ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 61,   2   (1992)
pp.   185-188

A NOTE ON CONTINUOUS RESTRICTIONS OF LINEAR MAPS BETWEEN BANACH SPACES
M. I. OSTROVSKII


Abstract.  This note is devoted to the answers to the following questions asked by V. I. Bogachev, B. Kirchheim and W. Schachermayer:\newline 1. Let $T\: l_1\to X$ be a linear map into the infinite dimensional Banach space $X$. Can one find a closed infinite dimensional subspace $Z\subset l_1$ such that $T\big|_\ZZ$ is continuous?\newline 2. Let $X=c_0$ or $X=l_p$ ($1<p<\infty$) and let $T\: X\to X$ be a linear map. Can one find a dense subspace $Z$ of $X$ such that \tz is continuous?

AMS subject classification
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE