ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 64,   2   (1995)
pp.   235-245

THE FRACTAL DIMENSION OF INVARIANT SUBSETS FOR PIECEWISE MONOTONIC MAPS ON THE INTERVAL
F. HOFBAUER


Abstract.  We consider completely invariant subsets $A$ of weakly expanding piecewise monotonic transformations $T$ on $[0,1]$. It is shown that the upper box dimension of $A$ is bounded by the minimum $t_A$ of all parameters $t$ for which a $t$-conformal measure with support $A$ exists. In particular, this implies equality of box dimension and Hausdorff dimension of $A$.

AMS subject classification
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE