ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 60,   1   (1991)
pp.   11-14

MAPS OF THE INTERVAL LJAPUNOV STABLE ON THE SET OF NONWANDERING POINTS
V. V. FEDORENKO and J. SMITAL


Abstract.  Any dynamical system generated by a continuous map of the compact unit interval $I$, is Ljapunov stable on the set of $\omega$-limit points iff it is Ljapunov stable on the set of non-wandering points. This and recent known results imply that Ljapunov stability on the set of non-wandering points characterizes maps non-chaotic in the sense of Li and Yorke.

AMS subject classification.  58F08, 26A18; Secondary 58F13, 54H20
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE