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AUTOREGRESSIVE TYPE MARTINGALE FIELDS

ZSOLT KARACSONY

ABSTRACT. In this paper a generalization of d-parameter martingales is studied. A d-parameter process
is called an autoregressive martingale field if it satisfies certain autoregressive type stochastic difference
equations. An almost sure convergence theorem is proved for autoregressive martingale fields.

1. INTRODUCTION

There are several extensions of the notion of a martingale. The so called linear martingales were
studied in [Mac73], [Hey80], [Faz87]. The notion of a linear martingale was extended to the two index
case in [Faz88]. We mention that a lot of papers are devoted to the study of multiindex martingales
(e.g. [Cai70], [Faz83]). It is well-known that the almost sure (a.s.) convergence of a multiindex sequence
(in particular a martingale) requires stronger conditions than that of a single index sequence. The
a.s. convergence of multiindex martingales is described in [Cai70].

In this paper we extend the notion of a linear martingale to the multiindex case. Then we obtain
an a.s. convergence result for it (Theorem 6.1). This theorem contains previous results of [Faz87] and
[Faz88] as special cases. In order to prove our result we have to use a new martingale convergence theorem
(Theorem 3.1). Theorem 3.1 is a uniform a.s. convergence result for Banach space valued multiindex
martingales.

2. NOTATION AND PRELIMINARY REMARKS

In the following Ny and N denote the set of nonnegative and positive integers, respectively. Let d be a
fixed positive integer. Throughout the paper i, j, k,1, m, n denote elements of Ng (in particular, elements
of N%). n always means the vector n = (ny,...,ng) € N¢.

Let (Q,F,P) be a probability space, X,,n € N% a d-parameter sequence of random variables, and
let F,, C F be o-algebras for all n € N%,

We shall use 1 := (1,...,1) € N¢ and 0 := (0,...,0) € Nd. In N¢ we consider the coordinate-wise
partial ordering: m < n means m; < n;, i = 1,...,d (m < n means m < n and m # n). Relations
<, max, min, — are interpreted coordinate-wise. E.g. n — oo is interpreted as n; — oo for every
t=1,...,d. Let |log n|:= H;izl log™t n;, where log™ # =logx, if > e and log™ z = 1, if z < e.

Let m denote certain coordinates of n and let n denote the rest of the coordinates of n. Denote by
(n,00) a length d sequence that consists of those coordinates of n which belong to n while the remaining
coordinates of n are substituted by oco. For example when n consists of the second and third coordinates
of n then (n, 00) = (00, ng,n3,00,...,00) and (@, 00) = (n1,00,00, Ny, ..., Ng)-

Let Fn,o) denote the o-algebra generated by the o-algebras Fix where k < (n,00),k € N¢. For
example in the above case Fn o) = 0{Fk : k2 < no, k3 < ng}, and Fgoo) = 0{Fk : k1 < nyky <
n4,...,kd < ’/ld}.

Let (B, ||.||) be a real separable Banach space. Let ¢(B) denote the set of all convergent sequences in
B. If X = (z1,%2,...) € ¢(B), let || X||. = sup; ||z:]|. ¢?(B) (and the norm in this space) is defined by
induction, i.e. ¢ = ¢(c?1(B)). Let co(B) denote the set of sequences converging to 0 (the 0 element of
B).
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Recall the notion of a martingale. Suppose that F,, C Fy, for every m < n. Assume that X,, is Fpu-
measurable and integrable for every n € N¢. We say that (X,, Fpn) is a martingale if E(Xyx |[Fn) = Xn
a.s., for all n € N* and k € N{.

Throughout the paper we shall assume that

(1) E(E(X1|]:m)|'7:n) =FK (Xllj:min{m,n})

holds for every 1,n,m € N This property is widely used in the theory of multiindex martingales (see
e.g. [Faz83]).
We shall use the following condition. For any n with finite expectation

(2) E(|F) =E (E (n\fgl)) ...|f,<jd>)

for any permutation (i1,...,4q4) of (1,...,d), where FY = o{F :1; = n;} for any fixed n and 4 (in the
notation ]—',(f) (i) shows the appropriate coordinate). Actually fff) is a particular case of F(y o). That

is fl(j) = Fln,o0); if (1,00) = (00,...,00, n4,00,...,00).
It is easy to see that (2) implies the following property

(3) E{n|Fa} = E{E{Fn,00) HF@,c0)}>

for every n with finite expectation. To prove it let n denote the iyst,. .., 4;th coordinates of n. Applying
(2) to E{n|Fm,o0)} We obtain

E{n|Fn} = E{EM|F(n,00))|Fn} =
(4) =F{...FE... [E(n\f(ﬂ’oo)ﬂfr(fl)] . |fr(1il)} o |f§lid)} -
=F{...E[.. E(77|‘7:(g,oo))|.7:1gil“)] o |féid)}

because ]_—1(11'1)7 e 7_7-}(1“) contain Fy oo)-

E{m]:n} = E{E(n‘]:n”]:(ﬁ,oo)} =
= E{E[E ... [EF o) |Fa ] | FEO]| Fi e} =
= E{E{n|Fn,00) 1 F@,00)}>

where we applied (4) in the second step.
It is easy to see that (3) implies

() E(E(M|Fm)|Fa) = E(|Fminfm,n})

for any n having finite expectation. In particular, (3) implies (1). It is known (see [Kho02], p. 36) that
(5) implies (2). Therefore (2), (3) and (5) are equivalent and they imply (1).

Proposition 2.1. Let e,,n € N% be independent random variables, Fn = o{ex : k < n}. Then
Fa,n € N satisfies (2).

Proof. We consider only the case d = 2. Let &2, and &, be the following random elements: &5 = (g5 :
i<mny,j<ng), &= (59 <n1,j>ng) and & = (g5 1 § < nayi > nq). Then E(n|&i2,&) = f(§12:61),
where f is measurable.

Then

(6) E{EmFINFDY = E{E(mas, &) |62, &} = E{f (612, €1)[€12, &2} = 9(6a2).
To see it, first we observe that the independence of £12,&; and & implies

E{f(&12,&1)[612 = 712,62 = w2} = E(f(212,61)) = g9(212),

where g is a measurable function. Now we substitute 15 and & in this equation.
Using the fact F,, C }“,(11), F2 and (6), we obtain

E{n|Fu} = E{E[EMF)FPNFa} = E{g(&12)| Fn} = 9(&12) = E[E(m|F)|FP)].

For d > 2 the proof is similar. O
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3. CONVERGENCE OF MARTINGALE FIELDS

Our first result is the uniform convergence of B-valued multiindex martingales. Actually the following
theorem is a version of Theorem 4.4 in [Faz83] where the uniform convergence was not studied.

Recall the notion of Radon-Nikodym property (see [Cha68]). The Banach space B has the Radon-
Nikodym property with respect to (Q, F,P) if every B-valued o-additive set-function p of bounded
variation (that is, V,,(©) < oo) which is absolutely continuous with respect to P (that is, P(A) = 0 =
u(A) = 0 or equivalently, V,, < P) has an integral representation, that is, there exists an f € L'(F, B)
such that p(A) = [, f(s)P(ds) for all A € F.

The space B will be said to have Radon-Nikodym property if it has the Radon-Nikodym property
with respect to Lebesgue measure on the Borel sets of the unit interval.

Theorem 3.1. Let B be a real separable Banach space. Let (X, Fn),n € N, be a B-valued martingale.
Assume that the o-algebras Fy satisfy (3). Let B have Radon-Nikodym property or let Xy be of the
form Xp = E(X|Fn),n € N, for an X € LY(F,B). Assume that sup, E| Xa|(log™ || Xal|*") < co.
Then there exists an event A with P(A) = 1 such that for w € A we have: if arbitrary coordinates of
n converge to oo while the remaining coordinates remain fized, then Xpn(w) converges uniformly. (The
limit is a random variable depending on the coordinates remaining fized.)

For a two index martingale the convergence in our theorem means the following. Let ¢ > 0. Then for
any ng we have || Xy, n, (W) — Xoo n, (W)]| < €if n1 > nyg, for any ny we have || X, 1, (W) — X0, 0o (W) <€
if ng > no., moreover || Xp, n, (W) — Xoo,00 ()| < € if n1,n9 > n..

Proof of Theorem 3.1. We use induction. For d = 1 the result is known (see [Cha68]).

Suppose that the result is valid for dimension not exceeding d — 1. Now we prove for d,d > 2. (We
shall fix the last coordinate of n.)

We see that (Xy, Fn),n € N9 satisfies the conditions of Theorem 4.4 of [Faz83]. In [Faz83] it is proved
that X, = E(X|F,), n € Z% and X, — X (n — o0) in L', where X is F,, -measurable.

We show, that X}, converges uniformly with probability 1, when some coordinates of n tend to infinity.

Let Zr(r’f) = X(m,k), Where k € N is fixed and m € N9=1 is running. This is a (d — 1) index martingale.

We sece that Z4) = E(X|Fm,k))- From here
ZE) = Xy = B(X(m k)| Fooy) = EE(X|F )| Foon)]
= E[E(X|F o)l Fomp)] = EZE | Fimm),

where Z) = E(X|Foo))-

Now we explain the main ideas of the proof. We use that Z4’ (for each fixed k) is a (d — 1) index
martingale. Because of the induction hypothesis Z,(,’f) converges uniformly if any subset of coordinates
of m tends to infinity. The structure of ng) is the following. If only the last coordinate mgy_1 of m

goes to oo, then Zr(,]f) is a convergent sequence (with probability 1), i.e. that sequence is an element of
¢(B). Now the coordinate mg_s is running. Then the previous elements of ¢(B) are convergent. So it is
an element of ¢(c(B)). Finally RS c(...c(B)) = ¢ (B). Actually we shall show by induction that
ey

Xn € ¢4(B).

We need to show that Z,(T]f) converges with probability 1. Now we create its limit.

We can suppose that X is F,, -measurable therefore X, = E(X|F,) implies X,, — X in L;.

Let 730 = E(X|F(m,oc))- Therefore (Zt(noo),f(m,oo)), m € N is a martingale. From the sub-
martingale convergence theorem we get

B[ X||(log* XD~ < su£dE||anl(log+ Xl < K < oo
ne

From the Jensen inequality we obtain
(7) E[ 237 (og™ |Z25])4 " < E|IX|[(log™ |X[)*! < K < oo.

That is the martingale (Zl(moc),f(mm)), m € N9~ satisfies the conditions of the theorem, therefore we
can consider this martingale as a random element of c?~!(B).
We need to prove that the equation

(8) E(Z09|Fao ) = 2
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holds for every k. Here Z2(>°) = {Z&® i m € N1} and Z® = {Z{F) : m € N?~1}. We prove this
equation for each fixed m.

B(ZE Froony) = EIE(X|F o) Floos)] = E(X|Frmp)) = Z58.

If EHZ(OO)”cd—l(B) < o0 is satisfied, then Lemma 2.4 of [Faz83] implies that it is enough to prove
relation (8) coordinate-wise. (In the expression ||Z(>°) || ca-1(p) we use the norm of the space ¢~ *(B). )

By equation (7), we have sup,, E||Zr(noo) | (log™ ||Zr(n°°) )4~ < co. Applying the proof of Theorem 4.4
of [Faz83], the Cairoli inequality (see [Faz83], p.158) and induction we obtain EHZ(OO)HCd—l(B) < 00. So
equation (8) is valid. Therefore Z(F) — Z() as.

Now we prove, if arbitrarily many coordinates of n tend to infinity then X,, converges uniformly with
probability 1. Divide the n into parts: n = (m,1, k), where & € N. By the martingale convergence
theorem in c?~1(B), kli_)n;@ X(m,1,k) = X(m,l,00) in the space ¢~ 1(B) a.s. That is for ¢ > 0 there exists
k. so that in the case k > k. we have || X(m k) — X(m,1,00)[| < € for all Lm. But X 00) € ¢*71(B) is
satisfied, 50 || X (m,1,00) = X(m,00,00) | < € when 1is sufficiently large. But then || X (m 1.x) = X(m,c0,00)ll < 2¢
when k and 1 are sufficiently large.

Therefore the proof is complete. O

We shall use the d-index version of the Burkholder inequality.

Lemma 3.2 (Noszély, Témacs [NT00], Fazekas [Faz05]). Let (Xn,Fn), n € N% be a martingale with
values in R™. Assume that (1) is satisfied. Let p > 1. There exist finite and positive constants C and
D depending only on m,p and d such that

p/2 p/2
CE| > lAml®| < EIXul? <DE| Y [Anl?
m<n m<n

for every n € N, where Ay is the martingale difference, i.e. Xy = D ken Dk

Above and in what follows ||.|| denotes the Euclidean norm.

4. THE DEFINITION OF AN AUTOREGRESSIVE MARTINGALE FIELD

To describe the structure of the random field &,,n € N?, we shall use the Kronecker product (denoted
by ®) and the vec operation (see, e.g. [MN88]).
Let A be an m x n type matrix and let a; be its jth column. Then vec A is the mn x 1 type vector

ai
ag
vec A =

an

Thus the vec operator transforms a matrix into a vector by stacking the columns of the matrix one
underneath the other (for further properties see [MN88]).

The vec operator transforms a d-dimensional array into a vector. At first the first index is running,
then second one, and so on. E.g. for the 3-index array A = (a;jx) ;' it

T
vec A = (anl,agn, ey A111,A1215 -5 Q1215 - s Almnyy - - .,almn) .

Definition 4.1. The process {&n, Fun}, n € N9 is called an autoregressive martingale field if &, is
Fa-measurable and integrable for every n € N¢,

(9) B (&l A, ) = af (1)6n-e, + a5 (n))6n-20, + -+ + 0% (1))6n-me,

for every m and j, with n; > m, j =1,...,d, where m is a fixed positive integer, e; = (0,..., 1 ,...0) €
jth

Ng is the jth unit vector, 7 = 1,...,d, and agj)(nj) are non-negative non-random coefficients with

Z;’;la?)(nj) =1foreveryn;=m+1,m+2,..., j=1,...,d.

If the coeflicients a,(j )(l) do not depend on [, then &, is called a homogeneous autoregressive martingale
field.
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Let &, n € N9, be a d-index random field. Using &y, we shall construct another random field X;,. The
values of this new field are d-index arrays. For any fixed m € Nandn € N¢ (withn; > m,i=1,...,d) X,
denotes the elements of the random field & with indices being in a hypercube of size m x m x -+ X m.

d
More precisely let the kth element of the array X, be XX = &, ik, where m = (m,...,m) € N%,
k=(k1,...,ka), ki =1,....,m,i=1,...,d. If we consider the index as time and n is the present, then
X, contains the present value &, and m¢ — 1 past values of the underlying field &,.

Proposition 4.2. Let (&,,Fn) be the autoregressive martingale field introduced in Definition 4.1. Let
X, be the array valued random field corresponding to &,. Then

(10) vec [E(Xn|,7-"r(ljze_)} = (I Q- @IA™ @I - I) vec(Xn—_e,)
3 —_— J —_—— 7

d—j j—1
for everyn withn; >m, j=1,...,d, where A;l) denotes the following m X m matriz

0 1 0o - 0

0 0 1 - 0

O _ . . . . .

A7 = : : R : )
0 0 )
ad () agl @) a0

foreveryj=1,...,dandl=m+1,m+2,....

We see that A;l) is the transition matrix of a Markov chain. We assume that a') (I) > 0. Then the
chain is irreducible. If this chain is aperiodic then it is ergodic. If ag)(l) > 0, then £ is a return time
of the last state of the chain. Therefore if the greatest common divisor of {k : a,(j )(l) > 0} is equal to 1
then the chain is aperiodic.

Proposition 4.3. Let X, be an array-valued random field satisfying (10). Assume that (2) is valid.
Then for the process (Xn, Fn) the equation

(11) vec [E(Xn+t|fn)] = [Ad(’nd + td, nd) Q- ® AQ(’H,Q + t2, ng) ® A1 (n1 + tl, ’I'Ll)] vec(Xn)

holds, where

n; j nj tj*l nj 1
(12) Aj(n +ty,ng) = AT Al gl

foreveryn; >m, j=1,...,d and n € N4, t € Nd.
Above and in the following A;(n;,n;) = I (the unit matrix).
Generalizing property (11), we get the following notion.
Definition 4.4. An array-valued process (Xpn, Fn), n € N9 is called an A-martingale field if
1) X, is Fn-measurable and integrable for every n € N¢,
2) equation (11) is satisfied for every n,t € N% where the matrices A;(n; + t;,n;) are given by
(12). (All matrices ij) considered are nonrandom and of type m x m.)

For the A-martingale field X,, let A, denote the martingale difference type field.
(13) An =Y (~)%ha (B(Xa| 7))

where n = (ny,...,n4) € N\ ¢ = (c1,...,¢q) and ¢, = ep(ng, — 1) + (1 — ex)ny, for every k = 1,...,d,
n > 1. We sum for all values of e, =0 or g, = 1,k =1,...,d. In (13) we consider E (X,|F.) and (X)
being equal to 0 if c € Nd \ N¢.

If (1) is true, then A, is a martingale difference, i.e. A, is Fy-measurable and E(Ay|Fm) = 0 if
m<n, m#n.

If (2) is true, then by (11), we have

(14)  vec(Aq) = Y (~1)Zir = HgdAg"d) +(1- gd)z} R ® [51A§’“> +(1- 51)1” vec (Xe) .

We remark that if £, is an autoregressive martingale field and X,, is the corresponding A-martingale
field, then



where 0, = 3 (—1)Z#=1 % B(£,| Fe) and 0 Ny,
Proposition 4.5. Assume (2). For the A-martingale field X,,, we have the representation:

(15) vec(X Z Z Z [Aa(ng, ka) @ - - ® A1 (nq, k1)] vee(A),

k1=1ko=1 kq=1
where Aj(kj, k;j) =1, j=1,...,d.

Proof. For fixed n consider Zy = [Aq(ng,kq) ® --- @ A1(n1, k1) vee(Xk), k < n. Then Z,

Moreover, (15) contains the summation of the difference sequence of the sequence Zy, k < n.
In the special cases d = 1,2 we get the models studied in [Faz87] and [Faz88|. If d = 1, then
5n—m+1

X, = 1
fn—l
n

In this case, by (9),

£n7m+1

E (Xp|Fuoi) = : = AX, ..
gnfl
algnfl +F amgnfm
This model was considered in [Faz87].
Consider d = 2. Let n = (ny,n2),t = (t1,t2). Then

fn17m+1,nzfm+1 T fnlferan
§n17m+2,n27m+1 T §n17m+2,n2
Xn - . .
gnl,nQ—m—Q—l e fnl,ng

Using [Ay ® A1) vec(Xy,) = vec(A; XnAg ), and
VGC[E(XH_H;‘.FH)] = [AQ(TLQ + t27 TLQ) X Al(’ﬂl + tl, nl)] VEC(XH),
we get
E(Xn—i-t'fn) = Al(’fll —+ tl, nl)XnA; (ng + tz, 77,2).
Therefore we obtain the model studied in [Faz88].

5. CONVERGENCE OF A-MARTINGALE FIELDS

O

In this section, we prove convergence theorems for A-martingale fields under the following conditions.

Suppose that
(16) Aj(ij+tj,15) — Aj(00,ij), as t; — oo, for every ij,j € N
and that the convergence is “fast” in the following sense:

(17) 14;(00,i) — Az i+t i)l S e, Vig,j €N,

oo
where Z cg ) < oo for every j.
tjzl

Let the norm of the matrix A = (a;;) be [|All = />3, >, a?j.

We shall use the following properties of this norm.

2
) |4-B|? = ZZ Zaw e ] <3N (D e vk | = Al |BII*. In particular,
ik J J

|A-v] < HAH ||v||, for every v € R™.
2) [[A4] >0, [ A] =0 <= A=0,
3) IAA[l = [A]- lA],
4) |A+ Bl < Al + |IB]|
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It is easy to see that || A||? = tr(AT - A).
The norm of the Kronecker product of the matrixes A and B is the following

[A@B|?=tr[(A®B) (A®B)] =tr (AT ® B")(A® B)] =

— (AT A)y(BT B) = || 4] B
For the limit matrices A; (o0, k;) = tjh—I>noo Aj(kj+t;,k;), we assume that there exists a positive number
C such that
(18) [[Aa(00, ka) @ -+ @ Ay(o0, ky)] vee(Ax) || = O vee(Aw)]],

for every k = (k1,...,kq).

For S C {1,...,d} denote by kg the coordinates of k € N? with indices in S and with kg the
complement of coordinates. We shall use the following condition. For arbitrary S C {1,...,d} and
arbitrary n

Z [Ad(00, ka) ® Ag—1(00,kg—1) ® -+ @ Ay(00, k1)] vec(Ay) | >
(19) ks<ng
>C Z [Di, ® Dy, ® -+ - @ Dy, | vec(Ax) ||,

ks<ng

where the matrix Dy, = A;(c0,k;) if I € S and Dy, =T if 1 ¢ S.
The behaviour of X, is closely related to a certain martingale Y;,. This martingale is called the
accompanying martingale of X,,, and it is defined by the equation

vee(Yn) = Zl 22 - Zd [Ag(00,kg) ® - ® Ag(00, ko) ® Aq(00, k1)] vec(Ax)

k1=1ky=1 ka=1

for every n € N%. We know, that under condition (1), A, is a martingale difference. Therefore, if (1) is
satisfied, then Y, is a martingale.

Lemma 5.1. Assume that (2) and (16) are satisfied. If sup Eo(|| vee(Xn)||) < C < oo, where ¢ : RT —
n
R* is a conver non-decreasing function, then for the accompanying martingale sup Eo(||vec(Ya)|) < C

holds as well.

Proof. Let

VGC(}/it) = Zl ZQ e Zd [Ad(tda kd) K- & Ag(t27 Ifz) & Al(tl, kl)] VeC(Ak),

ki=1ko=1  kg=1

where t = (t1,...,tq) is fixed, t > k, while i = (i1,...,44). As Ay is a martingale difference, it is easy
to see that

(V5 F), 1<i<t,
is a martingale. Since ¢(|| vec(Y;*)||) is a real submartingale, we have, by Proposition 4.5,
E(e(]| vee(¥i*)ll) < E(p(|l vee(YE) ) = Ep(|| vee(Xe)|l) < C,

for every i < t. On the other hand, ¥;* — Y;, as t — oo. Thus, by Fatou’s lemma, Fp(|| vec(Y3)||) < C
for every i € N¢. (]

Theorem 5.2. Assume that the A-martingale field (Xn, Fn), n € N, satisfies (2), (17), (18) and (19).
If

(20) :élé)dEH vee(Xy)|| [10g+(||vec(Xk)||)]d71 .

then Xy, converges a.s. as nj — oo for all j. If, moreover, d > 2 then Xy converges in Ly, as nj; — 00
for all j.
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Proof. Let Yy be the accompanying martingale of X,.

vec(Y; Z Z [Ag(00,kq) @ -+ ® A1(00, k)] vec(Ak)

kqg=1 ki1=1

SIS SNl

kq=1 k1=1

)
Ak

where Al((Y) is the difference of the martingale Y;,. By Lemma 5.1, condition (20) is satisfied for Y}, namely

sup E|| vec(Yn)|| [log"'(”vec(Yn)H)]dil < oo. First, we prove the a.s. convergence. By Theorem 3.1
n

Yo — Y as., as n — co. We show that X, — Y a.s.. We mention that Y;, converges uniformly if at

least one of the coordinates of n tends to infinity. From here HA&Y) | < e, if at least one coordinate of n

is greater than n.. Therefore HA&Y)H is bounded. Therefore, by (18), Ay — 0 a.s. and {Ay; k € N9} is
bounded. Proposition 4.5 and the definition of Y;, imply that

ng

Z Z [Aa(na, kq) @ --- @ Ar(ny, k1)] vec(Ag)

ka=1 ki1=1

_ i i[Ad(oo, ka) ® - @ Ay (00, k)] vec(Ax)
ka=1  ki=1

(21) = Z (i-~-i[Gd®~--®G1]Vec(Ak)> ,

G1,....Gq \ka=1 k=1

[[vec(Xn) — vec(Ya)|| =

where G; = A;(00, k;) or G; = A;(ni, ki) — Ai(oo, ki) and at least one G; is equal to the difference. (So
the sum Zal ’’’’’ G, contains 24 — 1 terms.)
Consider a particular term of the above sum with only one difference. By condition (17), we obtain

oy [(Aa(ra, ka) = Aa(00, ka)) © Aa1(00,ha 1) ® - @ Ay (o0, )] vee(Ax)
kqa=1 k1=1

Nd—1

<Czcnd—kd Z ZI@Ad L@ ® Ay vee(Ay)

kdlw—/kdll kll

ng—1 Nd—1
=cC Z cl(j) Z Z I® Ad 1 X - ®A1]V€C(Akl ’’’’’ kd—l,(nd*ld))
la=0 kqg_1=1 ki=1
Nd—1
(22) =c Z c(d) Z Z [ ®Ag1® - @ Ar]vec(Dg, kg y (na-1a))
ld 0 k?d 1= =1 k:l 1
ng—1 nd—1
d
(23) +c Z Cz(d) Z Z H®Ag1® - @ Ar]vec(Ar, . ka1,(na—1))|| s
la=v kqg—1=1 ki=1

where v is an appropriately chosen fixed integer.
Now we consider the limiting behaviour of these expressions when ng — co. To this end we shall use
that
Nd—1
(24) Z Z I ®AI-1®--® Al] VeC(Ak1,~~7kd—1;S> —0
kqg_1=1 k1=1
uniformly, if s — oo.
ndfl
Let € > 0 be arbitrary. If v is sufficiently large, then by (17), Z cl(d) < e. By (24), the term ||...||
l=v
of (23) is bounded. So the expression in (23) is less than ce, where ¢ < co. Also by (24), the expression
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in (22) converges to 0, as ng — oco. Now we prove (24). By (19), the left hand side of (24) is less than

Nd—1
1

ol Z Z [Ag(00,kq) @ -+ @ A1(00, k1)] vec(Aky . ky_1.s)

kg—1=1 ki1=1

It is a difference of Y;, according to the last coordinate of n. So it converges to 0, as s — oco.
Now, consider another term from (21) that contains two differences:

i i{Ad(oo,k:d)@“-@Ag(OO,ks)@

kq=1 ki=1

® [A2(n2, ko) — Az(00, k1)] ® [A1(n1, k1) — Ai (00, k1)]} vec(Ak)

<CZ chl k1 nz—k2

k1=1ky=1

Z Z [Ag® -+ ® A3 ® I ® I]vec(Ak)

k3=1 ka=1

ni—1lns—1

=cC E E Cl,Cly

Z Z [Ad® -+ ® A3 @ I @ I]vec(A(ny —11),(na—1s) ks, ka)

11=0 12=0 k=1 kq=1
fnlfll ng—lg,n3,...,nq
ni—1 ng—1
< c E E Cllclg fn1 l1 ng — lg M3yeeny ng +C E Cll E Cl2 fnl ll na— l2 MN3yeeny ndg
h=0l= Obounded 0 Zf n1,na—00 \ll vt ,\lz 0 , bounded
<ep bounded
77,271 Tllfl
+c E Cly E Cly fn1—l1,n2—lg,n3,...,nd — 0, if ny, N2 — OQ.
12:712 l1:O

bounded
<ez bounded

Above g1 > 0,e9 > 0 are arbitrary and vy, v9 are chosen to be large enough. Similarly for more differences.
Finally, if d > 2, the assumptions of the theorem imply the uniform integrability of X,, so X,
converges in L1, too. O

Theorem 5.3. Suppose that for the A-martingale field (Xn, Fn),n € N¢, condition (2), (17) and (19)
hold, and

(25) 14 (i, us) || < K < o0

ifi; >u;, j=1,...,d. If sup E|| vec(Xn)||* < 0o, where a > 1, then Xy, converges in L, as n — 0.
n

Proof. By Lemma 5.1, sup F|| vec(Yn)||* < oo. Therefore, according to Theorem 4.6 of [Faz83], Y;

converges in L, if one of the coordinates of n goes to infinity. The main step of our proof is the following
sequence of inequalities:

«

i i Zd: [Ad(id,ug) @ Ag_1(ia_1,uq-1) @ --- @ Ay (i1, u1)] vec(Ay)

ulzkl u2:k)2 ud:k:d
%
car( 33 3 s
ul k)l Ug= k2 Ud= kd
(26) 11 12 1d
<aE| 303 Y el
U1 ikl ug:kg ud:kd

[}

33 S [Aa(00nta) @ Ay (00, tg1) @ - © Ay (00, ur)] vee(Au)

u1=k1 u2=k2 ud=kd

- e[S

< C3E
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for i; > kj, 7 =1,...,d, where ¢ = .k, + (1 —€,)i,, 2z = 1,...,d. We sum for all values of ¢, =
Oorl, z=1,...,d. These inequalities are consequences of Burkholder’s inequalities (Lemma 3.2). In
the first inequality, we applied also condition (25) and in the third one condition (19).

Consequently, Wl‘( — 0 if at least one of the coordinates of k and i tends to infinity.

Let Yoo = limg_. o Y. We show that X, — Y in £,. Fori>k

1Xi = Yool 2o < [V = Yool [ 2o +

k1 ko kq
SO [Aalia, ua) © Aa-i(ia—1,ua-1) ® -+ @ Ay (i1, u1)] vec(Ay) — Yic

’LL1:1 'u.2:1 udzl

+ -

La

+ Z [Aa(ig, ua) ® Ag—1(ig—1,uq—1) ® -+ @ A1 (i1, u1)] vec(Ay)

uSi,uﬁk Lo

Let € > 0 be arbitrary. As Yx — Y, and by (26), one can fix k such that the first and the third terms
in the above expression are less than e. If k is fixed, then the second term tends to zero, as i — co. O

6. CONVERGENCE OF AUTOREGRESSIVE MARTINGALE FIELDS

Theorem 6.1. Let (&4, Fn),n € N be a homogeneous autoregressive martingale field and suppose
that (2) is satisfied. Assume, for each j = 1,...,d, as,{) > 0, and the greatest common divisor of
{k:1<k< m,a,(j) > 0} is equal to 1.

a) If sup E|&y,| [log+ |£an—1 < 00, then &, converges a.s, if moreover, d > 2, then £, converges in
n

L1, asn — oo.
b) Let be a > 1. If sup E|&n|® < 00, then &, converges in L, (and a.s.), as n — o0o.

Proof. In Section 4, we have constructed the A-martingale X,,, the matrices AQZ), and the martingale
difference A, corresponding to &,. Because of the conditions of our theorem, A, = A,(ZZ) is the transi-
tion matrix of a non-decomposable acyclic Markov-chain (z = 1,...,d). The elements of the matrices
A, (iy+t,,1,) = (A,)" converge exponentially fast to the elements of the matrix A,(c0) = A,(0c0,i,) =
(akj)zn’j:l, as t, — oo, where ay; = b; (k,j = 1,...,m) is the stationary distribution of the chain
([Sen81]). The system of equation of stationarity is the following: b" = b' A with A = A, for any
z=1,...,d, namely

0 1 0
0 0 0
(blab27"'7bm):(b17b27"'7b7n) : : . . X
0 0 0 1
alm a’m—l DRI DRI a‘l
Therefore b1 = a,bm, b = b1 + Gm_1bym ..., byy = by_1 + a1b,,. We obtain by = a,;,bm, by =
(am + am—l)bwu PR bm—l = (am +F a2)bm7 bm = (am + 4+ al)bm~

Sol=0by+ - +byn=man+(m-—1)am_1+ -+ a1)b,. Hence

1

b = <o
" Z:il ia;

and
J—1 Zm @
_ _ Zei=m—j1 %
bj(Zam_l)bmm7 ]—1,...,777/71,
1=0 i
is the unique stationary distribution of the Markov chain. Therefore condition (17), (19) and (25) hold.

Now, it is easy to see that Theorem 5.2 and Theorem 5.3 imply the desired result. O
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