ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 60,   1   (1991)
pp.   15-18

A COUNTEREXAMPLE TO A FEDORENKO STATEMENT
T. GEDEON


Abstract.  We present a counterexample to the following statement of Fedorenko: For a continuous map of a real interval these two conditions are equivalent: \roster em $f|\RE(f)$ is a homeomorphism em every minimal set, which is not an orbit of a periodic point, has an exhausting sequence of periodic decompositions. \endroster

AMS subject classification.  26A18, 58F08; Secondary 58F12, 54H20
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE