ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 60,   1   (1991)
pp.   133-151
FAITHFUL ENCLOSING OF TRIPLE SYSTEMS: DOUBLING THE INDEX
D. C. BIGELOW and C. J. COLBOURN
Abstract. 
A triple system of order $v \geq 3$ and index $\lambda$ is faithfully enclosed in a triple system of order $w \geq v$ and index $\mu \geq \lambda$ when the triples induced on some $v$ elements of the triple system of order $w$ are precisely those from the triple system of order $v$. When $\lambda = \mu$, faithful enclosing is embedding; when $\lambda = 0$, faithful enclosing asks for an independent set of size $v$ in a triple system of order $w$. When $\mu = 2 \lambda$, we prove that a faithful enclosing of a triple system of order $v$ and index $\lambda$ into a triple system of order $w$ and index $\mu$ exists if and only if $w \geq \lceil \frac3v-12 \rceil$, $\mu \equiv 0 \pmod \gcd(w-2,6) $, and $(v,w) \not\in (3,5), (5,7) \$.
AMS subject classification. 
05B05, 05B07
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE