Acta Mathematica Academiae Paedagogicae Nyiregyhdziensis
25(1) (2009), 45-54

www.emis.de/journals

ISSN 1786-0091

DYNAMICS OF SPECIES IN A NONAUTONOMOUS
LOTKA-VOLTERRA SYSTEM

TA VIET TON

ABSTRACT. In this paper, we study a Lotka-Volterra model with two preda-
tors and one prey.

The explorations involve the permance, extinction, the existence, unique-
ness and global asymptotic stability of a positive solution.

1. INTRODUCTION

In this paper, we consider the Lotka-Volterra model with Beddington-
DeAngelis functional response of two predators and one prey.
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Here xz(t), y(t) and z(t) represent the population density of the two preda-
tor species, and of the prey at times t, respectively. a(t), b(t), c(t), d(t),
m(t), f(t), n(t), g(t), h(t), B(t), ~(t), n(t) are continuous and bounded
above and below by positive constants; a(t), &(¢) are continuous and nonneg-
ative.

This paper is organized as follows. Section 2 provides some definitions and
notations. In section 3 we state our main result of this paper for problem (1).

2. DEFINITION AND NOTATION

In this section we summarize the basic definitions and facts which are used
later (cf. [7]). Let R? := {(z,y,2) € R¥|z > 0,y > 0,z > 0}. For a bounded
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continuous function g(¢) on R, we use the following notation:
Y= t L= inf g(t).
g":=sw g(t), g =infe(t)
Similarly to Lemma 1 in [10], one can easily prove that

Lemma 1. Both the nonnegative and positive cones of R3 are positively in-
variant for (1).
In the remainder of this paper, for biological reasons, we only consider the

solutions (x(t),y(t), z(t)) with positive initial values, i.e., z(t,) > 0, y(t,) > 0
and z(t,) > 0.

Definition 1. System (1) is said to be permanent if there exist positive con-
stants 9, A with 0 < 6 < A such that

min{ligci)gfx(t), li{gglfy(t), li{gglfz(t)} >0,

t—00 t—00 t—o0
for all solutions of (1) with positive initial values. System

max{limsup z(¢), limsupy(t), limsupz(t)} <A
(
nonpersistent if there is a positive solution (z(t), y(t), z(t)) o

1) is said to be
f (1) satisfying
min{litm inf (1), li%n inf y(t), li{n inf z(t)} = 0.

Definition 2. A set A is called to be an ultimately bounded region of system

(1) if for any solution (z(t),y(t), z(t)) of (1) with positive initial values, there
exists 77 > 0 such that (z(t),y(t), 2(t)) € A for all t >ty + 1.

Definition 3. A bounded nonnegative solution (&(t), y(t), 2(t)) of (1) is said
to be globally asymptotically stable (or globally attractive) if any other solu-
tion (z(t), y(t), z(t)) of (1) with positive initial values satisfies

I (Jz(t) = 2()] + [y(t) = (0] + |2(t) = 2(1)]) = 0.
Lemma 2. [2] Let h be a real number and f be a nonnegative function defined

on [h,+00) such that f is integrable on [h,+00) and is uniformly continuous
on [h, +00), then

lim f(t) =

t—o0
3. MAIN RESULTS
Theorem 1. If mi >0, m5 > 0 and m§ > 0, then set I'. defined by
(2) T.={(r,y,2) eR’|mi <z <M, mj <y< M, mi <z< M}

is positively invariant with respect to system (1), where

. a Cody - M
Ml = ﬁ * & ml = bu,yl - bu )
ng o U= O o f'mi = (d M) (0 + §ms)
2 T I~ ) me 1= — — ’
dy yu(d® + neMs)
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P (s + n*ms) — "€

g'n*

€ .
3

B (M + n*Ms) — g/
g'n' ’
and € > 0 is constant.

M5 =

Proof. We know that the logistic equation
X'(t)=AWXW)[B-X(t)] (B#0)
has a unique solution

BX, eftto A(s)Bds

X(t) = ;
Xo[efto A(s)Bds . 1] +B

where Xy := X(ty). By Lemma 1, we have z(t) > 0, y(t) > 0 and z(¢) > 0 for
all t > ty. Because M{ > xy > 0 and (1), we have
2'(t) < w(t)]a(t) — d(t)x(t)] < z(t)[a’ — b a(t)] = b x(t)(M7 — x).
Thus, by using a standard comparison argument, we obtain that
xOMi)eau(t_to) xoMfeau(t_tO)
3) z(t) < < < M:, t>t
(8) () zo[e®(t=to) — 1] + MY = zglea(t=to) — 1] 4+ M? ! 0

Similarly, because

/ fray ! f*Miy
< —dy+ < —dy + <
Y YT AT Bty YT AT BME Ty
(4)
u dl [ Ms _ dl ! dl l
S & ! ﬁz) sl lvy]y: ] 7 75 7 y[M; —yl, t=to,
al + M7 + 'y al + BIM5 +~ly
and 0 < yo < M3, we have
ft Mgdlf)/l ds
. o e o+ B M +Ay(s) )

ft z ds
wole @ T OM;+9y(s) 1) 4 g

And because 0 < zy < M3 and
h'z(m"x + n"y)
& +n'z
h*z(m"M; + n*M5)
§+'z

() < —g'z +

< —g'z+

1yl
gn e
= mz(Ms —2),
we also get that
(6) z(t) < M3, t>t.
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Now, from (1), (3), (5) and (6), we have

/ > l b Cuy u
Zt)zx|a — x—m—mz

c* ME
> (al P R m“M§)
2

and o > mj. Thus,

U E (4
mz-i‘xoeb mj5 (t—to)

Zo [ebumi(t—to) _ 1] + mzi:

x(t) = m3, forall t>t.

Similarly, we have

lme
y'(t) YF T G g Y 5Y
= 3 y[mg - y]7

a + FUmg 4ty
for which follows that y(t) > m§3, for all t > t,, and
hlz(m"ms + nms3)
" +tz

Z(t) = —g"z+

_ g

£ Atz

for which follows that z(t) > m§, for all ¢ > ¢,. So the proof is complete. [

Z(mg - 2)7

Corollary 1. If m{ > 0, m5 > 0 and m35 > 0, then we have

litm inf z(t) = mj, limsup z(t) < My,

o0 t—o00

li%n inf y(t) = m3, limsup y(t) < Ms,
—00 t—o00

li{n inf z(t) > m3, lim sup z(t) < M.
—00 t—o00

Proof. From (3) we have limsup,_, . z(t) < M{. Thus there exists t; > to such
that
Similarly to (4) and (5) we obtain that

M5dly!

t
mn effl al 4B ME +~1y(s) ds

(7) y(t) < Mj

ft M5 dlAt ds :
mn [e 11 ol 4Bl ME+rly(s) T 1] + M
Thus, 0 < y(t) < max{Ms5,y,} for all ¢t > t;, where y; := y(t1). Therefore,
from (7) we get that
limsup y(t) < M.

t—o0
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As a consequence, there exists ty > t; such that y(t) < MJ for all ¢ > t,.
Similarly, we claim that

limsup z(t) < Mj, litm inf x(t) > mj3,
t—o0 —0
litm inf y(t) > m3, li{n inf 2(t) > m;.
The proof is complete. 0J

Corollary 2. If m§ > 0, m§ > 0 and m§ > 0, then system (1) is permanent
and set I'. with € > 0 defined by (2) is an ultimately bounded region of system

(1).
Using Corollary 1, it is easy to verify the statement of the above lemma.
Theorem 2. If MY < 0 or MY < 0, then lim y(t) = 0 or Jim z(t) = 0

respectively.

Proof. We see that if M§ < 0 or Mg < 0 then M5 < 0 or M5 < 0, respectively,
with ¢ is sufficiently small. Therefore, similarly to the proof of Theorem 1 we
get that

(8) y'(t) <

and

dl’)/l
ol + FIM + 7'y

£

y[M; -y

(3N
/ gn €

If M5 <0 then y/(t) < 0. Thus, 0 < y(t) < y(to), for all ¢t > ¢, and then there
exists C7 > 0 such that

tlim y(t) = Ch.
If ¢4 > 0 then from system (1), (8) and 0 < Cy < y(t) < y(to), t > to,

we have that there exists p > 0 such that y/(t) < —p for all ¢ > t5. Thus
y(t) < —p(t — to) + yo. Therefore, tlim y(t) = —oo. So we have a contraction

to the fact that y(¢) > 0 for all ¢ > ¢y. Hence,

tlim y(t) = 0.
Similarly, if M5 < 0 then tlirn z(t) = 0. The proof is complete. O
Theorem 3. Let (x*(t), y*(t), 2*(t)) be bounded positive solutions of system

(1). If m§ > 0, m§ > 0 and m§ > 0 and the following conditions hold:

: Ca)f)  [B)e(t) + f(E)y ()] M3
tlgtfo {b(t u(t, ms, ms) u(t, ms, ms)
_ m(B)h(t)ER)  m(t)h(t)n(t) M

TR T L
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inf{ () (t)ms a(t)e(t)  h()€ (t)n()
t

t>to u(

Ma) u(t, ml,mQ) v(t,ms)

ml,
_ BOcMT - h@)n(t)n(t) M3
u(t, Mi, m3) (¢, M3)

)

m(t)h()n(t)ms + n(t)h(t)n(t)ms

(9) tlgtfo{ U(t, M?f) 2 — m(t) - n<t)} > 07
where
u(t,z,y) = [a(t) + Bz + y()y"()][at) + Bz () + v (E)y ()],

[o(t) + 13
o(t.2) 5()+£82][()+77(t)]

then (z*(t), y*(t), ) is globally asymptotically stable.

Proof. Let (z(t), y(t), z(t)) be any solution of (1) with positive initial value.
Since I'; is an ultimately bounded region of (1), there exists 77 > 0 such that

(x(), y(t), z(t)) € T. and
(@*(t), y*(t), 2*(t)) € T for all t > to + Th.

Considering a Liapunov function defined by

V(t) = [In(z(t)) —In(z* ()[4 In(y(¢)) —In(y"(£)) |+ | In(2(t)) —In(z"(£))],t = to

a direct calculation of the right derivative DTV (¢) of V(¢) along the solution
of (1) produces
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I’ «/ y/ y*/
DTV (t) =sgn(x —2*) | — — )—i—sgny—y* (___>
(0 =sgnz o) (5 ) sty - ) (L -
+sgn(z — 2%) (Z——Z—*)
z
= sgn(z — z7) Y R ——-y T = +mz”
a+ Bx+ vy a+ Bx* 4 yy*
Jx fz=
+sgn(y —y") |- d+ ——— —nz+d— +nz*
iy y)_ a+ fr+y a+ Br* + vy
_h h * *
+sen(z — 2% (mz +ny)  h(mz* +ny*)
L E+nz &+ nz*

=sgn(r —a%) | =b(x —2%) —m(z — 2%) c(a+ﬁx+7y a+ﬁx*+7y*)]

—nosg(y —y7)(z —27) + f senly - ?J*)a(x - 352(; Z,(:;)y* oy

1 sz — ) (L e L0

acly — y¥| Be(zy® — x*y)
< —blx — z* — e o
< =blx — 2|+ m|z — 2| + (o y) + sgn(z — %) (D)

o 4 =] o Play —ay)
trl S Sy T ) ey
u(t, 2)
We have

(mz + ny)(§ +n2") — (mz* +ny")(§ +nz) =
=mé(z—2")+nl(y —y*) + mn(xz" — 2*2) + nn(yz* — y*2)
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and
zy" —a'y =a(y" —y) +ylr — "),
x2* —rtz=x(2" — 2) + z(x — ¥),
yzt —ytz=y(z" —2) + z(y — y").
Thus,
DV < |—b+ himg n of Bey + fryy | hmnz o — |+
o(t,z) ultxy)  u(tay) ot z)
[ ac Bex — fyx hén + hnnz .
11 —
_ i TR BT o R R
[ h h
N m+n_w] P
I v(t, 2)

Because (z(t), y(t), z(t)) € I, for all t > to + T, we get that
(12)
DoV < [y - 2O OO S

V@WW?_@@W)_M%@WL
wltome M5)  wllm,ng) ot m3)
BOCOME hOnOnOME]
Wt Mms) ot }w_y“

forallt > to+T;. (From (9) follows that there exists a positive constant 1 > 0
such that

(13)  DTV(t) < —plla(t) — 2" ()] + [y(t) — y" ()] +[2(t) — 2" (D),
for all t >ty + T7.

Integrating on both sides of (13) from ¢, + T} to t produces
t
V(ﬂﬂb/ [l (s)=2"(s)[+|y(s) =y (s)|+]2(s)=2"(s)[Jds < V(to+T31) < 400,
to+11
for all t >ty + T7.
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Then

t
[l =2 )+ ly(s) =y 6)] + 12(s) = 27 (5)ds < eV (10 + ) < o6,
to+11
for all t > ty + 17,

Hence, |z — 2| + |y — y*| + |z — 2*| € L ([to + T1, +0)).

The boundedness of z*, y*, z* and the ultimate boundedness of z(t), y(t),
z(t) imply that z(t), y(t), z(t), 2*(t), y*(t) and z*(¢) all have bounded deriva-
tives for t > to + T3 (from the equations satisfied by them). As a consequence

[2(s) — 2" (s)| + ly(s) —y*(s)] + [2(s) — 2" (s)|
is uniformly continuous on [tg + 17, +00).
By Lemma 2 we have

lim (2 (t) =2 (@)] + [y(t) = y" ()] + [2(1) = 2"(@)]) = 0
which completes the proof. O
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