PACKING OF NON-BLOCKING FOUR-DIMENSIONAL CUBES INTO THE UNIT CUBE

Janusz Januszewski and Łukasz Zielonka

Abstract. Any collection of non-blocking four-dimensional cubes, whose total volume does not exceed 17/81, can be packed into the unit four-dimensional cube. This bound is tight for the parallel packing.

1. INTRODUCTION

Let C_n be a *d*-dimensional cube, for $n = 1, 2, \ldots$ Moreover, let I^d be a *d*-dimensional cube of edges of length 1. We say that C_1, C_2, \ldots can be *packed* into I^d if it is possible to apply translations and rotations to the sets C_n so that the resulting translated and rotated cubes are contained in I^d and have mutually disjoint interiors. The packing is called *parallel* if each edge of any packed cube is parallel to an edge of I^d .

Meir and Moser in their seminal paper [\[6\]](#page-9-0) showed that any family of *d*-dimensional cubes can be parallel packed into the unit *d*-dimensional cube *I d* , provided that the total volume of the cubes is not greater than 2^{1-d} . Moreover, it is known that any family of *d*-dimensional cubes of total volume not greater than 2^{1-d} can be packed into I^d so that the uncovered part of I^d contains a cube of edge length packed into I^{\perp} so that the uncovered part of I^{\perp} contains a cube of edge length $1 - \sqrt[4]{2}/2$ (see [\[5\]](#page-9-1)). It is very likely that also any family of *d*-dimensional boxes with edge lengths not greater than 1 of total volume not greater than 2^{1-d} can be packed into I^d , but this conjecture has been confirmed only for $d = 2$ (see [\[1\]](#page-9-2)).

Obviously, any two cubes whose sum of edge lengths is greater than 1 (and, consequently, whose total volume is greater than 2^{1-d} cannot be parallel packed into I^d ; after packing one of the cubes, there is no enough space in I^d to pack the other cube. Denote by a_n the edge length of C_n , for $n = 1, 2, \ldots$ We say that the cubes C_1, C_2, \ldots are *non-blocking*, if $a_i + a_j \leq 1$ for any $i \neq j$ (compare [\[2\]](#page-9-3)). It is known that any collection of non-blocking squares, whose total area does not exceed $5/9$, can be packed in I^2 (see [\[4\]](#page-9-4)). Furthermore, in [\[3\]](#page-9-5) it is shown that any collection of non-blocking three-dimensional cubes, whose total volume does not exceed $1/3$, can be packed in I^3 .

²⁰²⁰ *Mathematics Subject Classification*: primary 52C17.

Key words and phrases: packing, cube.

Received January 17, 2024, revised June 2024. Editor J. Nešetřil.

DOI: [10.5817/AM2024-3-153](http://dx.doi.org/10.5817/AM2024-3-153)

FIG. 1: H_d and B_d for $d = 2$ and $d = 3$

Conjecture 1. Any collection of non-blocking *d*-dimensional cubes can be parallel packed into I^d , provided that the sum of volumes of the cubes is not greater than $(2^d + 1)/3^d$.

Clearly, the upper bound $(2^d + 1)/3^d$ cannot be increased here: $2^d + 1$ cubes of edge lengths greater than $1/3$ cannot be parallel packed into I^d .

The aim of this note is to confirm this conjecture in dimension $d = 4$.

2. M_d^+ -METHOD

We will use the packing method based on the methods described in [\[4\]](#page-9-4), [\[3\]](#page-9-5), [\[6\]](#page-9-0) and [\[7\]](#page-9-6). Let $I^d = [0, 1]^d$, $H_d = [0, 1]^{d-1} \times [0, h]$ and $B_d = [1 - w, 1]^{d-1} \times [h - v, h]$, where $0 \leq w < 1$ and $0 \leq v < h$ (see Fig. [1\)](#page-1-0). Moreover, let C be a collection of *d*-dimensional cubes C_1, C_2, \ldots Assume that $a_n \ge a_{n+1}$ for $n = 1, 2, \ldots$, that $a_1 + w \leq 1$ and that $a_1 + a_2 \leq 1$, where a_n denotes the length of the edge of C_n . By Int*B* denote the interior of *B*.

The description is inductive with respect to *d*.

• For $d = 2$, the method M_2^+ (presented in [\[4\]](#page-9-4)) is as follows. Squares C_1, C_2, \ldots are packed into $H_2 \setminus \text{Int}B_2$ in layers L_1, L_2, \ldots The first layer is either the rectangle $[0,1] \times [0,a_1]$ if $([0,1] \times [0,a_1]) \cap \text{Int}B_2 = \emptyset$ or the rectangle $[0, 1 - w] \times [0, a_1]$, otherwise (see Fig. [2\)](#page-3-0). The squares C_1, C_2, \ldots are packed into H_2 along the base of the first layer L_1 from left to right. If C_{n_1} is the first square that cannot be packed in that way, then the new layer *L*2, of height a_{n_1} , is created directly above L_1 . The base of L_2 is either equal to 1 if $([0,1] \times [a_1, a_1 + a_{n_1}]) \cap \text{Int}B_2 = \emptyset$ or equal to $1 - w$, otherwise. The squares $C_{n_1}, C_{n_1+1}, \ldots$ are packed into H_2 along the base of the second layer from left to right. If C_{n_2} is the first square that cannot be packed in that way in the second layer, then the new layer L_3 , of height a_{n_2} , is created directly above the second layer. The base of *L*³ is either equal to 1 if $([0,1] \times [a_1 + a_{n_1}, a_1 + a_{n_1} + a_{n_2}]) \cap \text{Int}B_2 = \emptyset$ or equal to $1 - w$, otherwise, etc.

• Assume that $d \geq 3$ and that the methods M_j^+ are described for $j = 2, 3, \ldots, d-1$ 1. Cubes from C are packed into H_d in layers L_1, L_2, \ldots similarly as in the method of Meir and Moser [\[6\]](#page-9-0). The base of each layer is a unit (d-1)-dimensional cube. The first layer is the box $[0,1]^{d-1} \times [0,a_1]$. The cubes are packed in L_1 so that the $(d-1)$ -dimensional bottoms of the cubes are packed into the $(d-1)\mbox{-dimensional bottom of the layer according to the method
 M^+_{d-1} (where$ *h* = 1, i.e., where $H_{d-1} = I^{d-1}$. If $([0,1]^{d-1} \times [0,a_1])$ ∩ Int $B_d = \emptyset$, then $B_{d-1} = \emptyset$ in the M_{d-1}^+ -method, otherwise $B_{d-1} = [1 - w, 1]^{d-1}$. If C_{n_1} is the first cube that cannot be packed in L_1 , then the new layer L_2 , of height a_{n_1} , is created directly above L_1 . The cubes $C_{n_1}, C_{n_1+1}, \ldots$ are packed into *L*₂ so that the $(d-1)$ -dimensional bottoms of the cubes are packed into the $(d-1)$ -dimensional bottom of the layer according to the M^+_{d-1} -method. If $([0,1]^{d-1} \times [a_1, a_1 + a_{n_1}])$ ∩ Int $B_d = \emptyset$, then $B_{d-1} = \emptyset$ in the M^+_{d-1} -method, otherwise $B_{d-1} = [1 - w, 1]^{d-1}$. If C_{n_2} is the first cube that cannot be packed in that way in the second layer, then the new layer L_3 , of height a_{n_2} , is created directly above the second layer, etc. If *t* is an integer such that $a_1 + a_{n_1} + \ldots + a_t > h$, then we stop the packing process; there is no empty space in H_d to create a new layer to pack C_{n_t} (see Fig. [2,](#page-3-0) where $n_t = z$).

Lemma 1. *If* C_z *is the first cube from* C *that cannot be packed into* $H_d \setminus \text{Int}B_d$ *by the* M_d^+ -method, then the total volume of cubes C_1, C_2, \ldots, C_z *plus the volume of B is greater than* $a_1^d + (1 - a_1)^{d-1}(h - a_1)$ *.*

Proof. The proof for $d = 2$ and for $d = 3$ is given in [\[4\]](#page-9-4) and [\[3\]](#page-9-5). Assume that $d \geq 3$ and that the statements holds for each dimension $j = 2, 3, \ldots, d - 1$.

The cubes from C are packed into $H_d \setminus \text{Int}B_d$ by the M_d^+ -method. Clearly, the volume of B_d is equal to $w^{d-1}v$ and the volume of the $(d-1)$ -dimensional bottom of *B* equals w^{d-1} . Let $n_0 = 1$. Clearly, $z = n_t$, where *t* is the smallest integer such that $a_1 + a_{n_1} + \ldots + a_{n_t} > h$ (see Fig. [2\)](#page-3-0).

Since C_{n_1} cannot be packed in the first layer L_1 , by the inductive assumption we conclude that the sum of volumes of $(d-1)$ -dimensional bottoms of cubes $C_1, C_2, \ldots, C_{n_1}$ is greater than $a_1^{d-1} + (1 - a_1)^{d-1}$, provided that $L_1 \cap \text{Int}B_d = \emptyset$ or greater than $a_1^{d-1} + (1 - a_1)^{d-1} - w^{d-1}$, provided that $L_1 \cap \text{Int}B_d \neq \emptyset$ (the volume of B_{d-1} equals w^{d-1}). Thus the sum of volumes of cubes in L_1 is greater than $a_1^d + [(1 - a_1)^{d-1} - a_{n_1}^{d-1}] \cdot a_{n_1}$, provided that $L_1 \cap \text{Int}B_d = \emptyset$ or greater than $a_1^d + [(1 - a_1)^{d-1} - a_{n_1}^{d-1} - w^{d-1}] \cdot a_{n_1}$, provided that $L_1 \cap \text{Int}B_d \neq \emptyset$. Let *k* be the smallest integer such that

$$
a_1 + a_{n_1} + \ldots + a_{n_{k-1}} + v > h
$$

(see Fig. [2,](#page-3-0) where $k = 2$). If $j \in \{1, ..., k-1\}$, then the total volume of $(d-1)$ -dimensional bottoms of cubes packed in L_i is greater than

$$
a_{n_{j-1}}^{d-1} + (1 - a_{n_{j-1}})^{d-1} - a_{n_j}^{d-1}.
$$

This means that the sum of volumes of cubes in L_j is greater than

$$
a_{n_{j-1}}^d + \left[(1 - a_{n_{j-1}})^{d-1} - a_{n_j}^{d-1} \right] a_{n_j}.
$$

If $j \in \{k, \ldots, t\}$, then the total volume of $(d-1)$ -dimensional bottoms of cubes packed in L_j is greater than

$$
a_{n_{j-1}}^{d-1} + (1 - a_{n_{j-1}})^{d-1} - w^{d-1} - a_{n_j}^{d-1}.
$$

This means that the sum of volumes of cubes in L_j is greater than

$$
a_{n_{j-1}}^d + \left[(1 - a_{n_{j-1}})^{d-1} - w^{d-1} - a_{n_j}^{d-1} \right] a_{n_j}.
$$

As a consequence, the sum of volumes of C_1, \ldots, C_z is greater than

$$
a_1^d + [(1 - a_1)^{d-1} - a_{n_1}^{d-1}] a_{n_1}
$$

+ $a_{n_1}^d + [(1 - a_{n_1})^{d-1} - a_{n_2}^{d-1}] a_{n_2}$
+ ... + $a_{n_{k-2}}^d + [(1 - a_{n_{k-2}})^{d-1} - a_{n_{k-1}}^{d-1}] a_{n_k-1}$
+ $a_{n_{k-1}}^d + [(1 - a_{n_{k-1}k})^{d-1} - w^{d-1} - a_{n_k}^{d-1}] a_{n_k} + ...$
+ $a_{n_{k-1}}^d + [(1 - a_{n_{k-1}})^{d-1} - w^{d-1} - a_{n_k}^{d-1}] a_{n_k} + a_{n_k}^d$
 $\ge a_1^d + (1 - a_1)^{d-1} (a_{n_1} + ... + a_{n_k}) - w^{d-1} (a_{n_k} + ... + a_{n_{k-1}}).$

Obviously,

$$
a_1 + a_{n_1} + \ldots + a_{n_t} > h
$$

as well as

$$
a_{n_k} + \ldots + a_{n_{t-1}} < v
$$

(see Fig. [2,](#page-3-0) where $k = 2$ and $t = 5$).

FIG. 2: Projection of H_d onto x_1x_d plane.

FIG. 3: Packing cubes C_1, C_2, \ldots, C_{13} into *U* when $a_5 \leq 1/3$.

Thus the sum of volumes of C_1, \ldots, C_z is greater than

$$
a_1^d + (1 - a_1)^{d-1}(h - a_1) - w^{d-1}v.
$$

 \Box

3. PACKING OF NON-BLOCKING FOUR-DIMENSIONAL CUBES INTO I^4

Let C be a collection of cubes C_1, C_2, \ldots . Assume that $a_1 + a_2 \leq 1$ and that $a_n \geq a_{n+1}$, where a_n denotes the edge length of C_n for $n = 1, 2, \ldots$ Let

$$
U = [0, 1] \times [0, 1] \times [0, 1] \times [1 - a_1, 1],
$$

\n
$$
H_4 = [0, 1] \times [0, 1] \times [0, 1] \times [0, 1 - a_2],
$$

\n
$$
B_4 = [1 - a_1, 1] \times [1 - a_1, 1] \times [1 - a_1, 1] \times [1 - a_1, 1 - a_2].
$$

Clearly, if $a_1 \neq a_2$, then B_4 is a box of size $a_1 \times a_1 \times a_1 \times (a_1 - a_2)$.

- The first cube C_1 is packed into U at the vertex $(1, 1, 1, 1)$.
- The cubes C_2, C_3, C_4 are packed into U at the vertices of $(0, 0, 1, 1), (1, 0, 1, 1)$ and $(0, 1, 1, 1)$, respectively.
- The cubes C_5 , C_6 , C , C_8 are packed into U at the vertices of $(0,0,0,1), (1,0,0,1),$ (0*,* 1*,* 0*,* 1) and (1*,* 1*,* 0*,* 1), respectively.
- If $a_5 > 1/3$, then no more cube will be packed into $U \setminus H_4$.
- If $a_5 \leq 1/3$, then C_9, \ldots, C_{13} are packed into $U \setminus \text{Int}H_4$ (see Fig. [3,](#page-4-0) a detailed description can be found in Appendix [A\)](#page-6-0).
- The remaining cubes are packed into $H_4 \setminus \text{Int}B_4$ in corresponding layers L_i $(i = 1, 2, \ldots)$ $(i = 1, 2, \ldots)$ $(i = 1, 2, \ldots)$ by the M_4^+ -method (see Fig. 2 and Fig. [4\)](#page-5-0).

Theorem 2. *Any collection of non-blocking four-dimensional cubes with total volume not greater than* $17/81$ *can be packed into* $I⁴$ *.*

Proof. Denote by C_1, C_2, \ldots the cubes in the collection. Without loss of generality we can assume that $a_1 \geq a_2 \geq \ldots$, where a_n is the edge length of C_n , for

Fig. 4: Three-dimensional top of *H*4.

 $n = 1, 2, \ldots$ We will show that if the cubes cannot be packed into $I⁴$, then $a_1^4 + a_2^4 + \ldots > 17/81$, which is a contradiction.

Consider three cases.

Case 1: $a_9 > 1/3$ *.*

Eight first cubes were packed at the top of I^4 and the remaining cubes C_9, C_{10}, \ldots were packed into H_4 . The volume of B_4 is equal to $a_1^3(a_1 - a_2)$. If the cubes cannot be packed into I^4 , then, by Lemma [1](#page-2-0) (for $d = 4$ and $h = 1 - a_2$), the sum of volumes of the cubes is greater than

$$
(a_1^4 + a_2^4 + \dots + a_8^4) + a_9^4 + (1 - a_9)^3 (1 - a_2 - a_9) - a_1^3 (a_1 - a_2)
$$

= $a_1^3 a_2 + a_2^4 + \dots + a_9^4 + (1 - a_9)^3 (1 - a_2 - a_9)$

$$
\ge 2a_2^4 + 7a_9^4 + (1 - a_2 - a_9)(1 - a_9)^3.
$$

Consider the function

$$
\varphi(a_2, a_9) = 2a_2^4 + 7a_9^4 + (1 - a_2 - a_9)(1 - a_9)^3
$$

in the domain given by inequalities $1/3 < a_9 \le a_2 \le 1/2$.

Since $\varphi'_{a_2}(a_2, a_9) = 8a_2^3 - (1 - a_9)^3 \ge 8a_9^3 - (1 - a_9)^3 > 0$ for $1/3 < a_9 \le a_2$, we get

$$
\varphi(a_2, a_9) \ge \varphi(a_9, a_9) = 9a_9^4 + (1 - 2a_9)(1 - a_9)^3.
$$

Let $\varphi_1(a_9) = 9a_9^4 + (1 - 2a_9)(1 - a_9)^3$. Since

$$
\varphi_1'(a_9) = 44a_9^3 - 21a_9^2 + 18a_9 - 5
$$

and

$$
\varphi_1''(a_9) = 132a_9^2 - 42a_9 + 18 > 0
$$

it follows that

 $\varphi_1'(a_9) > \varphi_1'(1/3) > 0$

for $a_9 > 1/3$ and that

$$
\varphi(a_2, a_9) > \varphi_1(1/3) = 17/81.
$$

Case 2: $a_9 \leq 1/3$ *and* $a_5 > 1/3$.

Eight first cubes were packed at the top of I^4 and the remaining cubes C_9, C_{10}, \ldots were packed into H_4 . If the cubes cannot be packed into I^4 , then, by Lemma [1,](#page-2-0) the sum of volumes of the cubes is greater than

$$
a_1^4 + a_2^4 + \dots + a_8^4 + a_9^4 + (1 - a_9)^3 (1 - a_2 - a_9) - a_1^3 (a_1 - a_2)
$$

= $a_1^3 a_2 + a_2^4 + (a_3^4 + a_4^4 + a_5^4) + (a_6^4 + a_7^4 + a_8^4 + a_9^4) + (1 - a_9)^3 (1 - a_2 - a_9)$

$$
\ge 2a_2^4 + 3 \cdot \left(\frac{1}{3}\right)^4 + 4a_9^4 + (1 - a_2 - a_9)(1 - a_9)^3.
$$

The function

$$
2x^4 + 3 \cdot \left(\frac{1}{3}\right)^4 + 4y^4 + (1 - x - y)(1 - y)^3
$$

reaches values not smaller than 17*/*81 in the domain *D* given by the inequalities $0 < y \leq 1/3 < x \leq 1/2$ (see Appendix [B\)](#page-7-0)

Case 3: $a_5 \leq 1/3$.

Thirteen cubes were packed at the top of *I* 4 .

If the cubes cannot be packed into $I⁴$, then, by Lemma [1,](#page-2-0) the sum of volumes of the cubes is greater than

$$
(a_1^4 + a_2^4 + \dots + a_{13}^4) + a_{14}^4 + (1 - a_{14})^3 (1 - a_2 - a_{14}) - a_1^3 (a_1 - a_2)
$$

= $a_1^3 a_2 + a_2^4 + \dots + a_{14}^4 + (1 - a_{14})^3 (1 - a_2 - a_{14})$
 $\ge 2a_2^4 + 12a_{14}^4 + (1 - a_2 - a_{14})(1 - a_{14})^3$.

The function $2x^4 + 12y^4 + (1 - x - y)(1 - y)^3$ reaches values not smaller than 17/81 for $0 < y < 1/3$ and $y \le x \le 1/2$ (see Appendix [C\)](#page-8-0).

Appendix A.

The first eight cubes are packed in the following places:

 $[1 - a_1, 1] \times [1 - a_1, 1] \times [1 - a_1, 1] \times [1 - a_1, 1],$ $[0, a_2] \times [0, a_2] \times [1 - a_2, 1] \times [1 - a_2, 1],$ $[1 - a_3, 1] \times [0, a_3] \times [1 - a_3, 1] \times [1 - a_3, 1],$ $[0, a_4] \times [1 - a_4, 1] \times [1 - a_4, 1] \times [1 - a_4, 1],$ $[0, a_5] \times [0, a_5] \times [0, a_5] \times [1 - a_5, 1],$ $[1 - a_6, 1] \times [0, a_6] \times [0, a_6] \times [1 - a_6, 1],$ $[0, a_7] \times [1 - a_7, 1] \times [0, a_7] \times [1 - a_7, 1],$ $[1 - a_8, 1] \times [1 - a_8, 1] \times [0, a_8] \times [1 - a_8, 1].$

If $a_5 \leq 1/3$, then there is enough empty space between C_5 , C_6 , C_7 and C_8 to pack the next five cubes, for example in the following places:

$$
\begin{aligned}\n&\left[\frac{1}{2}-\frac{1}{2}a_9,\frac{1}{2}+\frac{1}{2}a_9\right]\times[0,a_9]\times[0,a_9]\times[1-a_9,1],\\
&[0,a_{10}]\times\left[\frac{1}{2}-\frac{1}{2}a_{10},\frac{1}{2}+\frac{1}{2}a_{10}\right]\times[0,a_{10}]\times[1-a_{10},1],\\
&\left[\frac{1}{2}-\frac{1}{2}a_{11},\frac{1}{2}+\frac{1}{2}a_{11}\right]\times[1-a_{11},1]\times[0,a_{11}]\times[1-a_{11},1],\\
&[1-a_{12},1]\times\left[\frac{1}{2}-\frac{1}{2}a_{12},\frac{1}{2}+\frac{1}{2}a_{12}\right]\times[0,a_{12}]\times[1-a_{12},1],\\
&\left[\frac{1}{2}-\frac{1}{2}a_{13},\frac{1}{2}+\frac{1}{2}a_{13}\right]\times\left[\frac{1}{2}-\frac{1}{2}a_{13},\frac{1}{2}+\frac{1}{2}a_{13}\right]\times[0,a_{13}]\times[1-a_{13},1].\n\end{aligned}
$$

Appendix B.

We find the global minimum of the function

$$
f(x,y) = 2x^{4} + 3 \cdot \left(\frac{1}{3}\right)^{4} + 2y^{4} + (1 - x - y)(1 - y)^{3}
$$

in the domain D_f given by the following inequalities:

$$
\begin{cases} \frac{1}{3} \leq x \leq \frac{1}{2} \\ 0 \leq y \leq \frac{1}{3} \end{cases}
$$

.

Since $f'_x(x,y) = 8x^3 - (1-y)^3$, the equation $f'_x(x,y) = 0$ implies that $x = \frac{1}{2} - \frac{1}{2}y$. Moreover $f'_y(x, y) = 16y^3 - (1 - y)^3 - 3(1 - y)^2(1 - x - y)$. Hence

$$
f'_y\left(\frac{1}{2} - \frac{1}{2}y, y\right) = 16y^3 - (1 - y)^3 - 3(1 - y)^2(1 - \frac{1}{2} + \frac{1}{2}y - y) = 16y^3 - \frac{5}{2}(1 - y)^3 = 0
$$

at $y_0 = \frac{5}{2\sqrt[3]{10}}$ $\frac{5}{2\sqrt[3]{100+5}} > \frac{1}{3}$. Thus there is no stationary point in *D_f*.

The boundary of the rectangle D_f consists of four segments.

• The segment $y = 1/3$ with $1/3 \le x \le 1/2$. The function

$$
f_1(x) = f\left(x, \frac{1}{3}\right) = 2x^4 - \frac{8}{27}x + \frac{23}{81}
$$

for $x \in [1/3, 1/2]$ reaches its lowest value 17/81 at $x = 1/3$.

• The segment $x = 1/3$ with $0 \le y \le 1/3$. Consider the function

$$
f_2(y) = f\left(\frac{1}{3}, y\right) = 5y^4 - \frac{11}{3}y^3 + 5y^2 - 3y + \frac{59}{81}
$$

for $y \in [0, 1/3]$. Since

$$
f_2'(y) = 20y^3 - 11y^2 + 10y - 3
$$

and

$$
f_2''(y) = 60y^2 - 22y + 10 > 0,
$$

it follows that

$$
f_2'(y) \le f_2'\Big(\frac{1}{3}\Big) = -\frac{4}{27} < 0
$$

for $y \leq 1/3$, i.e., the function f_2 is decreasing in interval [0, 1/3]. Thus $f_2(y) \ge f_2(1/3) = 17/81$ for $0 \le y \le 1/3$.

• The segment $x = 1/2$ with $0 \le y \le 1/3$. Consider the function

$$
f_3(y) = f\left(\frac{1}{2}, y\right) = 5y^4 - \frac{9}{2}y^3 + \frac{9}{2}y^2 - \frac{5}{2}y + \frac{143}{216}.
$$

for $y \in [0, 1/3]$. Since

$$
f_3'(y) = 20y^3 - \frac{27}{2}y^2 + 9y - \frac{5}{2}
$$

and

$$
f_2''(y) = 60y^2 - 27y + 9 > 0
$$

it follows that

$$
f_3'(y) \le f_3'(1/3) = -\frac{7}{27} < 0
$$

for $y \leq 1/3$, i.e., the function f_3 is decreasing for $y \in [0, 1/3]$. Thus $f_3(y) \geq$ $f_3(1/3) = 145/648 > 17/81$ for $0 \le y \le 1/3$.

• The segment $y = 0$ with $1/3 \leq x \leq 1/2$. The function

$$
f_4(x) = f(x,0) = 2x^4 - x + 1 + \frac{1}{27} > 2\left(\frac{1}{3}\right)^4 - \frac{1}{2} + \frac{28}{27} = \frac{91}{162} > \frac{17}{81}.
$$

APPENDIX C.

We will show that the global minimum of the function

$$
g(x,y) = 2x^4 + 12y^4 + (1 - x - y)(1 - y)^3
$$

in the extended (for simplicity of calculations) domain D_q given by the following inequalities:

$$
\begin{cases} 0 \le x \le \frac{1}{2} \\ 0 \le y \le \frac{1}{3} \end{cases}
$$

is greater than 17/81. Since $g'_x = 8x^3 - (1 - y)^3$, the equation $g'_x(x, y) = 0$ implies that $x = \frac{1}{2} - \frac{1}{2}y$. Moreover $g'_y(x, y) = 48y^3 - (1 - y)^3 - 3(1 - y)^2(1 - x - y)$. Hence

$$
g'_y\left(\frac{1}{2} - \frac{1}{2}y, y\right) = 48y^3 - \frac{5}{2}(1 - y)^3 = 0
$$

at $y_0 = \frac{5}{2\sqrt[3]{30}}$ $\frac{5}{2\sqrt[3]{300}+5} < \frac{1}{3}$. Then $x_0 = \frac{\sqrt[3]{300}}{2\sqrt[3]{300}}$. $\frac{\sqrt[3]{300}}{2\sqrt[3]{300}+5} \in [1/3, 1/2]$ and $g(x_0, y_0) = \frac{1500}{(2\sqrt[3]{300} + 5)^3} \approx 0.2412 > \frac{17}{81}$ $\frac{1}{81}$.

The boundary of the rectangle D_q consists of four segments.

• The segment $y = 1/3$ with $0 \le x \le 1/2$. The function

$$
g_1(x) = g\left(x, \frac{1}{3}\right) = 2x^4 - \frac{8}{27}x + \frac{28}{81}
$$

for $x \in [0, 1/2]$ reaches its lowest value $22/81$ at $x = 1/3$.

• The segment $x = 0$ with $0 \le y \le 1/3$. The function

$$
g_2(y) = g\left(0, y\right) = 12y^4 + (1 - y)^4
$$

for $y \in [0, 1/3]$ reaches its lowest value $12/(1 + \sqrt[3]{12})^3 \approx 0.3371 > 17/81$ at $y = 1/(1 + \sqrt[3]{12}).$

• The segment $x = 1/2$ with $0 \le y \le 1/3$. Consider the function

$$
g_3(y) = g\left(\frac{1}{2}, y\right) = 2\left(\frac{1}{2}\right)^4 + 12y^4 + \left(\frac{1}{2} - y\right)(1 - y)^3
$$

for $y \in [0, 1/3]$. Since $y \leq 1/3$, we get

$$
g_3(y) \ge \frac{1}{4} + 12y^4 + \left(\frac{1}{2} - y\right)\left(1 - \frac{1}{3}\right)^3 = 12y^4 - \frac{8}{27}y + \frac{59}{216}
$$

Let $\psi(y) = 12y^4 - \frac{8}{27}y + \frac{59}{216}$. Since ψ for $y \in [0, 1/3]$ reaches its lowest value $(177 - 8\sqrt[3]{36})/648 \approx 0.23238 > 17/81$ at $x = 1/(3\sqrt[3]{6})$, it follows that $g_3(y) > 17/81.$

• The segment $y = 0$ with $0 \le x \le 1/2$. The function

$$
g_4(x) = g(x, 0) = 2x^4 - x + 1 > -\frac{1}{2} + 1 = \frac{1}{2} > \frac{17}{81}.
$$

REFERENCES

- [1] Januszewski, J., *Packing rectangles into the unit square*, Geom. Dedicata **8** (2000), 13–18.
- [2] Januszewski, J., Zielonka, Ł., *Packing a triangle by sequences of its non-blocking homothetic copies*, Period. Math. Hung., accepted.
- [3] Januszewski, J., Zielonka, Ł., *Packing of non-blocking cubes into the unit cube*, Beiträge Algebra Geom., <https://doi.org/10.1007/s13366-023-00710-1>.
- [4] Januszewski, J., Zielonka, Ł., *Packing of non-blocking squares into the unit square*, Colloq. Math., <https://doi.org/10.4064/cm9006-12-2023>.
- [5] Januszewski, J., Zielonka, Ł., *Reserve in packing cubes into the unit cube*, Bull. Pol. Acad. Sci. Math. **71** (2023), 85–95.
- [6] Meir, A., Moser, L., *On packing of squares and cubes*, J. Combin. Theory **5** (1968), 126–134.
- [7] Moon, J.W., Moser, L., *Some packing and covering theorems*, Colloq. Math. **17** (1967), 103–110.

Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, AL. PROF. S. KALISKIEGO 7, Bydgoszcz, 85-789, Poland *E-mail*: januszew@pbs.edu.pl lukasz.zielonka@pbs.edu.pl