, G, R], [G], [R1]) and ortho-

modular posets (see [B], [K], [P, P]) are special examples of difference posets.

Definition 3.1. An orthoalgebra (OA) is a set A containing two special ele-

ments 0, 1 and equipped with a partial binary operation ⊕ satisfying for all a, b, c ∈
A the following conditions:

(OA1) If a⊕ b is defined, then b⊕a is defined and a⊕ b = b⊕a (commutativity).
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(OA2) If a⊕ b and (a⊕ b)⊕ c are defined, then b⊕ c and a⊕ (b⊕ c) are defined,

and (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity).

(OA3) For every a ∈ A there is a unique b ∈ A such that a ⊕ b is defined and

a⊕ b = 1 (orthocomplementation).

(OA4) If a⊕ a is defined, then a = 0 (consistency).

For an element a ∈ A, the unique element b ∈ A satisfying condition (OA3) is

denoted by a′ and is called the orthocomplement of a.

Let us note that (OA1) is (S1) and (OA2) is (S2), where (S1) and (S2) are

conditions from Remark 1.10.

Since every orthoalgebra A satisfies cancellativity (S3) from Remark 1.10 (see

[F, G, R]), a partial binary operation 	 on A can be defined by (a, b, c ∈ A):

b	 a is defined and b	 a = c if and only if a⊕ c is defined and a⊕ c = b. A then

becomes a difference poset (cf. [K, Ch]). A partial order ≤ on A is defined by

(vii) or (vii)* in Remark 1.12. We note that in A, a⊕ b exists if and only if a ≤ b′,
and if a ≤ b then b	 a = (a⊕ b′)′.

In [F, B] an effect algebra is defined as a set A containing two special elements

0, 1 and endowed with a partial binary operation ⊕ satisfying conditions (OA1),

(OA2), (OA3) and the following relaxation of (OA4):

(EA) If 1⊕ a is defined, then a = 0.

It is shown in [F, B] that effect algebras and difference posets are the same things

(the same result, independently, has been obtained in [P]).

Proposition 3.2. ([N, P]) Let (P,≤, 0, 1,	) be a difference poset. Then

(P,⊕, 0, 1), where ⊕ is as in Remark 1.14, is an orthoalgebra if and only if the

following condition is satisfied for all a ∈ P :

(DOA)* If a ≤ 1	 a, then a = 0.

Let us note that in a difference poset P , condition (DOA)* is equivalent to the

following condition (a, b ∈ P ):

(DOA) If a = b	 a, then a = 0.

Or equivalently, a ≤ b	 a implies a = 0 (a, b ∈ P ).

Definition 3.3. A generalized orthoalgebra (generalized OA, GOA) is a set

A containing a special element 0 and endowed with a partial binary operation ⊕
satisfying conditions (OA1), (OA2), (OA4) and (S3) from Remark 1.10 and (v)

from Remark 1.12.

Let us note that a generalized OA is just a cone (see Remark 2.3) satisfying

condition (OA4). To see this, it suffices to observe that every GOA satisfies con-

dition (vi) from Remark 1.12. Indeed, if a ⊕ b = 0, then b = b ⊕ 0 = 0 ⊕ b =

(a⊕ b)⊕ b = a⊕ (b⊕ b), hence b = 0 and also a = 0.
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Proposition 3.4. Let (P,≤, 0,	) be a generalized D-poset. Then (P,⊕, 0),

where ⊕ is given by condition (S) in Remark 1.10, is a generalized OA if and only

if condition (DOA) is satisfied for all a, b ∈ P .

Proof. See Remark 2.3, where it is observed that a generalized D-poset is a

cone. �

Theorem 3.5. Let (P,≤, 0,	) be a generalized D-poset and let (P̂ ,≤∗,
0, 0],	∗) be the D-poset constructed in Theorem 2.4. Then P̂ satisfies condi-

tion (DOA)* if and only if P satisfies condition (DOA). This means that P̂ is an

orthoalgebra if and only if P is a generalized orthoalgebra.

Proof. If a ∈ P then 0] 	∗ a = a], hence a ≤∗ a] if and only if a⊕ a is defined,

which means that a = b	 a for some b ∈ P .

If a ∈ P then 0] 	∗ a] = a, but a] ≤∗ a is impossible. �

In a partially ordered set (P,≤) we write a∨b for sup{a, b} and a∧b for inf{a, b},
if they exist for a, b ∈ P .

Definition 3.6. A partially ordered set (P,≤) with 0 and 1 as a least and a

greatest element, respectively, endowed with a unary operation ′ : P → P is called

an orthomodular poset (OMP) if the following conditions are satisfied:

(OMP1) a′′ = a,

(OMP2) a ≤ b implies b′ ≤ a′,

(OMP3) a ∨ a′ = 1,

(OMP4) a ≤ b′ implies a ∨ b exists,

(OMP5) a ≤ b implies b = a ∨ (a′ ∧ b).

If a ∈ P , the element a′ is called the orthocomplement of a. Condition (OMP5)

is the orthomodular law. Elements a, b in P are said to be orthogonal (in notation

a ⊥ b) if a ≤ b′.
Any OMP may be regarded as an OA by defining a⊕ b = a∨ b precisely in case

a ≤ b′. The following proposition shows the relation between orthoalgebras and

orthomodular posets.

Proposition 3.7. ([F, G, R]) The following conditions are equivalent for an

orthoalgebra A:

(i) A is an OMP.

(ii) If a⊕ b is defined, then a ∨ b exists.

(iii) If a⊕ b is defined, then a ∨ b exists and a⊕ b = a ∨ b.
(iv) If a⊕ b, a⊕ c and b⊕ c exist, then (a⊕ b)⊕ c exists.

Any OMP may be regarded as a DP by defining b	 a = b ∧ a′ precisely when

a ≤ b. A relation between difference posets and orthomodular posets is as follows

(cf. [N, P]).
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Proposition 3.8. A difference poset P is an orthomodular poset if and only if

(DOA)* and the following condition are satisfied for all a, b ∈ P : a ≤ 1	b implies

a ∨ b exists.

An orthomodular poset P becomes an orthomodular lattice (OML) if the supre-

mum a ∨ b (equivalently, the infimum a ∧ b) of any two elements a, b ∈ P exists.

The notion of a generalized OML (GOML) has been introduced by Janowitz [J1],

and it has been shown that every GOML can be embedded into an OML as an

orthomodular ideal (see also [B], [K]). A generalization of the latter result has

been proved by Mayet-Ippolito [M-I] for a so called weak generalized OMP. (A

generalization of the latter result in another direction is proved in [H] for a so

called relatively OML.)

Definition 3.9. ([M-I]) Let (P,≤) be a poset with a smallest element 0, such

that every interval [0, a] of P is equipped with a unary operation x 7→ x]a . P is

called a weak generalized orthomodular poset (WGOMP) if it satisfies the following

conditions:

(G1) If a ∈ P then ([0, a],≤, 0, a, ]a) is an OMP.

(G2) If a ≤ b ≤ c then a]b = b ∧ a]c .

Elements a, b ∈ P are said to be orthogonal (in notation a ⊥ b) if a, b ≤ c and

a ≤ b]c for some c ∈ P .

(G3) If a ⊥ b then a ∨ b exists.

(G4) If a ⊥ b, a ⊥ c and b ⊥ c then a ∨ b ⊥ c.

According to (G1) and (G2) every WGOMP can be regarded as a GDP by

defining b 	 a = a]b precisely when a ≤ b. The following result shows a relation

between generalized difference posets and weak generalized orthomodular posets.

Theorem 3.10. Let (P,≤, 0,	) be a generalized D-poset. For every a ∈ P

define x]a = a	x (x ∈ P , x ≤ a). Then P is a weak generalized OMP if and only

if the following conditions are satisfied:

(W1) If a, b ∈ P and a ⊥ b then a⊕ b is the supremum of a, b.

(W2) If a, b, c ∈ P , a ⊥ b, a ⊥ c, and b ⊥ c, then a⊕ b ⊥ c.

Proof. If P is a WGOMP and a, b ∈ P are such that a ⊥ b, then we get

(a ∨ b) 	 b = (a ∨ b) ∧ ((a ⊕ b)	 b) = (a ∨ b) ∧ a = a, hence a ∨ b = a⊕ b. From

this observation it is clear that (W1) and (W2) are satisfied.

Conversely, let (W1) and (W2) be satisfied. We have to check properties (G1)–

(G4) of the preceding definition. (G3) and (G4) are clear. To prove (G1) consider

the D-poset [0, a] (a ∈ P ). With respect to Proposition 3.7, for [0, a] to be an

OMP it suffices to show that [0, a] is an orthoalgebra, i.e. that (DOA)* is satisfied

(see Proposition 3.2). So, if b ∈ P , b ≤ a and b ≤ a	b, then b ⊥ b, hence by (W1),

b⊕ b = b, i.e. b = b	 b = 0.
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To prove (G2) let a, b, c ∈ P be such that a ≤ b ≤ c. Since [0, c] is an OMP we

get c	 (b	 a) = c	 ((c	 a)	 (c	 b)) = a⊕ (c	 b) = a∨ b]c = (b ∧ a]c)]c , hence

b	 a = b ∧ a]c which proves (G2). �

Another characterization of weak generalized orthomodular posets among po-

sets with a difference having a smallest element is the following one which uses the

difference operation only.

Corollary 3.11. If (P,≤, 0,	) is a poset with a difference having a smallest

element 0 and if we define x]a = a	 x (a, x ∈ P , x ≤ a) then P is a WGOMP if

and only if (DOA) and the following condition are satisfied:

(W) If a, b, c, d ∈ P and b	 (c	 a) = d	 a, then a ∨ b exists.

Proof. If P is a WGOMP then P is a GDP and we can use Theorem 3.10. If

a, b ∈ P with a = b	 a then, since [0, b] is an OMP, 0 = a ∧ a]b = a. This shows

(DOA). To prove (W) let a, b, c, d ∈ P be such that b 	 (c 	 a) = d 	 a. Then

a ⊥ c	 a, a ⊥ d	 a and c	 a ⊥ d	 a, hence by (W2), a ⊥ (c	 a)⊕ (d	 a) = b

and thus by (W1), a ∨ b exists.

Conversely, let (DOA) and (W) be satisfied. First we show that P is then a

GDP and thus Theorem 3.10 can be used.

Let us observe that (DOA) is equivalent to the following condition: a ≤ b 	 a
implies a = 0 (a, b ∈ P ). Indeed, if a, b ∈ P are such that a ≤ b 	 a and if we

denote c = (b	 a)	 a, then a = (b	 a)	 c = (b	 c)	 a, hence by (DOA), a = 0.

Using this we prove that 	 is a cancellative difference on (P,≤). So, let a, b, c ∈ P
be such that a ≤ b, c and b	 a = c	 a. Then (b	 a)	 (c	 a) = a	 a, hence by

(W), a ∨ (b	 a) exists. Denote d = a ∨ (b	 a). We have a ≤ d ≤ b which implies

b 	 d ≤ b	 a ≤ d = b	 (b	 d) and thus b	 d = 0 which means that b = d. We

obtain a ∨ (b	 a) = b and similarly a ∨ (c	 a) = c. Therefore b = c.

We show that P has properties (W1) and (W2) which, according to Theo-

rem 3.10, means that P is a WGOMP.

1) Let c = a ⊕ b where a, b ∈ P with a ⊥ b. Then from a 	 (b 	 b) = c 	 b by

(W) it follows that a∨b exists. Denote d = a∨b. b ≤ d ≤ c implies c	d ≤ c	 b =

a ≤ d = c	 (c	 d), hence by (DOA), c	 d = 0 and thus c = d. This means that

a⊕ b = a ∨ b. (W1) is proved.

2) To prove (W2) let a, b, c ∈ P be such that a ⊥ b, a ⊥ c and b ⊥ c. Hence

(a⊕ b)	 ((a⊕ c)	 c) = (b⊕ c)	 c from which by (W) it follows that (a⊕ b) ∨ c
exists. Denote d = (a⊕b)∨c. Using (W1) we get a⊕c, b⊕c ≤ d, hence a, b ≤ d	c,
and hence a⊕ b ≤ d	 c which means that a⊕ b ⊥ c. �

Lemma 3.12. Let (P,≤, 0, 1,′ ) be an OMP and let J be an order ideal of P

such that for all a, b ∈ J with a ≤ b′ also a ∨ b ∈ J . Equip every interval [0, a] of

J with a unary operation ]a given by x 7→ x]a = a ∧ x′. Then J is a WGOMP.
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Proof. Conditions (G1)–(G4) of a WGOMP are clear from the following ob-

servation: for all a, b ∈ J , a ≤ b′ if and only if a ≤ b]c for some c ∈ J with

a, b ≤ c. �

Theorem 3.13. Let (P,≤, 0,	) be a generalized D-poset and let (P̂ ,≤∗, 0,
0],	∗) be the D-poset constructed in Theorem 2.4. Let ′∗ be a unary operation on

P̂ given by x′∗ = 0] 	∗ x (this means that if a ∈ P , then a′∗ = a] and (a])′∗ = a).

Then P̂ is an OMP if and only if P is a WGOMP.

Proof. If P is a WGOMP then P satisfies (DOA), hence by Theorem 3.5, P̂

satisfies (DOA)*. Owing to Proposition 3.8, it suffices to show that for all x, y ∈ P̂ ,

x ∨∗ y exists whenever x ≤∗ y′∗. So, let a, b ∈ P . Since a ≤∗ (b])′∗ is equivalent

to b] ≤∗ a′∗, we have to check the following two possibilities.

1) If a ≤∗ (b])′∗, i.e. a ≤ b, then clearly a, b] ≤∗ (b	 a)]. If a, b] ≤∗ c] for some

c ∈ P then a ⊥ c and c ≤ b, hence by (W1), a ⊕ c ≤ b and thus c ≤ b	 a which

means that (b	 a)] ≤∗ c]. Therefore a ∨∗ b] = (b	 a)].

2) If a ≤∗ b′∗, i.e. a ≤∗ b], then a ⊥ b and by (W1), a ⊕ b = a ∨ b. Clearly,

a, b ≤∗ a ⊕ b. If a, b ≤∗ c] for some c ∈ P , then a ⊥ c and b ⊥ c, hence by (W2),

a⊕ b ⊥ c, i.e. a⊕ b ≤∗ c]. Therefore a ∨∗ b = a ∨ b.

Conversely, let P̂ be an OMP. Since P̂ satisfies (DOA)*, P satisfies (DOA) by

Theorem 3.5.

Let a, b ∈ P with a ≤∗ b′∗. This means that a ≤∗ b], i.e. a ⊕ b is defined, and

a∨∗ b exists. From a, b ≤ a⊕ b it follows a, b ≤∗ a⊕ b, hence a∨∗ b ≤∗ a⊕ b which

with a ⊕ b ∈ P gives a ∨∗ b ∈ P and thus a ∨∗ b = a ∨ b. Denote c = a ∨ b and

d = a⊕ b. b ≤ c ≤ d implies d	 c ≤ d	 b = a ≤ c, hence d	 c ≤ d	 (d	 c) which

by (DOA) gives d	 c = 0, i.e. d = c. We have a⊕ b = a ∨ b.

Since, by the preceding considerations, P , as an order ideal of P̂ , satisfies the

condition of Lemma 3.12, it suffices now to show that for all a, b ∈ P with a ≤ b

it holds b 	 a = b ∧∗ a]. b 	 a is a lower bound of b and a] in (P̂ ,≤∗) because

b 	 a ≤ b and (b 	 a) ⊕ a = b. If c ≤∗ b, a] for some c ∈ P then c ≤ b and a ⊕ c
exists, hence a⊕ c = a ∨ c ≤ b which implies c ≤ b	 a, i.e. c ≤∗ b	 a. Therefore

b	 a is the greatest lower bound of b and a]. �

By the preceding considerations, the embedding of a WGOMP P into an or-

thomodular poset P̂ from Theorem 3.13 coincides with that of [M-I] and, as

observed there, this embedding preserves the infimum but not generally the supre-

mum whenever they exist in P . If a, b ∈ P with a ⊥ b, then, by (G4), the

supremum of a and b in P is also the supremum of a and b in P̂ .

According to [M-I], for a WGOMP P the following conditions are equivalent:

(i) The embedding of P into an OMP P̂ preserves all existing suprema of two

elements.

(ii) If a, b, c ∈ P with a ⊥ c and b ⊥ c and if a ∨ b exists in P then a ∨ b ⊥ c.
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(There is no difficulty to see that a similar statement is true for a GDP P and a

corresponding D-poset P̂ .)

A generalized orthomodular poset (GOMP) is defined in [M-I] as a poset (P,≤)

with a smallest element 0 such that every interval [0, a] of P is equipped with a

unary operation x 7→ x]a , satisfying the axioms (G1), (G2), (G3) and

(G4)’ If a, b, c ∈ P are such that a ⊥ c, b ⊥ c and if a ∨ b exists, then a ∨ b ⊥ c.

Since (G3) and (G4)’ imply (G4), every GOMP is a WGOMP (see Definition 3.9).

Theorem 2 in [M-I] and Theorem 3.13 imply the following.

Theorem 3.14. Let (P,≤, 0,	), (P̂ ,≤∗, 0, 0],	∗) and ′∗ be as in

Theorem 3.13. Then P̂ is an OMP for which the supremum of a, b ∈ P in P ,

if it exists, is also the supremum of a, b in P̂ if and only if P is a GOMP.

4. Examples

There is an abundance of various examples of difference structures mentioned

in this paper.

Example 4.1. The set P = R+ of all nonnegative real numbers with the

natural ordering and with the usual difference of numbers is a GDP. Since for

every a, b ∈ R+ also a+ b ∈ R+, we have a ⊥ b. Therefore, in P̂ = P ∪ P ] every

element in P ] is greater than any element in P .

More general, the positive cone P = G+ of any partially ordered abelian group

(G,+, 0,≤) with the usual difference of group elements is a GDP. For every a, b ∈
G+ also a + b ∈ G+, hence a ⊥ b. Thus, in P̂ = P ∪ P ] every element in P ] is

greater than any element in P .

Since every partially ordered vector space V is at the same time a partially

ordered abelian group, the ordering cone P = V + with a naturally defined dif-

ference is a GDP. The set of all positive operators on a complex Hilbert space,

positive operators in a von Neumann algebra, positive elements in a C∗-algebra

or a Jordan algebra are such examples of generalized difference posets.

Example 4.2. Let X be a nonempty set and let F ⊆ [0, 1]X satisfy

(i) 1 ∈ F ,

(ii) f, g ∈ F and f ≤ g implies g − f ∈ F ,

where ≤ and − are componentwise partial order and difference of real functions,

respectively. Then F with the partial binary operation 	 given by: g	f is defined

if and only if f ≤ g and g 	 f = g − f , is a D-poset.

F is an orthoalgebra if and only if

(iii) 0 6= f ∈ F implies 2f /∈ F .

F is an OMP if and only if

(iv) f, g, h ∈ F , f + g ≤ 1, f + h ≤ 1, g + h ≤ 1 imply f + g + h ∈ F .
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As concerns the latter example, see [M, T], [B, M] and [P].

Example 4.3. Let X be a nonempty set and let F ⊆ (R+)X satisfy

(i) 0 ∈ F ,

(ii) f, g ∈ F and f ≤ g implies g − f ∈ F ,

where ≤ and − are as in Example 4.2. Then F with 	 as in Example 4.2 is a GDP.

Observe that for f, g ∈ F , f ⊥ g if and only if f + g ∈ F , where + is pointwise

sum of real functions.

F is a GOA if and only if

(iii) 0 6= f ∈ F implies 2f /∈ F .

F is a WGOMP if and only if

(iv) f, g, h, f + g ∈ F and f, g ≤ h imply f + g ≤ h,
(v) f, g, h, f + g, f + h, g + h ∈ F implies f + g + h ∈ F .

As a concrete example we present the following set of real functions which is a

GOA but which is not a WGOMP. Let F = {0, f, g, h, f+g, h−f, h−g} ⊆ (R+)R
+

be a set of seven different functions R+ → R+ described in Fig. 2. All functions

on Fig. 2 are linear on the intervals [0, 3], [3, 6] and [6,∞], and f(0) = 1, g(0) = 4,

h(0) = 7. F under pointwise partial order of real functions forms a poset which is

on Fig. 3. Conditions (i)–(iii) and (v) are satisfied, but (iv) is not.
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Example 4.4. Let X be a nonempty set and let µ : R+ → R+ be a strictly

increasing continuous function such that µ(0) = 0. Define a partial binary oper-

ation 	 on (R+)X as follows: if f, g ∈ (R+)X then g 	 f is defined if and only

if f ≤ g and (g 	 f)(x) = µ−1(µ(g(x)) − µ(f(x))) for all x ∈ X, where ≤ is a

pointwise partial order of real functions. Then (R+)X is a GDP (cf. [K, Ch]).

Example 4.5. A very important class of D-posets can be obtained taking into

account that every interval [0, a], a ≥ 0, in a partially ordered abelian group is a

D-poset (cf [B, F]). Hence we have the following examples of D-posets: the set of

all effects, that is, selfadjoint operators A on a complex Hilbert space such that

0 ≤ A ≤ I (which plays an important role in quantum axiomatic [B,L,M]), the

interval [0, e] in an Archimedean order-unit space (A, e) with the order unit e [Al],

the interval [0, I] in a JB-algebra (see, e.g., [H-O,S] for the definition).

Example 4.6. Let (G,+, 0) be an abelian group and let ≤ be a partial order

on G such that:

(i) If a, b, c ∈ G and a ≤ b ≤ c then c− b ≤ c− a.

Define a partial binary operation 	 on G by: if a, b ∈ G then b 	 a is defined if

and only if a ≤ b and let b 	 a = b − a. Then the following three conditions are

equivalent:

(1) (G,≤, 0,	) is a GDP,

(2) 0 is a smallest element in (G,≤),

(3) if a, b ∈ G and a ≤ b then b− a ≤ b.

(1) =⇒ (2) This is clear.

(2) =⇒ (3) If a, b ∈ G are such that a ≤ b then from 0 ≤ a ≤ b by (i) it follows

that b− a ≤ b− 0 = b.

(3) =⇒ (1) This follows from group properties.

Assume that (G,≤, 0,	) is a GDP. Recall that for a, b ∈ G, a ⊥ b if and only if

a = c	b for some c ∈ G. From (3) and the fact that for all a, b ∈ G, a = (a+b)−b
and b = (a+ b)− a it follows the following:

(4) If a, b ∈ G then a ⊥ b if and only if a ≤ a+ b.

The sum ⊕ is then given by (a, b ∈ G): a⊕ b is defined if and only if a ⊥ b and

a ⊕ b = a + b. And (G,⊕, 0) is a GOA if and only if the following condition is

satisfied:

(5) If a ∈ G and a ≤ a+ a then a = 0.

For every a ∈ G define x]a = a 	 x (x ∈ G, x ≤ a). Then G is a WGOMP if

and only if the following two conditions are satisfied for all a, b, c ∈ G:

(ii) If a ≤ a+ b then a ∨ b exists and a ∨ b = a+ b.

(iii) If a ≤ a+ b, a+ c and b ≤ b+ c then a ≤ a+ b+ c.

To prove this it suffices to observe that (2) is satisfied and then to use Theo-

rem 3.10. Indeed, if a ∈ G is arbitrary then from a ≤ a = a + 0 it follows by (ii)

that a ∨ 0 exists and a ∨ 0 = a+ 0 = a which means that 0 ≤ a.
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Consequently, G is a GOMP if and only if (ii) and the following condition are

satisfied:

(iv) If a ≤ a+ b, a+ c and b ∨ c exists then a ≤ a+ (b ∨ c).

In [Ch] the notion of an orthomodular group is introduced as an abelian group

G equipped with a partial order ≤ satisfying the following conditions for all

a, b, c ∈ G:

(OG1) a ≤ b ≤ b+ c implies a ≤ a+ c,

(OG2) a ≤ b ≤ c implies c− b ≤ c− a,

(OG3) a ≤ a+ b implies a ∨ b exists and a ∨ b = a+ b,

(OG4) a ≤ a+ b, a+ c implies a ≤ a+ b+ c.

We show that conditions (OG2)–(OG4) imply conditions (i), (ii) and (iv), hence

every orthomodular group is a GOMP (in [Ch], it was proved that an orthomod-

ular group is a WGOMP). So, (OG2) is (i) and (OG3) is (ii). Since (OG3) implies

that 0 is a smallest element, G is a GDP and hence (4) is satisfied. To prove (iv) let

a, b, c, d ∈ G be such that a ≤ a+ b, a+ c and d = b∨c. From b ≤ b+a, b+(d− b)
it follows by (OG4) that b ≤ a + b + (d − b) = a + d. Similarly we get c ≤ a + d

and thus a+ d is an upper bound of b, c, hence d ≤ a+ d, which implies a ≤ a+ d.

Let us note that from the preceding considerations it follows that, in the above

definition of an orthomodular group, condition (OG1) can be omitted. Namely,

(OG1) means that if a, b, c ∈ G are such that a ≤ b and b ⊥ c, then a ⊥ c, which

is true in every GDP (see condition (i)* in Remark 1.12).

Let X be a nonempty set and let S ⊆ 2X be such that ∅ ∈ S and a∆b ∈ S for

all a, b ∈ S, where a∆b = (a∩ b′)∪ (a′ ∩ b). Then (S,∆, ∅) is an abelian group and

with respect to ≤ defined by set inclusion S is an orthomodular group.

As shown in [Ch] there is an abundance of orthomodular groups:

(a) Let A be an alternative ring with no nonzero nilpotent elements. Define

a binary relation ≤ on A by a ≤ b if and only if ab = a2 [M,J], then ≤ is

a partial order.

(b) Let A be an associative ∗-ring with a proper involution [Be], that is,

a∗a = 0 implies a = 0. Define a binary relation ≤ on A by a ≤ b if

and only if aa∗ = ba∗ and a∗a = a∗b. Then ≤ is a partial order (called

the ∗-order) [D] and A with ≤ is a WGOMP [M-I]. In particular, a

commutative ring A without nonzero nilpotent elements, a Rickart ∗-ring

A [Be] (in [M-I], using results from [J2], it is shown that A is a GOMP),

a C*-algebra.

(c) Let A be a Jordan algebra ([T], [H-O,S]) without nonzero nilpotent ele-

ments and satisfying the following condition:

[x, x, y] = 0 implies [xy, x, y] = 0,
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where [a, b, c] = (ab)c − a(bc) is the associator of a, b, c. Define a binary

relation ≤ on A by a ≤ b if and only if ab = a2 and a2b = a3 [Ch], then

≤ is a partial order.

(d) Let A be a JB-algebra ([H-O,S], [ML]). Define a binary relation ≤ on A

by a ≤ b if and only if a2b = a3 [Ch], then ≤ is a partial order.

Since A is always an abelian group, (a), (b), (c) and (d) with the order relations

defined above are examples of orthomodular groups and thus examples of GOMPs.

We present yet an example of an abelian group which is not an orthomodular

group (even which is not a WGOMP) but which is a GOA. Consider the abelian

group (Z7,+, 0) of integers modulo 7 partially ordered as in Fig. 4.

0

1 2 4

653

Fig. 4

Then conditions (i), (2), (5) and (ii) are satisfied, hence Z7 is a GDP which is

a GOA (let us note that, in general, (ii) need not be satisfied in a GOA). Z7 is

not a WGOMP since (iii) is not satisfied: we have 1 ≤ 1 + 2, 1 + 4 and 2 ≤ 2 + 4,

but 1 � 1 + 2 + 4. Thus Z7 is not a GOMP, and hence Z7 is not an orthomodular

group.

A simple example of an abelian group which is not an orthomodular group but

which is a GOMP is the group (Z4,+, 0) of integers modulo 4 partially ordered as

in Fig. 5. Conditions (i), (2), (ii) and (iv) are satisfied, hence Z4 is a GOMP, but

condition (OG4) is not satisfied, since 2 ≤ 1 + 2 but 2 � 1 + 1 + 2.

1

0

2

3

Fig. 5

There is also an example of an abelian group which is a WGOMP but which is

not a GOMP (hence, which is not an orthomodular group). Consider the abelian
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group (Z9,+, 0) of integers modulo 9 partially ordered as in Fig. 6.

0

1 3 6 2 8

4 7 5

Fig. 6

Then conditions (i)–(iii) and (2) are satisfied (this means that Z9 is a WGOMP)

but condition (iv) is not satisfied, since 1 ≤ 1 + 3, 1 + 6 and 3 ∨ 6 exists but

1 � 1 + (3 ∨ 6) (thus Z9 is not a GOMP). Let us note that the poset in Fig. 6

considered as an abstract poset is an example of Roddy from [M-I].

Example 4.7. We present generalizations (modifications) of examples (a), (b)

and (c) in Example 4.6.

(a) Let R be a ring such that the following binary relation ≤ on R is a partial

order:

a ≤ b if and only if ab = ba = a2.

Clearly, 0 is a smallest element in (R,≤). Since ≤ is antisymmetric, a2 = 0 implies

a = 0 for every a ∈ R. If a, b, c ∈ R and a ≤ b ≤ c then

(c− b)(c− a) = c2 − bc− ca+ ba = c2 − b2, similarly

(c− a)(c− b) = c2 − b2,

(c− b)2 = c2 − bc− cb+ b2 = c2 − b2,

which means that c− b ≤ c−a. Hence R is a GDP and by (4) in Example 4.6, for

all a, b ∈ R, a ⊥ b if and only if a ≤ a+ b. It is easy to see that for all a, b ∈ R,

a ⊥ b if and only if ab = ba = 0.

We prove that (R,+, 0) is an orthomodular group. It remains to show conditions

(OG3) and (OG4).

(OG3): If a, b ∈ R and a ≤ a+ b then b ≤ a+ b (since ⊥ is symmetric), hence

a+ b is an upper bound of a, b. If c ∈ R and a, b ≤ c then

(a+ b)c = ac+ bc = a2 + b2 = ca+ cb = c(a+ b),

(a+ b)2 = a2 + ba+ ab+ b2 = a2 + b2,

hence a+ b ≤ c. Thus a+ b is the join of a, b in (R,≤).
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(OG4): If a, b, c ∈ R and a ≤ a + b, a + c, then a ⊥ b and a ⊥ c, hence

a(b + c) = ab+ ac = 0 + 0 = 0 and (b+ c)a = ba+ ca = 0 + 0 = 0, which means

that a ⊥ b+ c and thus a ≤ a+ b+ c.

For example, ≤ as defined above is a partial order on every member R of the

class of rings studied by Abian in [Ab], hence every R is an orthomodular group.

As shown by Hentzel in [He], Lemma 1, these rings generalize alternative rings

without nonzero nilpotent elements. Let us note that the partial order ≤ on R

reduces to:

a ≤ b if and only if ab = a2.

Cf. Example 4.6(a).

(b) Let R be a ∗-ring (i.e., a ring R with an involution ∗) such that the following

binary relation ≤ on R is a partial order:

a ≤ b if and only if aa∗ = ba∗ and a∗a = a∗b.

Observe that 0 is a smallest element in (R,≤) and that for all a, b ∈ R, a ≤ b

implies aa∗ = ab∗ and a∗a = b∗a. If a, b, c ∈ R and a ≤ b ≤ c then

((c− b)− (c− a))(c− b)∗ = (a− b)(c∗ − b∗) = ac∗ − bc∗ − ab∗ + bb∗ = 0,

and similarly we get (c− b)∗((c− b)− (c− a)) = 0, hence c− b ≤ c− a. Thus R is

a GDP and by (4) in Example 4.6, for all a, b ∈ R, a ⊥ b if and only if a ≤ a+ b.

It is easy to show that for all a, b ∈ R,

a ⊥ b if and only if a∗b = ba∗ = 0.

To prove that (R,+, 0) is an orthomodular group, it remains to show conditions

(OG3) and (OG4).

(OG3): If a, b ∈ R and a ≤ a+ b then b ≤ a+ b. If c ∈ R and a, b ≤ c then

(a+ b)(a+ b)∗ = aa∗ + ba∗ + ab∗ + bb∗ = aa∗ + bb∗,

c(a+ b)∗ = ca∗ + cb∗ = aa∗ + bb∗,

and similarly we get (a+ b)∗(a+ b) = a∗a+ b∗b = (a+ b)∗c, hence a+ b ≤ c. Thus

a+ b is the join of a, b in (R,≤).

(OG4): If a, b, c ∈ R and a ≤ a+ b, a+ c, then a ⊥ b, a ⊥ c, hence a∗(b+ c) =

a∗b + a∗c = 0 + 0 = 0 and (b + c)a∗ = ba∗ + ca∗ = 0 + 0 = 0, which means that

a ⊥ b+ c and thus a ≤ a+ b+ c.

(c) Let R be a ring in which for all a ∈ R, a2a = aa2. Consider the following

binary relation ≤ on R:

a ≤ b if and only if ab = ba = a2 and a2b = ba2 = ab2 = b2a = a3.
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Then ≤ is reflexive and 0 ≤ a for all a ∈ R. The relation ≤ is antisymmetric if

and only if for all a ∈ R, a2 = 0 implies a = 0. Assume that ≤ is a partial order

on R. Using Example 4.6 we show that the abelian group (R,+, 0) is a WGOMP,

where for every a ∈ R we define x]a = a − x (x ∈ R, x ≤ a). So, we prove that

conditions (i)–(iii) of Example 4.6 are satisfied.

(i) If a, b, c ∈ R and a ≤ b ≤ c then (c − a)2 = c2 − a2, (c − b)2 = c2 − b2 and

(c− b)3 = c3 − b3. Then we get

(c− b)(c− a) = c2 − bc− ca+ ba = c2 − b2,

(c− b)2(c− a) = c3 − b2c− c2a+ b2a = c3 − b3,

(c− b)(c− a)2 = c3 − bc2 − ca2 + ba2 = c3 − b3,

and similarly we get (c − a)(c − b) = c2 − b2 and (c − a)(c − b)2 = c3 − b3 =

(c− a)2(c− b), which means that c− b ≤ c− a.
Hence R is a GDP and by (4) in Example 4.6, for all a, b ∈ R, a ⊥ b if and only

if a ≤ a+ b. It is easy to see that for all a, b ∈ R,

a ⊥ b if and only if ab = ba = a2b = ba2 = ab2 = b2a = 0.

(ii) We show that if a, b ∈ R with a ≤ a + b then a + b is the join of a and

b in (R,≤). Since ⊥ is symmetric, from a ≤ a + b it follows b ≤ a + b, hence

a + b is an upper bound of a and b. From a ⊥ b we get (a + b)2 = a2 + b2 and

(a+ b)3 = a3 + b3. If c ∈ R is an upper bound of a and b then we obtain

(a+ b)c = ac+ bc = a2 + b2 = (a+ b)2,

(a+ b)2c = (a2 + b2)c = a2c+ b2c = a3 + b3 = (a+ b)3,

(a+ b)c2 = ac2 + bc2 = a3 + b3 = (a+ b)3,

and similarly c(a+ b) = (a+ b)2 and c(a+ b)2 = (a+ b)3 = c2(a+ b), which means

that a+ b ≤ c.
(iii) If a, b, c ∈ R, a ≤ a + b, a + c and b ≤ b + c then a ≤ a + b + c since

a(b+c) = ab+ac = 0, a2(b+c) = a2b+a2c = 0, a(b+c)2 = a(b2+c2) = ab2+ac2 = 0

and similarly 0 = (b+ c)a = (b+ c)a2 = (b+ c)2a.

Let us note that if R is zero commutative (i.e., if for all x, y ∈ R, xy =

0 implies yx = 0) or commutative then the partial order ≤ on R as defined above

reduces to:

a ≤ b if and only if ab = a2 and a2b = ab2 = a3.

And the orthogonality relation ⊥ on R reduces to:

a ⊥ b if and only if ab = a2b = ab2 = 0.

A Jordan ring is a commutative ring R satisfying (xy)x2 = x(yx2) for all x, y ∈
R, this is to say [x, y, x2] = 0. Let R be a Jordan ring satisfying the condition

2x = 0 implies x = 0 for all x ∈ R, without nonzero nilpotent elements and

satisfying the condition in Example 4.6(c). In [G,M] it is proved that the binary

relation ≤ on R defined above is a partial order, hence R is a WGOMP.
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Example 4.8. A convenient generalization of Example 4.6 which includes var-

ious known examples is as follows. Let (G,+, 0) be an abelian group and let P be

a nonempty subset of G. Assume that there is a partial order ≤ on P such that

the following two conditions are satisfied for all a, b, c ∈ P :

(o) a ≤ b implies b− a ∈ P ,

(i) a ≤ b ≤ c implies c− b ≤ c− a.

By (o), 0 ∈ P . Define a partial binary operation 	 on P by (a, b ∈ P ): b 	 a
is defined if and only if a ≤ b and let b 	 a = b − a. Then the following three

conditions are equivalent:

(1) (P,≤, 0,	) is a GDP,

(2) 0 is a smallest element in (P,≤),

(3) if a, b ∈ P and a ≤ b then b− a ≤ b.

Assume that (P,≤, 0,	) is a GDP. Recall that for a, b ∈ P , a ⊥ b if and only if

a = c	 b for some c ∈ P . Then the following condition is satisfied:

(4) If a, b ∈ P then a ⊥ b if and only if a+ b ∈ P and a ≤ a+ b.

Under the conditions (o) and (i), for every a ∈ P define x]a = a 	 x (x ∈ P ,

x ≤ a). Then P is a WGOMP if and only if the following two conditions are

satisfied for all a, b, c ∈ P :

(ii) a+ b ∈ P and a ≤ a+ b implies a ∨ b exists and a ∨ b = a+ b,

(iii) a+ b, a+ c, b+ c ∈ P , a ≤ a+ b, a+ c and b ≤ b+ c implies a+ b+ c ∈ P
and a ≤ a+ b+ c.

And P is a GOMP if and only if (ii) and the following condition are satisfied for

all a, b, c ∈ P :

(iv) If a + b, a + c ∈ P , a ≤ a + b, a+ c and b ∨ c exists then a + (b ∨ c) ∈ P
and a ≤ a+ (b ∨ c).

Proofs of all mentioned statements can be carried on analogously as in Example 4.6.

We present some more concrete examples.

(a) Let R be a ring and let P be the set of all idempotents in R (i.e., elements

a ∈ R with a = a2) such that the following binary relation ≤ on P is a partial

order:

a ≤ b if and only if ab = ba = a.

P is nonempty since 0 ∈ P . Clearly, 0 ≤ a for all a ∈ P . If a, b ∈ P and a ≤ b then

(b− a)2 = b2− ab− ba+ a2 = b− a− a+ a = b− a, hence b− a ∈ P . If a, b, c ∈ P
and a ≤ b ≤ c then (c − b)(c − a) = c2 − bc − ca + ba = c − b − a + a = c − b
and (c − a)(c− b) = c2 − ac− cb+ ab = c− a− b+ a = c − b, which means that

c− b ≤ c− a. Thus conditions (o) and (i) are satisfied and therefore P is a GDP.

According to (4), if a, b ∈ P then a ⊥ b if and only if ab = ba = 0. It is easy to

show that conditions (ii) and (iii) are satisfied (cf. Example 4.7(a)), hence P is a

WGOMP, where for every a ∈ P we define x]a = a− x (x ∈ P, x ≤ a).
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As an example of such a WGOMP we can take the set P of all idempotents

of a ring R in Example 4.7(a) (which is an orthomodular group, hence a GOMP)

with the partial order ≤ on R restricted to the set P . Similarly, the set P of all

idempotents of a ring R in Example 4.7(c) (which is a WGOMP) with the partial

order ≤ on R restricted to the set P is also such an example of a WGOMP.

(b) Let R be a ∗-ring and let P be the set of all projections in R (i.e., elements

a ∈ R such that a2 = a∗ = a) such that the following binary relation ≤ on P is a

partial order:

a ≤ b if and only if ab = a.

Let us observe that a, b ∈ P and a ≤ b implies ba = a. Then P is a GDP since

0 ∈ P and 0 ≤ a for all a ∈ P , and conditions (o) and (i) are satisfied. By (4), for

all a, b ∈ P , a ⊥ b if and only if ab = 0 if and only if ba = 0. Conditions (ii) and

(iii) are satisfie d, too (cf. Example 4.7(b)), and therefore P is a WGOMP.

The set P of all projections of a ∗-ring R in Example 4.7(b) (which is an

orthomodular group, hence a GOMP) with the partial order ≤ on R restricted to

the set P is such an example of a WGOMP.

The set of all idempotents (projections) of an associative ring (∗-ring) with 1

is an OMP [Ka] ([Bi]) and the set of all idempotents (projections) of an associa-

tive ring (∗-ring) which need not have 1 is a WGOMP, see [M-I]. Let R be an

associative ring (∗-ring) without 1 and let R̃ denote a unitification of R, see [Be].

Let P denote the set of all idempotents (projections) of R. Then the OMP P̂ (cf.

Theorem 3.13) is isomorphic with the OMP P̃ of all idempotents (projections) in

R̃. Namely, R̃ = R×A, where A is an auxiliary ring (∗-ring) with a unit, and for

all (a, α), (b, β) ∈ R̃, (a, α)+(b, β) = (a+b, α+β), (a, α)(b, β) = (ab+βa+αb, αβ)

(and (a, α)∗ = (a∗, α∗)). If (a, α)2 = (a, α) then (a2 + 2αa, α2) = (a, α), hence

α2 = α and a2 + 2αa = a and thus α = 0 and a2 = a or α = 1 and a2 = −a.
Therefore P̃ = {(a, 0) : a ∈ P} ∪ {(−a, 1) : a ∈ P}.

Example 4.9 [R1]. Another concrete example (which is motivated by a the-

ory of triple systems — alternative and Jordan triples ([Ba], [E, R], [L1], [L2],

[L3], [M1], [M2]) and which is still very general) of the preceding general ex-

ample is as follows. Let (A,+, 0) be an abelian group endowed with a ternary

operation (x, y, z) 7→ (xyz) on A which is additive in all three variables such that

the following conditions are satisfied for all a, b, c ∈ A:

(1) ((aba)c(aba)) = (a(b(aca)b)a),

(2) ((aba)bc) = (a(bab)c), (cb(aba)) = (c(bab)a).

A is called a triple group. Elementary consequences of the additivity are the

following two properties (a, b, c ∈ A):

(0ab) = (a0b) = (ab0) = 0,

−(abc) = (−a bc) = (a − b c) = (ab − c).
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An element a ∈ A is called a tripotent if (aaa) = a. Let P denote the collection

of all tripotents of A. Clearly, 0 ∈ P . Consider the following binary relation ≤ on

the set P :

a ≤ b if and only if a = (aba) = (bab).

Then ≤ is reflexive, antisymmetric and 0 ≤ a for all a ∈ P . If a, b, c ∈ P , a ≤ b

and b ≤ c then a ≤ c since by (1),

(aca) = ((bab)c(bab)) = (b(a(bcb)a)b) = (b(aba)b) = (bab) = a,

(cac) = (c(bab)c) = (c((bcb)a(bcb))c) = (c(b(c(bab)c)b)c)

= (c(b(cac)b)c) = ((cbc)a(cbc)) = (bab) = a.

Hence ≤ is transitive and thus a partial order with a smallest element 0. Let us

observe that the following condition is satisfied for all a, b ∈ P and c ∈ A:

(3) a ≤ b implies (abc) = (bac) = (aac) and (cab) = (cba) = (caa).

Namely, if a, b ∈ P, a ≤ b and c ∈ A then, according to (2), (abc) = ((aba)bc) =

(a(bab)c) = (aac) and (bac) = (b(aba)c) = ((bab)ac) = (aac). Similarly, (cab) =

(caa) = (cba). In particular, the following condition is satisfied for all a, b ∈ P :

(3*) a ≤ b implies a = (aab) = (baa) = (abb) = (bba).

If a, b ∈ P and a ≤ b then by (3*), (b − a b − a b − a) = (bbb) − (bba) − (bab) +

(baa)− (abb) + (aba) + (aab)− (aaa) = b− a, which means that b− a ∈ P .

We show that if a, b, c ∈ P and a ≤ b ≤ c then c − b ≤ c − a. Indeed,

using conditions (3) and (3*) we obtain (c − b c − a c − b) = (ccc) − (ccb) −
(cac) + (cab) − (bcc) + (bcb) + (bac) − (bab) = c − b and (c − a c − b c − a) =

(ccc)− (cca)− (cbc) + (cba)− (acc) + (aca) + (abc)− (aba) = c− b.

Thus conditions (o) and (i) in Example 4.8 are satisfied, hence P is a GDP.

According to condition (4) in Example 4.8, for a, b ∈ P , a ⊥ b if and only if

a+ b ∈ P and a ≤ a+ b. Hence, using (3), we obtain for all a, b ∈ P and c ∈ A:

(4) a ⊥ b implies (abc) = (bac) = (cab) = (cba) = 0.

By the additivity we get the following. For all a, b ∈ P ,

a+ b ∈ P if and only if (aab) + (aba) + (abb) + (baa) + (bab) + (bba) = 0.

If a, b, a+ b ∈ P then

a ≤ a+ b if and only if (aba) = 0 = (aab) + (baa) + (bab).

According to condition (4) it is now clear that for all a, b ∈ P ,

(5) a ⊥ b if and only if (aba) = (bab) = (aab) = (baa) = (abb) = (bba) = 0.
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Our aim is to prove that the collection of all tripotents of a triple group, partially

ordered as above, forms a WGOMP. So, it remains to show that conditions (ii)

and (iii) in Example 4.8 are satisfied.

(ii) If a, b, a+ b ∈ P and a ≤ a+ b, i.e. a ⊥ b, then b ⊥ a, hence b ≤ a+ b and

thus a+ b is an upper bound of a and b. If c ∈ P and a, b ≤ c then by (2),

(acb) = ((aca)cb) = (a(cac)b) = (aab) = 0

and similarly (bca) = 0. Hence we get (a+b c a+b) = (aca)+(acb)+(bca)+(bcb) =

a+ b and (c a+ b c) = (cac)+(cbc) = a+ b, which means that a+ b ≤ c. Therefore

a+ b is the join of a and b in (P,≤).

(iii) Using the additivity and conditions (4) and (5) it is easy to see that if

a, b, c ∈ P , a ⊥ b, a ⊥ c and b ⊥ c then a ⊥ b+ c.

An abelian group (A,+, 0) together with a mapping A3 → A, (x, y, z) 7→ (xyz)

which is symmetric in the first and third variables and additive in all three variables

is called a Jordan triple group if the following identities are satisfied:

(J) (ab(cde))− (cd(abe)) = ((abc)de)− (c(dab)e),

(j) ((aba)ca) = (ab(aca)).

(J) is known as the Jordan triple identity. Let us note that if A satisfies the

condition 3x = 0 implies x = 0 for all x ∈ A, then the identity (j) follows from (J)

and the symmetry (this can be shown similarly as in [M2]). Every Jordan triple

group is a triple group. Indeed, replacing (c, d) by (a, b) in (J), we get

(ab(abe))− (ab(abe)) = ((aba)be)− (a(bab)e),

which, using the symmetry, implies (2). The identity (1) is known as the funda-

mental-formula and can be derived similarly as in [M2, Theorem 2.2].

By a Jordan triple we mean a module A over a ring R with a unit endowed with

an operation A3 → A, (x, y, z) 7→ (xyz) which is linear in all three variables such

that A is a Jordan triple group (cf. [M2]). The mapping A3 → A, (x, y, z) 7→ (xyz)

is called the Jordan triple product.

In [Ba], a Jordan triple is a complex vector space A equipped with a mapping

A3 → A, (x, y, z) 7→ (xyz) which is symmetric and linear in the first and third

variables, conjugate linear in the second variable and satisfies the Jordan triple

identity (J). In [L3], this system is called a hermitean Jordan triple. Every Jordan

triple is a Jordan triple group.

A JB*-triple A is a hermitean Jordan triple which is a Banach space such that

the mapping from A2 to the Banach space of bounded linear operators on A,

defined on all pairs (a, b) of elements in A and all c in A, by D(a, b)c := (abc), is

continuous and such that, for all elements a in A, D(a, a) is hermitean and with

non-negative spectrum and ‖D(a, a)‖ is equal to ‖a‖2. For all elements a, b and c

in a JB*-triple A, ‖(abc)‖ ≤ ‖a‖‖b‖‖c‖ and ‖(aaa)‖ = ‖a‖3. A JB*-triple which
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is a Banach space dual is called a JBW*-triple. In a JBW*-triple A the Jordan

triple product is separately w*-continuous.

The collection of all tripotents in a JBW*-triple together with the partial order

defined by Loos has been studied in [Ba], [R2], where it was shown that the

collection of all tripotents in a JBW*-triple is a GOMP.

Indeed, G1 follows by Lemma 3.5(iii) in [Ba]. In fact, the interval [0, w] is a

complete orthomodular lattice with an orthocomplementation defined by v
′w =

w − v.
To prove G2, observe that if u ≤ v ≤ w, then u, v are idempotents in a JBW-

algebra A2(w)Jsa,and v−u is the relative complement in the subinterval [0, v] of the

orthomodular lattice of the idempotents in A2(w)Jsa. This gives v−u = (w−u)∧v.
G3 follows by Corollary 3.7(ii) in [Ba].

Condition G4’ follows by Corollary 3.10(i) in [Ba].

We note that an alternative proof of properties G1, G2 and G3 can be obtained

by observing that the partial order introduced by Loos coincides with that we

introduced in a triple group, therefore the collection of all tripotents in a JBW*-

triple is a WGOMP.

An abelian group (A,+, 0) equipped with a mapping A3 → A, (x, y, z) 7→ (xyz)

which is additive in all three variables is called an alternative triple group if the

following identities are satisfied:

(A) (ab(cde)) + (cd(abe)) = ((abc)de) + (c(bad)e),

(a1) ((abc)dc) = (ab(cdc)),

(a2) (ab(abc)) = ((aba)bc).

Putting a + d instead of a in the identity (a2) and then using (a2) and (A) we

obtain the following identity (cf. the proof of (1.5) in [L1]):

(i) ((abc)bd) = (a(bcb)d).

Every alternative triple group is a triple group. Indeed, using the identity (a1)

twice and then using (i) we get

((aba)c(aba)) = (((aba)ca)ba) = ((ab(aca))ba)

= (a(b(aca)b)a),

which proves the fundamental-formula (1). Putting a instead of c in (i) we get the

first identity in (2). The second one is obtained as follows:

(cb(aba))
(a1)
= ((cba)ba)

(i)
= (c(bab)a).

By an alternative triple we mean a module A over a ring R with a unit endowed

with a mappingA3 → A, (x, y, z) 7→ (xyz) which is linear in all three variables such

that A is an alternative triple group (cf. [L2]). Alternative triples are investigated

in [L1], where an equivalent system of axioms is dealt with, instead of (a2) the

following identity is used:

(ii) ((aba)cd) = (a(cab)d).
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Example 4.10. Using the partial order ≤ on the set of all tripotents in a

triple group A from Example 4.9 we can obtain generalizations of known results

about idempotents (projections) in rings (∗-rings). Known partial orders on idem-

potents (projections) in rings (∗-rings) are extended to tripotents. It follows that

the tripotents in special classes of rings and ∗-rings form a WGOMP (as to the

examples (a) and (c) below cf. [Ch], Proposition 10).

(a) Let R be an alternative ring, i.e. a ring R satisfying x2y = x(xy) and yx2 =

(yx)x for all x, y ∈ R. Artin’s theorem in R says that any subring of R generated

by two elements is associative. Other well-known properties are Moufang identities

([S], [Z, S, S, S]): (aba)c = a(b(ac)), c(aba) = ((ca)b)a and a(bc)a = (ab)(ca) for

all a, b, c ∈ R.

R together with the mapping f : R3 → R, (x, y, z) 7→ (xy)z is a triple group.

Clearly, f is additive in all three variables. The first identity in (2) from Exam-

ple 4.9 is clear for f by Artin’s theorem. The second one can be shown as follows.

If a, b, c ∈ R then

cb · aba = (cb · a)b · a = (c · bab)a.

Using Moufang identities we get for all a, b, c ∈ R,

aba · c · aba = a(b · ac) · aba = a · (b · ac)(ab) · a = a(b · aca · b)a,

which proves the fundamental-formula (1) in Example 4.9.

The Cayley numbers [Z, S, S, S] form an alternative ring which is an example of

a triple group which is not an alternative triple group in the sense of the definition

from the preceding example. Indeed, conditions (a1), (a2) are satisfied, but (A) is

not satisfied (even condition (ii) is not satisfied).

An element a ∈ R is a tripotent if f(a, a, a) = a, i.e. if a3 = a. Every idempotent

of R is a tripotent. Let T denote the set of all tripotents in R. The partial order

≤ on T from Example 4.9 has then the following form:

a ≤ b if and only if a = aba = bab.

By Example 4.9, (T,≤) is a WGOMP. Let us note that the binary relation ≤ on

T has also the following form (cf. Example 4.8(a)):

a ≤ b if and only if a2 = ab = ba.

Indeed, if a, b ∈ T and a ≤ b then ab = aba · b = a · bab = a2 and ba = b · aba =

bab · a = a2. Conversely, if a, b ∈ T and ab = ba = a2 then aba = a2a = a and

bab = a2b = aa2 = a, hence a ≤ b.
(b) Let R be an alternative ring with an involution ∗. Then R together with

the operation f : R3 → R, (x, y, z) 7→ (xy∗)z is an alternative triple group (cf.

[L1]). An element a ∈ R is a tripotent if f(a, a, a) = a, i.e. if aa∗a = a. Every
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projection of R is a tripotent. Let T denote the collection of all tripotents in R.

Then the partial order ≤ on T from Example 4.9 has the following form:

a ≤ b if and only if a = ab∗a = ba∗b.

By Example 4.9, since R is a triple group, (T,≤) is a WGOMP. Let us note that

the binary relation ≤ on T when restricted to the set P of all projections of R has

the following form (cf. Example 4.8(b)):

a ≤ b if and only if ab = a.

If R is associative then the relation ≤ on T has the following form (cf. Exam-

ple 4.6(b), 4.7(b)):

a ≤ b if and only if aa∗ = ba∗ and a∗a = a∗b.

Namely, if a, b ∈ T and a ≤ b then aa∗ = ba∗b.a∗ = b.a∗ba∗ = b(ab∗a)∗ = ba∗

and similarly a∗a = a∗b. Conversely, if a, b ∈ T , aa∗ = ba∗ and a∗a = a∗b, then

aa∗ = ab∗, hence ab∗a = aa∗.a = a and ba∗b = aa∗.b = a.a∗b = aa∗a = a, and

thus a ≤ b.
(c) Let R be a Jordan ring equipped with the mapping f : R3 → R, (x, y, z) 7→

x(yz)−y(xz)+z(xy) As known, R is a Jordan triple group (cf. [M1]). An element

a ∈ R is a tripotent if f(a, a, a) = a, i.e. if a3 = a. Every idempotent of R is a

tripotent. Let T denote the set of all tripotents of R. The partial order ≤ on T

from Example 4.9 has the following form:

a ≤ b if and only if a = 2a(ab)− a2b = 2b(ab)− ab2.

If a, b ∈ T and a ≤ b then by (3*) in Example 4.9, a = f(a, a, a) = a2b and

a = f(a, b, b) = ab2, and by (3) in Example 4.9, f(a, b, a2) = f(a, a, a2) from

which it follows ab = a2. Thus the relation ≤ on T has the following form (cf.

Example 4.7(c)):

a ≤ b if and only if ab = a2 and a2b = ab2 = a.

5. Concluding Remarks

An orthomodular lattice, an orthomodular poset and a difference poset have a

least and a greatest elements. A generalized orthomodular lattice, a weak gener-

alized orthomodular poset and a generalized difference poset have a least element

but need not have a greatest element. It has been shown in [J1] that every GOML

is an orthomodular ideal of an OML and in [M-I] it is proved that every WGOMP

is an order ideal of an OMP. We have shown that every GDP is an order ideal of a
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DP. The result in [M-I] is an extension of the result in [J1] from lattices to posets,

with a smallest element. Our result is a direct extension of the result in [M-I].

A related result, a generalization of the result in [J1] in another direction, from

lattices with a smallest element to lattices which need not have a smallest element,

was obtained by one of the authors in [H] for relatively orthomodular lattices. Ev-

ery relatively orthomodular lattice (ROML) is a dual ideal of a GOML. It appears

that a further generalization of the results in [H] and in [M-I] is possible by a

suitable extension of the definition of a WGOMP, which need not have a smallest

element. Or, even, it seems to be possible to obtain a common generalization

of the results in [H] and in the present paper by a suitable modification of the

definition of a poset with a difference. The situation is indicated in Fig. 7.

WGOMP ROMLDP

RDP

OML

GDP ROMP

OMP GOML

Fig. 7

The small filled circles represent the above mentioned known classes of ortho-

modular structures, the orthomodular lattices (OML), the orthomodular posets

(OMP), the difference posets (DP), the generalized orthomodular lattices

(GOML), the weak generalized orthomodular posets (WGOMP), the generalized

difference posets (GDP) and the relatively orthomodular lattices (ROML). The

remaining two small circles represent hypothetic classes of orthomodular struc-

tures, relatively orthomodular posets (ROMP) and relatively difference posets

(RDP). We will discuss them in a subsequent paper. The whole Fig. 7 depicts an

inclusion partial order on the set of these nine classes of orthomodular structures.
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