HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA
RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
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ABSTRACT. We extend some inequalities obtained by M. A. Latif to the framework of Riemann-Liouville
fractional calculus.

1. INTRODUCTION

The Hermite-Hadamard inequality asserts that for every convex function f: [a,b] — R, one has
a+b I fla) + f(b)
< dp < —~L 7
f( 2 )‘b—a/af(x) I

where a,b € I with a < b. One can easily prove that the left term is closer to the integral mean
value than the right one. Therefore,

1) ﬁ/abf(w)dms : (f(‘”‘;f(b) +f(“‘2”’)).

See [5, p. 52].
A remarkable variety of refinements and generalizations of Hermite-Hadamard inequality have
been found; see, for example, [1], [3], [5] and the references cited therein.
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Our aim is to establish some new inequalities related to (1), using the Riemann-Liouville frac-
tional integration. We deal with functions whose derivatives in absolute value are convex.

Let f € L'[a,b], where a > 0. The Riemann-Liouville integrals J& f and Jg* f of order o > 0
are defined by

Je, f(z) = ﬁ / “wotelfdt forz > a,

and

T f(z) = Fl / " melidt fore <b

I(a)

respectively. Here, I'(a) = fooo e tt*1d¢t is the Gamma function. We also make the convention

Jar f(x) = Jp_f(z) = f(z).
More details about the Riemann-Liouville fractional integrals may be found in [2].

2. MAIN RESULTS

We assume throughout the present paper that [a, ] is a subinterval of [0,c0) and f: [a,b] — R is
a function differentiable on (a,b) such that f’ € L'[a,b]. Throughout this section we define the



Hermite-Hadamard a— gap by
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In the particular case where oz = 1, this reduces to

— _ b
4 ool ale) 2 [ s,

Ho(z) :=

Thus

H(a;—b):f(a;-b)Jrf(a);f(b)_bfa/abf(t)dt.

The value of H was estimated by M. A. Latif [4] and it is the purpose of the present paper to
generalize some of his results. For this we need a preparation.

Lemma 1. We have
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for all x € [a, b].

Proof. We use the integration by parts and appropriate substitutions (such as u = %w +
1-— 1-— 1
Tta, == tﬂc 4 i ta etc.) to show that
1
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The proof is complete. O

We are now in a position to state and prove the following theorems.

Theorem 1. Assume |f’| is convez on [a,b]. Then

(@ —a)*™ [f@I+1f @], 0=2)° @)+
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Proof. Using Lemma 1 and taking modulus, we infer from the convexity of |f’| that
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The result follows after a straightforward computation in the right hand side term. This ends the
O

proof.

Our next result reads as

Theorem 2. Assume |f’|? is convex on [a,b] for some fized g > 1. Then

1 1+2/q 1 1/10
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for all x € [a, b] and%—l—%:l.
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Proof. According to Lemma 1 and Hoélder’s inequality, we have
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for all z € [a,b]. Here
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These last inequalities hold due to the convexity of |f’|? on [a,b]. The proof is complete.




Theorem 3. Assume |f'|? is convex on [a,b] for some fized ¢ > 1. Then the following inequality
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holds for all x € [a, b].

Proof. Using Lemma 1, the convexity of |f’|? on [a,b] and the power-mean inequality, we have
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where
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Hence the proof of the theorem is complete.

Theorem 4. Assume |f’|? is concave on [a,b] for some fized ¢ > 1. Then
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for all x € [a, b] and%—l—%:l.




Proof. From Lemma 1 and Holder’s integral inequality for ¢ > 1 and p = ﬁ, we have
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for all = € [a,b]. Here,
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We used the concavity of |f/|? on [a,b] and Jensen’s integral inequality in order to obtain the last
four inequalities. This completes the proof of the theorem. O
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Our final result is the following theorem.

Theorem 5. Suppose |f'| is concave on [a,b]. Then
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for all x € [a, b].

Proof. Using Lemma 1 and taking modulus, we infer from the concavity of |f’| that
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for all = € [a, b], which is equivalent to the inequality in the statement of Theorem 5. ]
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The case where a=1 in our Theorems 2-5 was previously noted by M. A. Latif [4].
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