
Acta Math. Univ. Comenianae
Vol. LXV, 2(1996), pp. 189–193

189

KERNELS OF TOLERANCE RELATIONS

I. CHAJDA, G. CZÉDLI and I. G. ROSENBERG

Abstract. Algebras with 0 and their ideals in Gumm and Ursini’s sense [11], [12]
are considered. A variety K is called 0-tolerance regular if each tolerance relation
α of any A ∈ K is uniquely determined by its kernel [0]α = {x ∈ A: 〈0, x〉 ∈ α}.
The main result, strengthening Agliano and Ursini [1], asserts that every 0-tolerance
regular variety is congruence permutable. Tolerance kernels of single algebras are
also considered.

1. Introduction and Basic Definitions

Ideals of universal algebras were introduced by Ursini [12], cf. also Fichtner

[9]. For definition, let K be a variety of algebras with a distinguished nullary

operation 0 (or an equationally defined term 0) in its type. We say that K is a

variety with 0; its members are called algebras with 0. In the sequel, K will

always denote a variety with 0. Even without explicit mentioning all varieties and

algebras in this paper are assumed to be with 0. A term p(x1, . . . , xm, y1, . . . , yn)

of K is called a K-ideal term in the variables y1, . . . , yn if K satisfies the identity

p(x1, . . . , xm, 0, . . . , 0) ≈ 0. A nonvoid subset I of an algebra A ∈ K is called a K-

ideal of A if for every K-ideal term p(x1, . . . , xm, y1, . . . , yn) in the last n variables

and for all a1, . . . , am ∈ A and b1, . . . , bn ∈ I we have p(a1, . . . , am, b1, . . . , bn) ∈
I. When A does not belong to any specified variety, by a K-ideal term resp. a

K-ideal we mean an HSP{A}-ideal term resp. an HSP{A}-ideal. HSP{A}-ideal

terms and HSP{A}-ideals of A will also be called ideal terms and ideals even

when A belongs to some variety K. Note that, for A ∈ K, every ideal of A is

a K-ideal of A. Notice that 0 belongs to every K-ideal since the constant unary

operation c0(y) with value 0 is a K-ideal term in y. If K is the variety of all

rings or lattices with zero, then K-ideals are exactly the ideals in the usual sense.
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Following Agliano and Ursini [1], a nonempty subset C of an algebra A is called

a clot if 0 ∈ C and for every term q(x1 . . . , xn) with q(0, . . . , 0) = 0 and for all

c1, . . . , cn ∈ C we have q(c1, . . . , cn) ∈ C. For example, every ideal is a clot.

Given a compatible reflexive binary relation α of A ∈ K (i.e., a subalgebra of

A2 that includes the diagonal), the subset

[0]α = {x ∈ A: 〈0, x〉 ∈ α}

is called the kernel of α. It is easy to see that [0]α is an ideal of A. Kernels of

congruences have been studied, e.g., in [1], [6], [11] and [12].

Recall that an algebra A is said to be congruence permutable if α◦β = β ◦α
for all α, β ∈ Con (A). As usual, a variety K is said to have a property if all of

its members have this property. If a property of single algebras includes ideals,

then (even without explicit mentioning) the corresponding property for K includes

K-ideals instead of ideals, of course. A classical theorem of A. I. Mal’cev asserts

that a variety K is congruence permutable iff there is a Mal’cev term in K, i.e.

a ternary term p such that the identities p(x, x, y) ≈ y and p(x, y, y) ≈ x hold in

K. If [0]α◦β = [0]β◦α holds for all α, β ∈ Con (A), then A is called (congruence)

permutable at 0. When [0]α = [0]β implies α = β for any α, β ∈ Con (A), A

is called 0-regular. If α 7→ [0]α is a bijection from Con (A) to the set of ideals

of A, then A is said to be ideal determined. A famous theorem of Gumm and

Ursini [11] asserts that a variety K is ideal determined iff K is permutable at 0

and 0-regular.

Motivated by this theorem, other compatible reflexive relations have also been

studied from similar aspects, cf. e.g. [1] and [5]. Compatible reflexive symmetric

binary relations are called tolerances; cf. [4] for basic facts about them. The

tolerances of A form an algebraic lattice, which is denoted by Tol (A). If Tol (A) =

Con (A), then A is said to be tolerance trivial. A is called a 0-tolerance

regular algebra if, for all α, β ∈ Tol (A), the equality [0]α = [0]β implies α =

β. When α 7→ [0]α is a bijection from Tol (A) resp. from the set of compatible

reflexive relations of A to the set of ideals resp. clots of A, then A is called an

ideal tolerance-determined resp. clot determined algebra. Agliano and

Ursini have proved that every clot determined variety is congruence permutable,

cf. [1, Thm. 2.7]. Notice that 0-tolerance regularity is a much weaker condition

than being clot determined; first because “regular” is weaker than “determined”,

and secondly because it is a condition only on tolerances rather than all compatible

reflexive relations. Hence the following theorem, the main achievement of the

paper, seems to be an essential improvement of the above-mentioned result.

2. Results and Proofs

Theorem 1. If a variety with 0 is 0-tolerance regular, then it is congruence

permutable.
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Proof. Let K be a 0-tolerance regular variety. For A ∈ K and R ⊆ A2 the

tolerance relation generated by R will be denoted by T (R). As usual, we will

write T (a, b) instead of T ({〈a, b〉}). Consider the free algebra A = FK(x, y) with

two free generators x and y. Set α = T (x, y), I = [0]α and β = T ({0} × I).

Observe that {0} × I ⊆ α implies β ⊆ α, so we obtain I ⊆ [0]β ⊆ [0]α = I. The

0-tolerance regularity of K gives α = β, whence 〈x, y〉 ∈ β. Now we need the

following easy description of generated tolerances:

(1)

〈a, b〉 ∈ T ({〈a1, b1〉, . . . , 〈an, bn〉}) iff there are m ≥ 0,

elements e1 . . . , em, and a (2n+m)-ary term r

such that a = r(a1, . . . , an, b1, . . . , bn, e1, . . . , em)

and b = r(b1, . . . , bn, a1, . . . , an, e1, . . . , em).

Note that (1) is just Lemma 1.7 in [4]; the reader can also prove it directly. Since

Tol (A) is an algebraic lattice, there is a finite subset {c1(x, y), . . . , cn(x, y)} of I

such that

〈x, y〉 ∈ T ({0} × {c1(x, y), . . . , cn(x, y)}).

By (1) there is a (2n+m)-ary term r and there are binary terms ei such that

x = r(0, . . . , 0, c1(x, y), . . . , cn(x, y), e1(x, y), . . . , em(x, y)),

y = r(c1(x, y), . . . , cn(x, y), 0, . . . , 0, e1(x, y), . . . , em(x, y)).

For simplicity, let us consider the term g(x1, x2, . . . , x2n+2) = r(x1, x2, . . . , x2n,

e1(x2n+1, x2n+2), . . . , em(x2n+1, x2n+2)). Then we have

(2)
x = g(0, . . . , 0, c1(x, y), . . . , cn(x, y), x, y),

y = g(c1(x, y), . . . , cn(x, y), 0, . . . , 0, x, y).

We claim that the terms ci satisfy

(3) ci(x, x) ≈ 0 for i = 1, . . . , n.

Indeed, 〈0, ci(x, y)〉 ∈ α = T (x, y). Hence, for each i, the description (1) provides

us with uj(x, y) ∈ A and a term s such that 0 = s(x, y, u1(x, y), . . . , uk(x, y)) and

ci(x, y) = s(y, x, u1(x, y), . . . , uk(x, y)). Therefore, using the fact that equations

for the free generators are valid identities in K, we obtain

ci(x, x) ≈ s(x, x, u1(x, x), . . . , uk(x, x)) ≈ 0,

showing (3). Now define

p(x, y, z) = g(c1(y, z), . . . , cn(y, z), c1(x, y), . . . , cn(x, y), x, z).

From (2) and (3) we infer

p(x, x, y) ≈ g(c1(x, y), . . . , cn(x, y), 0, . . . , 0, x, y) ≈ y

and

p(x, y, y) ≈ g(0, . . . , 0, c1(x, y), . . . , cn(x, y), x, y) ≈ x,

i.e., p is a Mal’cev term. Thus K is congruence permutable. �
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Corollary 2. The following four conditions are equivalent for a variety K
with 0.

(a) K is 0-tolerance regular;

(b) K is ideal determined and congruence permutable;

(c) K is ideal determined and tolerance trivial;

(d) K is congruence permutable and 0-regular.

Proof. Since 0-regularity is an evident consequence of 0-tolerance regularity, the

implication (a) =⇒ (d) follows from Theorem 1. By [2] or [4, Thm. 4.11], toler-

ance triviality and congruence permutability for varieties are equivalent conditions.

This gives (d) =⇒ (a) and (b) ⇐⇒ (c). Since permutability at 0 trivially follows

from congruence permutability, the mentioned result from Gumm and Ursini [11]

yields (b) ⇐⇒ (d). �

Note that there are known Mal’cev characterizations of the equivalent condi-

tions of Corollary 2; indeed, [11] resp. Agliano and Ursini [1, Thm. 2.7] gives an

appropriate Mal’cev condition equivalent to (d) resp. (b). Notice also that the five

element non-modular lattice is 0-tolerance regular but not ideal determined. (Here

and in the sequel, the description of lattice tolerances by their blocks, cf. [7] or [4,

Corollary to Thm. 2.16] or [8], makes the verification of some examples easier.)

Hence much less can be stated about tolerance kernels in case of single algebras

than in case of varieties.

In the sequel, τ(a) will stand for T (a, 0), the tolerance generated by 〈a, 0〉.
Given an algebra A with 0, if for all a, b ∈ A there exists a c ∈ A with τ(c) =

τ(a) ◦ τ(b) = τ(a) ∨ τ(b) (in Tol (A)), then A is called strongly 0-tolerance

principal. For example, using the results of [2] and [3], it is not too hard to show

that distributive lattices with 0 are strongly 0-tolerance principal. To present an

example of a different nature, let C = {0, a, 1} be a three element chain, and define

L = (C × C) ∪ {b} where 〈1, a〉 ≺ b ≺ 〈1, 1〉. Then L is not strongly 0-tolerance

principal, for τ(〈1, a〉) ∨ τ(〈1, a〉) 6= τ(〈1, a〉) ◦ τ(〈1, a〉). Finally, we formulate

Proposition 3. Let A be a strongly 0-tolerance principal algebra. Then the

following two conditions are equivalent:

(i) every ideal of A is a congruence kernel;

(ii) every ideal of A is a tolerance kernel.

Proof. For S ⊆ A let I(S) denote the ideal generated by S. As usual, we will

write I(s1, . . . , sn) instead of I({s1, . . . , sn}). Let us consider the condition

(iii) I(s1, . . . , sn) = [0]τ(s1)◦...◦τ(sn) holds for all n > 0 and all s1, . . . , sn ∈ A.

Before showing that (i), (ii) and (iii) are equivalent, two easy properties of A are

worth formulating. Firstly,

(∗) for all a ∈ A, τ(a) ∈ Con (A);



KERNELS OF TOLERANCE RELATIONS 193

indeed, for an appropriate c ∈ A, τ(c) = τ(a) ∨ τ(a) = τ(a) ◦ τ(a) gives the

transitivity of τ(a) = τ(c). Secondly, a straightforward induction shows that

for all a1, . . . , an ∈ A there exists a c ∈ A such that(∗∗)

τ(c) = τ(a1) ◦ τ(a2) ◦ . . . ◦ τ(an) = τ(a1) ∨ . . . ∨ τ(an) (in Tol (A)).

The implication (i) =⇒ (ii) is trivial.

Suppose (ii) and let s1, . . . , sn ∈ A. Then I(s1, . . . , sn) = [0]α for some α ∈
Tol (A). ¿From si ∈ [0]α we conclude α ≥ τ(s1) ∨ . . . ∨ τ(sn) in Tol (A), whence

I(s1, . . . , sn) ⊇ [0]τ(s1)∨...∨τ(sn) = [0]τ(s1)◦...◦τ(sn). The converse inclusion follows

from si ∈ [0]τ(si) ⊆ [0]τ(s1)◦...◦τ(sn). This proves (ii) =⇒ (iii).

Now suppose (iii). By (∗) and (∗∗), every finitely generated ideal is a congruence

kernel. Let J be an arbitrary ideal of A, and let H denote the set ot all finite

subsets of J . For X ∈ H the ideal I(X) is a congruence kernel, hence it is the

kernel of the congruence ΘX generated by {0}× I(X). Set Θ =
∨
X∈H ΘX . Since

J is the union of its finitely generated subideals, J ⊆ [0]Θ. Conversely, let a ∈ [0]Θ.

Since the ΘX (X ∈ H) form a directed system, 〈0, a〉 ∈ ΘX holds for some X ∈ H,

and we obtain a ∈ I(X) ⊆ J . Hence J = [0]Θ, proving (iii) =⇒ (i). �
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12. Ursini A., Sulle varietà di algebre con una buona teoria degli ideali, Boll. U. M. I. 6 (1972),

90–95.
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