ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 63,   1   (1994)
pp.   155-159

THE CONGRUENCE VARIETY OF METAABELIAN GROUPS IS NOT SELF-DUAL
G. CZEDLI


Abstract.  A lattice identity is given such that it holds but its dual fails in the normal subgroup lattices of metaabelian groups. Thus the congruence variety of metaabelian groups is not self-dual; this is the first example for a modular congruence variety which is not self-dual.

AMS subject classification
Keywords.  Congruence variety, congruence modularity, normal subgroup lattice, metaabelian group

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE