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THE LAMINARY MODEL OF THE EXPLODED
DESCARTES-PLANE

I. SZALAY

Abstract. Using exploded numbers, a formal explosion of the familiar
Descartes-plane by the explosion of the coordinates of its points is easily
imaginable. Moreover, the familiar Descartes-plane is a proper subset of
this exploded Descartes-plane. By this model we can say that the exploded
Descartes-plane exists.

1. Preliminary

The concept of exploded real numbers was introduced in [1], with the fol-
lowing postulates and requirements:

Postulate of extension: The set of real numbers is a proper subset of the
set of exploded real numbers. For any real number x there exists one
exploded real number which is called exploded x or the exploded of
x. Moreover, the set of exploded x is called the set of exploded real
numbers.

Postulate of unambiguity: For any pair of real numbers x and y, their
explodeds are equal if and only if x is equal to y.

Postulate of ordering: For any pair of real numbers x and y, exploded x
is less than exploded y if and only if x is less than y.

Postulate of super-addition: For any pair of real numbers x and y, the
super-sum of their explodeds is the exploded of their sum.

Postulate of super-multiplication: For any pair of real numbers x and y,
the super-product of their explodeds is the exploded of their product.

Requirement of equality for exploded real numbers: If x and y are real
numbers then x as an exploded real number equals to y as an exploded
real number if they are equal in the traditional sense.
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128 I. SZALAY

Requirement of ordering for exploded real numbers: If x and y are real
numbers then x as an exploded real number is less than y as an ex-
ploded real number if x is less than y in the traditional sense.

Requirement of monotonity of super-addition: If u and v are arbitrary ex-
ploded real numbers and u is less than v then, for any exploded real
number w, u superplus w is less than v superplus w.

Requirement of monotonity of super-multiplication: If u and w are arbi-
trary exploded real numbers and u is less than v then, for any positive
exploded real number w, u super-multiplied by w is less than v super-
multiplied by w.

The field ( R , , ) of exploded real numbers is isomorphic with the field
(R, +, ·) of real numbers but super-operations are not extensions of traditional
operations. Although, they are not different in the sense of abstract algebra,

it is important that R ⊂ R . Using the explosion

(1.1) x = area thx

(
= ln

1 + x

1− x

)
; |x| < 1,

we have that set of explodeds of x ∈ (−1, 1) = R is just R. The exploded

of x ∈ (R− R ), denoted by the symbol x was called invisible exploded real

number. So, the set R contains visible exploded real numbers, given by (1.1),
and invisible exploded real numbers, which are symbols, merely.Considering
the compression

(1.2) x = thx

(
=

ex − e−x

ex + e−x

)
; x ∈ R,

we have ( x ) = x; x ∈ R, ( x ) = x; x ∈ R . By the Postulates of Extension

and Unambiguity we may denote by u the compressed of u ∈ R indepen-

dently of the fact that u is an visible or invisible exploded real number. Of
course, u ∈ R in both cases. Moreover, we can use the inversion identities

(1.3) ( u ) = u; u ∈ R and ( x ) = x; x ∈ R,

too. Using (1.3), by Postulates of Super-addition and Super-multiplication

(1.4) u v = u + v ; u, v ∈ R

and

(1.5) u v = u · v ; u, v ∈ R

are obtained, so we are able to compute with invisible exploded real numbers,
too. To answer the question whether invisible exploded real numbers exist,
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some models for the ordered field of exploded real numbers were given in [2]
and [4].

The abstract exploded Descartes-plane was introduced in [3] by the following
way:

(1.6) R2 = {( x , y ) : (x, y) ∈ R2}.
Considering the operations

(1.7) U V = (u1 v1, u2 v2); U = (u1, u2), V = (v1, v2) ∈ R2

and

(1.8) c U = (c u1, c u2); c ∈ R ; U = (u1, u2) ∈ R2

the set R 2 is a super-linear space. Moreover, by the super-inner product

(1.9) U V = (u1 v1) (u2 v2);

U = (u1, u2), V = (v1, v2) ∈ R2 ,

which yields the super-norm ‖U‖
R2

and super-distance d
R2

(U, V ) in the usual

way, we have that the set R2 is a super-Euclidean space.
If X = (x, y) ∈ R2 (= {(u, v) ∈ R2 : −1 < u < 1;−1 < v < 1}) then (1.1)

gives

(1.10) X = ( x , y ) = (area thx, area thy) ∈ R2,

otherwise the exploded point x is invisible. By (1.1) we have

(1.11) R2 ⊂ R2 .

2. Laminary explosion

Our aim is to find a model of the super-Euclidean space R2 in which invis-
ible points become visible, too. For any X = (x, y) ∈ R2 we give its laminary
exploded by

(2.1) (x, y)
lam

= ((sgn x) area th{|x|}, (sgn y) area th{|y|}, dX) ∈ R3

where [x] is the greatest integer number which is less than or equal to x,
{x} = x− [x], and

(2.2) dX = (sgn x)[|x|] + (sgn y)
[|y|]

2(|y|] + 1)
.

With respect to the coordinates of (x, y)
lam

we mention the following lemmas:
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Lemma 2.3. (See [2], Theorem 1.1.) For any pair x, ξ of real numbers, the
complex numbers

(sgn x)(area th{|x|}+ i[|x|]) = (sgn ξ)(area th{|ξ|}+ i[|ξ|])
if and only if x = ξ.

Lemma 2.4. (See [4], Theorem 2.) For any pair y, η of real numbers, the
complex numbers

(sgn y)

(
area th{|y|}+

i

2

[|y|]
[|y|] + 1

)
= (sgn η)

(
area th{|η|}+

i

2

[|η|]
2[|η|] + 1

)

if and only if y = η.

Theorem 2.5 (Theorem of Unambiguity). For any pair of (x, y), (ξ, η) ∈ R2,

(x, y)
lam

= (ξ, η)
lam

if and only if (x, y) = (ξ, η).

Proof of Theorem 2.5. Necessity. Assuming that (x, y)
lam

= (ξ, η)
lam

by
(2.1) and (2.2) we have

(sgn x)(area th{|x|}) = (sgn ξ)(area th{|ξ|}), x, ξ ∈ R(2.6)

(sgn y)(area th{|y|}) = (sgn η)(area th{|η}); y, η ∈ R(2.7)

and

(2.8) (sgn x)[|x|] + (sgn y)
[|y|]

2([|y|] + 1)

= (sgn ξ)[|ξ|] + (sgn η)
[|η|]

2([|η|] + 1)
; x, y, ξ, η ∈ R.

As

−1

2
< (sgn y)

[|y|]
2([|y|] + 1)

, (sgn η)
[|η|]

2([|η|] + 1)
<

1

2
,

(2.8) yields

(2.9) (sgn x)[|x|] = (sgn ξ)[|ξ|]; x, ξ ∈ R.

By (2.6) and (2,9) Lemma 2.3 says that x = ξ. Considering (2.9), the equation
(2.8) reduces to

(sgn y)
[|y|]

2([|y|] + 1)
= (sgn η)

[|y|]
2([|η|] + 1)

,

which together with (2.7) by Lemma 2.4 gives that y = η.
Sufficiency. It is evident by (2.1) and (2.2). ¤
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Theorem 2.10 (Theorem of Completeness). If the point U = (x, y, d) belongs
to the set

S∗ =

{
(x, y, d) ∈ R3 : n · x ≥ 0,m · y ≥ 0,

d = n +
m

2(|m|+ 1)
; n,m = 0,±1,±2, . . .

}

then (n + thx,m + thy)
lam

= (x, y, d).

Proof of Theorem 2.10. As∣∣∣∣
m

2(|m|+ 1)

∣∣∣∣ <
1

2
; m = 0,±1,±2,

the integer numbers n,m are unambiguously determined by d. Let us consider
the two-dimensional point

(2.11) XU = (n + thx,m + thy)

and compute the first coordinate of laminary exploded XU

lam

. By (2.1) we
can write: If n is a positive integer number then x ≥ 0, and

sgn(n + thx) · area th{|n + thx|} = area th{n + thx} = area th(thx) = x.

If n = 0 then x is an arbitrary real number, and

sgn(n + thx) · area th{|n + thx|}
= sgn(thx) · area th{|thx|} = sgn(thx) · area th|thx|

= area th(|thx| · sgn(thx)) = area th(thx) = x.

If n is a negative integer number then x ≤ 0, and

sgn(n + thx) · area th{|n + thx|}
= − area th{−n− thx} = − area th(−thx) = area th(thx) = x.

For the second coordinate of laminary exploded XU

lam

,

sgn(m + thy) · area th{|m + thy|} = y

is obtained in a similar way. Turning to the third coordinate of laminary

exploded XU

lam

, by (2.2) we write for the first member of dXU
:

sgn(n + thx) · [|n + thx|] =





[n + thx] = n; n = 1, 2, 3, 4, ,
(sgn x) · [|thx|] = 0; n = 0,
−[−n− thx] = n; n = −1,−2,−3.

Moreover, for the second one:

sgn(m + thy) · [|m + thy|]
2([|m + thy|] + 1)

=
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=





m
2(|m|+1)

; m = 1, 2, 3, 4, ,

(sgn y) · [|thy|]
2([|thy|]+1)

= 0; m = 0,

− [−m−thy]
2([−m−thy]+1)

= − −m
2(−m+1)

= m
2(|m|+1)

; m = −1,−2,−3,

so,

dXU
= sgn(n + thx) · [|n + thx|]

+ sgn(m + thy) · [|m + thy|]
2([m + thy] + 1)

= n +
m

2(|m|+ 1)
= d

which completes our proof. ¤
By Theorems of Unambiguity and Completeness we give the laminary model

of the exploded two — dimensional space as a set of laminary explodeds of the
points of the two-dimensional Euclidean space:

(2.12) R2
lam

=

{
(x, y, d) ∈ R3 : n · x ≥ 0,m · y ≥ 0,

d = n +
m

2(|m|+ 1)
; n,m = 0,±1,±2, . . .

}
.

Moreover, by (2.11) for any U = (x, y, d) ∈ R2
lam

we define its laminary
compressed :

(2.13) U
lam

= (n + thx,m + thy) ∈ R2.

Clearly, the set
S∗∗ = {(x, y, 0) ∈ R3 : x, y ∈ R}

Is a subspace of the euclidian space R3 with its traditional linear operations,
inner product, norm and metric. We identify it with R2, that is R2 ≡ S∗∗.
Casting a glance at (1.11) we have

(2.14) R2 ⊂ R2
lam

⊂ R3.

Theorem 2.10 with (2.13) yields the identity

(2.15) ( U
lam

)
lam

= U ; U ∈ R2
lam

.

Hence, denoting U = X
lam

; X ∈ R2 Theorem 2.5 by (2.15) says that U
lam

=

X and so,

(2.16) ( X
lam

)
lam

= X; X ∈ R2.

Definition 2.17. For any pair of (x, y), (ξ, η) ∈ R2 we say that the laminary
super-sum of their laminary explodeds will be:

(x, y)
lam

lam

(ξ, η)
lam

=
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= ((sgn(x + ξ)) area th{|x + ξ|}, (sgn(y + η)) area th{|y + η|}, d+) ∈ R3

with

d+ = (sgn(x + ξ))[|x + ξ|] + (sgn(y + η))
[|y + η|]

2([|y + η|] + 1)
.

Considering X = (x, y); Ψ = (ξ, η) ∈ R2, by (2.1) and (2.2) Definition 2.17
says

(2.18) X
lam

lam

Ψ
lam

= X + Ψ
lam

; X, Ψ ∈ R2.

Denoting X = U
lam

, Ψ = Φ
lam

; U, Φ ∈ R2
lam

, (2.15) and (2.18) yield

(2.19) U
lam

Φ = U
lam

+ Φ
lam

lam

; U, Φ ∈ R2
lam

Clearly, by (2.18) and (2,19) we have

Theorem 2.20. The laminary super-addition has the following properties:

- commutativity: U
lam

Φ = Φ
lam

U ; U, Φ ∈ R
lam

- associativity: (U
lam

V )
lam

Φ = U
lam

(V
lam

Φ); U, V, Φ ∈ R2
lam

- for any U ∈ R2
lam

: U
lam

O = U , where O = (0, 0, 0) = (0, 0)
lam

- for any U ∈ R2
lam

: U (−U) = O. (If U = (x, y, d) then −U =
(−x,−y,−d) and see (2.12).)

3. Explosion of axes

Having (2.1) and (2.2) we may speak of laminary exploded of real numbers
in a double sense. Namely

(3.1) γ
lam

= (γ, 0)
lam

= ((sgn γ) area th{|γ|}, 0, (sgn γ)[|γ|); γ ∈ R,

and

(3.2) γ
lam

= (0, γ)
lam

=

(
0, (sgn γ) area th{|γ|}, (sgn γ)

[|γ|]
2([|γ|] + 1)

)
; γ ∈ R.

Explodeds γ
lam

are situated on the exploded x-axis

(3.3) R
lam

= {(x, 0, d) ∈ R3 : n · x ≥ 0, d = n; n = 0,±1,±2, },

while γ
lam

are on the exploded y-axis

(3.4) R
lam

=

{
(0, y, d) ∈ R3 : m · y ≥ 0, d =

m

2(|m|+ 1)
; m = 0,±1,±2,

}
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By (3.1) and Lemma 2.3 we have that the mapping γ ←→ γ
lam

is mutually

unambiguous between R and R
lam

. Moreover, by the definitions
(3.5)

γ
lam

lam

δ
lam

= ((sgn(y+δ)) area th{|γ+δ|}, 0, (sgn(γ+δ))[|γ+δ|]); γ, δ ∈ R

and
(3.6)

γ
lam

lam

δ
lam

= ((sgn(γ · δ)) area th{|γ · δ|}0, (sgn(γ + δ))[|γ + δ|]); δ ∈ R

the isomorphism (R, +, ·) =⇒ ( R
lam

,
lam

,
lam

) is obtained. Considering (3.1),

definitions (3.5) and (3.6) yield the identities

(3.7) γ
lam

lam

δ
lam

= γ + δ
lam

; γ, δ ∈ R

and

(3.8) γ
lam

lam

δ
lam

= γ · δ
lam

; γ, δ ∈ R,

respectively. Practically, we can use the identities

γ
lam

lam

δ
lam

= γ − δ
lam

; γ, δ ∈ R

and

γ
lam

lam

δ
lam

= γ : δ
lam

; γ, δ 6= 0 ∈ R,

too. Moreover, R2
lam

is an ordered field, with the ordering

γ
lam

< δ
lam

⇐⇒ γ < δ; γ, δ ∈ R.

We define the laminary super-absolute value:

| γ
lam

| =





γ
lam

, γ
lam

> 0
lam

(= (0, 0, 0))

0
lam

, γ
lam

= 0
lam

−( γ
lam

)(= − γ
lam

), γ
lam

< 0
lam

.

By (3.1) we have the identity

(3.9) | γ
lam

| = |γ|
lam

; γ ∈ R.

Be careful, because | γ lam | 6= ‖ γ
lam ‖R3
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Remark 3.10. By (3.2) and Lemma 2.4 we have that the mapping γ ↔ γ
lam

is

mutually unambiguous between R and R
lam

. Moreover, by the definitions

γ
lam

lam

δ
lam

=

(
0, (sgn(γ + δ)) area th{|γ + δ|}, (sgn(γ + δ))

[|γ + δ|]
2([|γ + δ|] + 1)

)
;

γ, δ ∈ R

and

γ
lam

lam

δ
lam

=

(
0, (sgn(γ · δ)) area th{|γ · δ|}, (sgn(γ · δ)) [|γ · δ|]

2([|γ · δ|] + 1)

)
;

γ, δ ∈ R

the isomorphism (R, +, ·)←→ ( R
lam

,
lam

,
lam

) is obtained.

Definition 3.11. For any pair of γ ∈ R, (x, y) ∈ R2 we say that the laminary
super-product of their laminary explodeds will be:

γ
lam

lam

(x, y)
lam

= ((sgn(γ · x)) area th{|γ · x|}, (sgn(γ · y)) area th{|γ · y|}, d∗) ∈ R3

with

d∗ = (sgn(γ · x))[|γ · x|] + (sgn(γ · y))
[|γ · y|]

2([|γ · y|] + 1)
.

As γ · (x, y) = (γ · x, γ · y) by Definition 3.11, (2.1) and (2.2) say

γ
lam

lam

(x, y)
lam

= γ · (x, y)
lam

; γ ∈ R, (x, y) ∈ R

and writing that X = (x, y) ∈ R2

(3.12) γ
lam

lam

X
lam

= γ ·X
lam

; γ ∈ R, (x, y) ∈ R2

is obtained. Considering X = (x, y); Ψ = (ξ, η) ∈ R2, by (3.12) and (2.18) we
have

Theorem 3.13. The laminary super-multiplication has the following proper-
ties:

1
lam

lam

X
lam

= X
lam

; l ∈ R; x ∈ R2

( γ
lam

lam

δ
lam

)
lam

X
lam

= γ
lam

lam

( δ
lam

lam

X
lam

);

γ, δ ∈ R; X ∈ R2



136 I. SZALAY

( γ
lam

lam

δ
lam

)
lam

X
lam

= ( γ
lam

lam

X
lam

)
lam

( δ
lam

lam

X
lam

),

γ, δ ∈ R; X ∈ R2

γ
lam

lam

( X
lam

lam

Ψ
lam

) = ( γ
lam

lam

X
lam

)
lam

( γ
lam

lam

Ψ
lam

),

γ ∈ R; X, Ψ ∈ R2.

Theorems 2.20 and 3.13 say that R2
lam

is a super-linear space over the field

R
lam

.

4. Laminary super-Euclidean space

Definition 4.1. For any pair of X = (x, y); Ψ = (ξ, η) ∈ R2 we say that the
laminary super-inner product of their laminary explodeds will be:

X
lam

lam

Ψ
lam

= ( x
lam

lam

ξ
lam

)
lam

( y
lam

lam

η
lam

),

X
lam

, Ψ
lam

∈ R2
lam

Using (3.7) and (3.8) we have the identity

(4.2) X
lam

lam

Ψ
lam

= X ·Ψ
lam

; X, Ψ ∈ R2.

Using (2.18), (3.12) and (4.2) we have

Theorem 4.3. The laminary super-inner product has the following properties:

X
lam

lam

Ψ
lam

= Ψ
lam

lam

X
lam

; X
lam

, Ψ
lam

∈ R2
lam

γ
lam

lam

( X
lam

Ψ
lam

) = ( γ
lam

lam

X
lam

)
lam

Ψ
lam

;

γ
lam

∈ R
lam

; X
lam

, Ψ
lam

∈ R2
lam

( X
lam

lam

Ψ
lam

)
lam

Ψ
lam

= ( X
lam

lam

Ψ
lam

) ( Ψ
lam

lam

Ψ
lam

),

X
lam

, Ψ
lam

, Φ
lam

∈ R2
lam

X
lam

lam

X
lam

≥ 0
lam

= 0, 0, 0 see (3.1).

Theorem 4.3 says that R2
lam

is a super-euclidian space.
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In the usual way we have that R2
lam

is a super-normed space, with the
laminary super-norm

(4.4) ‖ X
lam

‖
R2

lam
= (‖X‖R2)

lam

; X ∈ R2.

By (4.4), (3.1) and Lemma 2.3 we get the property

(4.5) ‖ X
lam

‖
R2

lam
= 0

lam

⇐⇒ X
lam

= O
lam

(= O).

By (3.12), (4.4) and (3.9) we get the property

(4.6) ‖ γ
lam

lam

X
lam

‖
R2

lam
= | γ

lam

|
lam

‖ X
lam

‖
R2

lam
;

γ
lam

∈ R
lam

, X
lam

∈ R2
lam

.

By (2.18), (4.4) and (3.7) we get the property

(4.7) ‖ X
lam

lam

Ψ
lam

‖
R2

lam
≤ ‖ X

lam

‖
R2

lam
lam

‖ Ψ
lam

‖
R2

lam
;

X
lam

, Ψ
lam

∈ R2
lam

.

Moreover, R2
lam

is a super-metrical space, with the laminary super-distance

(4.8) d
R2

lam
( X

lam

, Ψ
lam

) = dR2(X, Ψ)
lam

; X, Ψ ∈ R2.

Using (4.8), (3.1), Lemma 2.3 and Theorem 2.5 we get the property

(4.9) d
R2

lam
( X

lam

, Ψ
lam

) = 0
lam

⇐⇒ X
lam

= Ψ
lam

.

Clearly,

(4.10) d
R2

lam
( X

lam

, Ψ
lam

) = d
R2

lam
( Ψ

lam

, X
lam

).

By (4.8) and (3.7) we get the property

(4.11) d
R2

lam
( X

lam

, Φ
lam

)

≤ d
R2

lam
( X

lam

, Ψ
lam

)
lam

d
R2

lam
( Ψ

lam

, Φ
lam

);

X
lam

, Ψ
lam

, Φ
lam

∈ R2
lam

.
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5. Explosion by quadrants

Let us divide into parts the set R2 by the quadrant-compositions

(5.1) Q(p,q) = {(x, y) ∈ R2 : p ≤ |x| < p + 1; q ≤ |y| < q + 1; p, q = 0, 1, . . . }.
Each quadrant-composition contains four quadrants. In detail:

Left-before quadrant = {(x, y) ∈ R2 : −p− 1 < x ≤ −p;−q − 1 < y ≤ −q},
Left-behind quadrant = {(x, y) ∈ R2 : −p− 1 < x ≤ −p; q ≤ y < q + 1},
Right-before quadrant = {(x, y) ∈ R2 : p ≤ x < p + 1;−q − 1 < y ≤ −q},
Right-behind-quadrant = {(x, y) ∈ R2 : p ≤ x < p + 1; q ≤ y < q + 1}.

For a fixed pair (p, q) of non-negative integer numbers (2.1) and (2.2) yield:

left− bef
lam

=

{
(u, v, d) ∈ R3 : u ∈ (−∞, 0]; v ∈ (−∞, 0];

d = −p− q

2(q + 1)

}
.

left− beh
lam

=

{
(u, v, d) ∈ R3 : u ∈ (−∞, 0]; v ∈ [0,∞);

d = −p +
q

2(q + 1)

}
,

right− bef
lam

=

{
u, v, d) ∈ R3 : u ∈ [0,∞); v ∈ (−∞, 0];

d = p− q

2(q + 1)

}
,

right− beh
lam

=

{
u, v, d) ∈ R3 : u ∈ [0,∞); v ∈ [0,∞); d = p +

q

2(q + 1)

}
,

where the used abbreviations are clear. Each is a “quarter plane” in an appro-
priate two-dimensional plane of the Euclidean space R3. It means that each
exploded of any quadrant of any quadrant-composition is visible by the tra-

ditional two-dimensional space. So, the invisible points of R2 become visible

by the laminary model R2
lam

.
By (5.1) it is easy to see, that

(5.2) Q(0,0)

lam

= R2(= {(u, v, 0) ∈ R3 : −∞ < u <∞,−∞ < v <∞})
holds.
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Moroeover, each Q(0,q);q 6=0

lam

, Q(p,0);p6=0

lam

is a union of two disjunct two-

dimensional “half-planes”. If p 6= 0; q 6= 0 then Q(p,q)

lam

is a union of four
disjunct two-dimensional “quarter-planes”.

Example 5.3. Exploding the points of the circle with centre O = (0, 0) and
radius

√
2 having the equation

(5.4) ‖X‖R2 =
√

2 X = (x, y) ∈ R2,

the super-circle with centre O = ( 0 , 0 ) = (0, 0) = O and (super-) radius
√

2 , having the equation

(5.5) ‖ X ‖
R2

=
√

2 ; X = ( x , y ) ∈ R2

is obtained. By (5.4) it is clear that if X is a point of the circle then X 6∈
R2 , so each point of super-circle is invisible in the exploded two-dimensional

space. Our task is to present the super-circle in the laminary model of exploded

two-dimensional space given by (2.12). In R2
lam

the super circle with centre

O
lam

= (0, 0)
lam

= (0, 0, 0), and radius

√
2

lam

= (area th(
√

2− 1), 0, 1) ≈ (0, 4406866793; 0; 1) ∈ R3

has the equation

(5.6) ‖ X
lam

‖
R2

lam
=
√

2
lam

; X
lam

= (x, y)
lam

∈ R3.

Considering X
lam

= (u, v, d) ∈ R2
lam

we have to find a connection be-
tween the coordinates u and v while the third coordinate d has a certain fixed
value. By (5.4) we have that the circle is situated on the union Q(1,0)∪Q(0,1)∪
Q(1,1) so, the super-circle is situated on the union

Q1,0)

lam

∪ Q(0,1)

lam

∪ Q(1,1)

lam

.

Selecting the points

A = (1,−1); B = (
√

2, 0); C = (1, 1); D = (0,
√

2);

E = (−1, 1); F = (−
√

2, 0); G = (−1,−1); H = (0,−
√

2),
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we observe that their laminary explodeds are:

A
lam

=

(
0, 0,

3

4

)
∈ Q(1,1)

lam

;

B
lam

= (area th(
√

2− 1), 0, 1) ∈ Q(1,0)

lam

;

C
lam

=

(
0, 0,

5

4

)
∈ Q(1,1)

lam

;

D
lam

=

(
0, area th(

√
2− 1),

1

4

)
∈ Q(0,1)

lam

;

E
lam

=

(
0, 0,−3

4

)
∈ Q(1,1)

lam

;

F
lam

= (area th(−
√

2 + 1), 0,−1) ∈ Q(1,0)

lam

;

G
lam

=

(
0, 0,−5

4

)
∈ Q(1,1)

lam

;

H
lam

=

(
0, area th(−

√
2 + 1),−1

4

)
∈ Q(0,1)

lam

.

Moreover, by (2.1), (2.2) and (5.4) we have the following four cases:
Case (a): circle ∩ right Q(1,0)

(5.7) super−circle ∩ rightQ(1,0)

lam

= {(u, v, d) ∈ R3 : (thu + 1)2 + th2v = 2; d = 1},
Case (b): circle ∩beh Q(0,1)

(5.8) super− circle ∩ behQ(0,1)

lam

=

{
(u, v, d) ∈ R3 : th2u + (thv + 1)2 = 2; d =

1

4

}
,

Case (c): circle ∩ left Q(1,0)

(5.9) super− circle ∩ Q(1,0)

lam

= {u, v, d) ∈ R3 : (thu− 1)2 + th2v = 2; d = −1},
Case (d): circle ∩ bef Q(0,1)

(5.10) super− circle ∩ befQ(0,1)

lam

=

=

{
(u, v, d) ∈ R3 : th2u + (thv − 1)2 = 2; d = −1

4

}
,
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Instead of (5.4) we may use the equation-system

(5.11)
x =
√

2 cos ϕ

y =
√

2 sin ϕ
,−π

4
≤ ϕ <

7π

4
,

too. Now, instead of (5.7)-(5.10), by (2.1), (2.2) and (5.11) for the cases (a)-(d)

super− circle ∩ rightQ(1,0)

lam

=





(u, v, d) ∈ R3 :

u = area th(
√

2 cos ϕ− 1)

v = area th(
√

2 sin ϕ)

d = 1

;−π

4
< ϕ <

π

4





,

super− circle ∩ behQ(0,1)

lam

=





(u, v, d) ∈ R3 :

u = area th(
√

2 cos ϕ)

v = area th(
√

2 sin ϕ− 1)

d =
1

4

;
π

4
< ϕ <

3π

4





,

super− circle ∩ leftQ(1,0)

lam

=





(u, v, d) ∈ R3 :

u = area th(
√

2 cos ϕ + 1)

v = area th(
√

2 sin ϕ)

d = −1

;
3π

4
< ϕ <

5π

4





,

and

super− circle ∩ befQ(0,1)

lam

=





(u, v, d) ∈ R3 :

u = area th(
√

2 cos ϕ)

v = area th(
√

2 sin ϕ + 1)

d = −1

4

;
5π

4
< ϕ <

7π

4





,

are obtained, respectively.
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gog. Nyházi., 19:1–18, 2003. http://www.emis.de/journals/AMAPN.



142 I. SZALAY

[4] I. Szalay. A contracted model of exploded real numbers. Acta Math. Acad. Paedagog.
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