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PACKING OF NON-BLOCKING FOUR-DIMENSIONAL CUBES
INTO THE UNIT CUBE

Janusz Januszewski and Łukasz Zielonka

Abstract. Any collection of non-blocking four-dimensional cubes, whose total
volume does not exceed 17/81, can be packed into the unit four-dimensional
cube. This bound is tight for the parallel packing.

1. Introduction

Let Cn be a d-dimensional cube, for n = 1, 2, . . .. Moreover, let Id be a
d-dimensional cube of edges of length 1. We say that C1, C2, . . . can be packed
into Id if it is possible to apply translations and rotations to the sets Cn so that
the resulting translated and rotated cubes are contained in Id and have mutually
disjoint interiors. The packing is called parallel if each edge of any packed cube is
parallel to an edge of Id.

Meir and Moser in their seminal paper [6] showed that any family of d-dimensional
cubes can be parallel packed into the unit d-dimensional cube Id, provided that
the total volume of the cubes is not greater than 21−d. Moreover, it is known that
any family of d-dimensional cubes of total volume not greater than 21−d can be
packed into Id so that the uncovered part of Id contains a cube of edge length
1 − d
√

2/2 (see [5]). It is very likely that also any family of d-dimensional boxes
with edge lengths not greater than 1 of total volume not greater than 21−d can be
packed into Id, but this conjecture has been confirmed only for d = 2 (see [1]).

Obviously, any two cubes whose sum of edge lengths is greater than 1 (and,
consequently, whose total volume is greater than 21−d) cannot be parallel packed
into Id; after packing one of the cubes, there is no enough space in Id to pack the
other cube. Denote by an the edge length of Cn, for n = 1, 2, . . .. We say that the
cubes C1, C2, . . . are non-blocking, if ai + aj ≤ 1 for any i 6= j (compare [2]). It
is known that any collection of non-blocking squares, whose total area does not
exceed 5/9, can be packed in I2 (see [4]). Furthermore, in [3] it is shown that any
collection of non-blocking three-dimensional cubes, whose total volume does not
exceed 1/3, can be packed in I3.
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Fig. 1: Hd and Bd for d = 2 and d = 3

Conjecture 1. Any collection of non-blocking d-dimensional cubes can be parallel
packed into Id, provided that the sum of volumes of the cubes is not greater than
(2d + 1)/3d.

Clearly, the upper bound (2d + 1)/3d cannot be increased here: 2d + 1 cubes of
edge lengths greater than 1/3 cannot be parallel packed into Id.

The aim of this note is to confirm this conjecture in dimension d = 4.

2. M+
d -method

We will use the packing method based on the methods described in [4], [3], [6]
and [7]. Let Id = [0, 1]d, Hd = [0, 1]d−1× [0, h] and Bd = [1−w, 1]d−1× [h− v, h],
where 0 ≤ w < 1 and 0 ≤ v < h (see Fig. 1). Moreover, let C be a collection
of d-dimensional cubes C1, C2, . . .. Assume that an ≥ an+1 for n = 1, 2, . . ., that
a1 + w ≤ 1 and that a1 + a2 ≤ 1, where an denotes the length of the edge of Cn.
By IntB denote the interior of B.

The description is inductive with respect to d.
• For d = 2, the method M+

2 (presented in [4]) is as follows. Squares C1, C2, . . .
are packed into H2 \ IntB2 in layers L1, L2, . . .. The first layer is either the
rectangle [0, 1] × [0, a1] if

(
[0, 1] × [0, a1]

)
∩ IntB2 = ∅ or the rectangle

[0, 1− w]× [0, a1], otherwise (see Fig. 2). The squares C1, C2, . . . are packed
into H2 along the base of the first layer L1 from left to right. If Cn1 is
the first square that cannot be packed in that way, then the new layer L2,
of height an1 , is created directly above L1. The base of L2 is either equal
to 1 if

(
[0, 1] × [a1, a1 + an1 ]

)
∩ IntB2 = ∅ or equal to 1 − w, otherwise.

The squares Cn1 , Cn1+1, . . . are packed into H2 along the base of the second
layer from left to right. If Cn2 is the first square that cannot be packed
in that way in the second layer, then the new layer L3, of height an2 , is
created directly above the second layer. The base of L3 is either equal to 1 if(
[0, 1]× [a1 + an1 , a1 + an1 + an2 ]

)
∩ IntB2 = ∅ or equal to 1− w, otherwise,

etc.
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• Assume that d ≥ 3 and that the methods M+
j are described for j = 2, 3, . . . , d−

1. Cubes from C are packed into Hd in layers L1, L2, . . . similarly as in the
method of Meir and Moser [6]. The base of each layer is a unit (d-1)-dimensional
cube. The first layer is the box [0, 1]d−1 × [0, a1]. The cubes are packed in
L1 so that the (d− 1)-dimensional bottoms of the cubes are packed into the
(d−1)-dimensional bottom of the layer according to the method M+

d−1 (where
h = 1, i.e., where Hd−1 = Id−1). If

(
[0, 1]d−1 × [0, a1]

)
∩ IntBd = ∅, then

Bd−1 = ∅ in the M+
d−1-method, otherwise Bd−1 = [1 − w, 1]d−1. If Cn1 is

the first cube that cannot be packed in L1, then the new layer L2, of height
an1 , is created directly above L1. The cubes Cn1 , Cn1+1, . . . are packed into
L2 so that the (d− 1)-dimensional bottoms of the cubes are packed into the
(d − 1)-dimensional bottom of the layer according to the M+

d−1-method. If(
[0, 1]d−1 × [a1, a1 + an1 ]

)
∩ IntBd = ∅, then Bd−1 = ∅ in the M+

d−1-method,
otherwise Bd−1 = [1−w, 1]d−1. If Cn2 is the first cube that cannot be packed
in that way in the second layer, then the new layer L3, of height an2 , is
created directly above the second layer, etc. If t is an integer such that
a1 + an1 + . . .+ at > h, then we stop the packing process; there is no empty
space in Hd to create a new layer to pack Cnt (see Fig. 2, where nt = z).

Lemma 1. If Cz is the first cube from C that cannot be packed into Hd \ IntBd by
the M+

d -method, then the total volume of cubes C1, C2, . . . , Cz plus the volume of
B is greater than ad1 + (1− a1)d−1(h− a1).

Proof. The proof for d = 2 and for d = 3 is given in [4] and [3]. Assume that
d ≥ 3 and that the statements holds for each dimension j = 2, 3, . . . , d− 1.

The cubes from C are packed into Hd \ IntBd by the M+
d -method. Clearly, the

volume of Bd is equal to wd−1v and the volume of the (d− 1)-dimensional bottom
of B equals wd−1. Let n0 = 1. Clearly, z = nt, where t is the smallest integer such
that a1 + an1 + . . .+ ant > h (see Fig. 2).

Since Cn1 cannot be packed in the first layer L1, by the inductive assumption
we conclude that the sum of volumes of (d − 1)-dimensional bottoms of cubes
C1, C2, . . . , Cn1 is greater than ad−1

1 + (1− a1)d−1, provided that L1 ∩ IntBd = ∅
or greater than ad−1

1 + (1 − a1)d−1 − wd−1, provided that L1 ∩ IntBd 6= ∅ (the
volume of Bd−1 equals wd−1). Thus the sum of volumes of cubes in L1 is greater
than ad1 +

[
(1− a1)d−1− ad−1

n1

]
· an1 , provided that L1 ∩ IntBd = ∅ or greater than

ad1 +
[
(1− a1)d−1 − ad−1

n1
− wd−1] · an1 , provided that L1 ∩ IntBd 6= ∅.

Let k be the smallest integer such that
a1 + an1 + . . .+ ank−1 + v > h

(see Fig. 2, where k = 2). If j ∈ {1, . . . , k − 1}, then the total volume of
(d− 1)-dimensional bottoms of cubes packed in Lj is greater than

ad−1
nj−1

+ (1− anj−1)d−1 − ad−1
nj .

This means that the sum of volumes of cubes in Lj is greater than

adnj−1
+
[
(1− anj−1)d−1 − ad−1

nj

]
anj .
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If j ∈ {k, . . . , t}, then the total volume of (d − 1)-dimensional bottoms of cubes
packed in Lj is greater than

ad−1
nj−1

+ (1− anj−1)d−1 − wd−1 − ad−1
nj .

This means that the sum of volumes of cubes in Lj is greater than

adnj−1
+
[
(1− anj−1)d−1 − wd−1 − ad−1

nj

]
anj .

As a consequence, the sum of volumes of C1, . . . , Cz is greater than

ad1 +
[
(1− a1)d−1 − ad−1

n1

]
an1

+ adn1
+
[
(1− an1)d−1 − ad−1

n2

]
an2

+ . . .+ adnk−2
+
[
(1− ank−2)d−1 − ad−1

nk−1

]
ank−1

+ adnk−1
+
[
(1− ank−1k)d−1 − wd−1 − ad−1

nk

]
ank + . . .

+ adnt−1
+
[
(1− ant−1)d−1 − wd−1 − ad−1

nt

]
ant + adnt

≥ ad1 + (1− a1)d−1(an1 + . . .+ ant)− wd−1(ank + . . .+ ant−1) .

Obviously,
a1 + an1 + . . .+ ant > h

as well as
ank + . . .+ ant−1 < v

(see Fig. 2, where k = 2 and t = 5).
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Fig. 2: Projection of Hd onto x1xd plane.
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Fig. 3: Packing cubes C1, C2, . . . , C13 into U when a5 ≤ 1/3.

Thus the sum of volumes of C1, . . . , Cz is greater than

ad1 + (1− a1)d−1(h− a1)− wd−1v.

�

3. Packing of non-blocking four-dimensional cubes into I4

Let C be a collection of cubes C1, C2, . . .. Assume that a1 + a2 ≤ 1 and that
an ≥ an+1, where an denotes the edge length of Cn for n = 1, 2 . . ..

Let

U = [0, 1]× [0, 1]× [0, 1]× [1− a1, 1] ,
H4 = [0, 1]× [0, 1]× [0, 1]× [0, 1− a2] ,
B4 = [1− a1, 1]× [1− a1, 1]× [1− a1, 1]× [1− a1, 1− a2] .

Clearly, if a1 6= a2, then B4 is a box of size a1 × a1 × a1 × (a1 − a2).
• The first cube C1 is packed into U at the vertex (1, 1, 1, 1).
• The cubes C2, C3, C4 are packed into U at the vertices of (0, 0, 1, 1), (1, 0, 1, 1)

and (0, 1, 1, 1), respectively.
• The cubes C5, C6, C,C8 are packed into U at the vertices of (0, 0, 0, 1), (1, 0, 0, 1),

(0, 1, 0, 1) and (1, 1, 0, 1), respectively.
• If a5 > 1/3, then no more cube will be packed into U \H4.
• If a5 ≤ 1/3, then C9, . . . , C13 are packed into U \ IntH4 (see Fig. 3, a detailed

description can be found in Appendix A).
• The remaining cubes are packed into H4 \ IntB4 in corresponding layers Li

(i = 1, 2, . . .) by the M+
4 -method (see Fig. 2 and Fig. 4).

Theorem 2. Any collection of non-blocking four-dimensional cubes with total
volume not greater than 17/81 can be packed into I4.

Proof. Denote by C1, C2, . . . the cubes in the collection. Without loss of generality
we can assume that a1 ≥ a2 ≥ . . ., where an is the edge length of Cn, for
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Fig. 4: Three-dimensional top of H4.

n = 1, 2, . . .. We will show that if the cubes cannot be packed into I4, then
a4

1 + a4
2 + . . . > 17/81, which is a contradiction.

Consider three cases.
Case 1: a9 > 1/3.

Eight first cubes were packed at the top of I4 and the remaining cubes C9, C10, . . .
were packed into H4. The volume of B4 is equal to a3

1(a1− a2). If the cubes cannot
be packed into I4, then, by Lemma 1 (for d = 4 and h = 1 − a2), the sum of
volumes of the cubes is greater than

(a4
1 + a4

2 + · · ·+ a4
8) + a4

9 + (1− a9)3(1− a2 − a9)− a3
1(a1 − a2)

= a3
1a2 + a4

2 + · · ·+ a4
9 + (1− a9)3(1− a2 − a9)

≥ 2a4
2 + 7a4

9 + (1− a2 − a9)(1− a9)3.

Consider the function
ϕ(a2, a9) = 2a4

2 + 7a4
9 + (1− a2 − a9)(1− a9)3

in the domain given by inequalities 1/3 < a9 ≤ a2 ≤ 1/2.
Since ϕ′a2

(a2, a9) = 8a3
2 − (1 − a9)3 ≥ 8a3

9 − (1 − a9)3 > 0 for 1/3 < a9 ≤ a2,
we get

ϕ(a2, a9) ≥ ϕ(a9, a9) = 9a4
9 + (1− 2a9)(1− a9)3 .

Let ϕ1(a9) = 9a4
9 + (1− 2a9)(1− a9)3. Since

ϕ′1(a9) = 44a3
9 − 21a2

9 + 18a9 − 5
and

ϕ′′1(a9) = 132a2
9 − 42a9 + 18 > 0

it follows that
ϕ′1(a9) > ϕ′1(1/3) > 0

for a9 > 1/3 and that
ϕ(a2, a9) > ϕ1(1/3) = 17/81 .

Case 2: a9 ≤ 1/3 and a5 > 1/3.
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Eight first cubes were packed at the top of I4 and the remaining cubes C9, C10, . . .
were packed into H4. If the cubes cannot be packed into I4, then, by Lemma 1,
the sum of volumes of the cubes is greater than

a4
1 + a4

2 + · · ·+ a4
8 + a4

9 + (1− a9)3(1− a2 − a9)− a3
1(a1 − a2)

= a3
1a2 + a4

2 + (a4
3 + a4

4 + a4
5) + (a4

6 + a4
7 + a4

8 + a4
9) + (1− a9)3(1− a2 − a9)

≥ 2a4
2 + 3 ·

(1
3
)4 + 4a4

9 + (1− a2 − a9)(1− a9)3 .

The function

2x4 + 3 ·
(1

3

)4
+ 4y4 + (1− x− y)(1− y)3

reaches values not smaller than 17/81 in the domain D given by the inequalities
0 < y ≤ 1/3 < x ≤ 1/2 (see Appendix B)
Case 3: a5 ≤ 1/3 .

Thirteen cubes were packed at the top of I4.
If the cubes cannot be packed into I4, then, by Lemma 1, the sum of volumes

of the cubes is greater than

(a4
1 + a4

2 + · · ·+ a4
13) + a4

14 + (1− a14)3(1− a2 − a14)− a3
1(a1 − a2)

= a3
1a2 + a4

2 + · · ·+ a4
14 + (1− a14)3(1− a2 − a14)

≥ 2a4
2 + 12a4

14 + (1− a2 − a14)(1− a14)3 .

The function 2x4 + 12y4 + (1− x− y)(1− y)3 reaches values not smaller than
17/81 for 0 < y < 1/3 and y ≤ x ≤ 1/2 (see Appendix C). �

Appendix A.

The first eight cubes are packed in the following places:
[1− a1, 1]× [1− a1, 1]× [1− a1, 1]× [1− a1, 1],
[0, a2]× [0, a2]× [1− a2, 1]× [1− a2, 1],
[1− a3, 1]× [0, a3]× [1− a3, 1]× [1− a3, 1],
[0, a4]× [1− a4, 1]× [1− a4, 1]× [1− a4, 1],
[0, a5]× [0, a5]× [0, a5]× [1− a5, 1],
[1− a6, 1]× [0, a6]× [0, a6]× [1− a6, 1],
[0, a7]× [1− a7, 1]× [0, a7]× [1− a7, 1],
[1− a8, 1]× [1− a8, 1]× [0, a8]× [1− a8, 1].

If a5 ≤ 1/3, then there is enough empty space between C5, C6, C7 and C8 to pack
the next five cubes, for example in the following places:

[ 1
2 −

1
2a9,

1
2 + 1

2a9]× [0, a9]× [0, a9]× [1− a9, 1],
[0, a10]× [ 1

2 −
1
2a10,

1
2 + 1

2a10]× [0, a10]× [1− a10, 1],
[ 1

2 −
1
2a11,

1
2 + 1

2a11]× [1− a11, 1]× [0, a11]× [1− a11, 1],
[1− a12, 1]× [ 1

2 −
1
2a12,

1
2 + 1

2a12]× [0, a12]× [1− a12, 1],
[ 1

2 −
1
2a13,

1
2 + 1

2a13]× [ 1
2 −

1
2a13,

1
2 + 1

2a13]× [0, a13]× [1− a13, 1].
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Appendix B.

We find the global minimum of the function

f(x, y) = 2x4 + 3 ·
(1

3

)4
+ 2y4 + (1− x− y)(1− y)3

in the domain Df given by the following inequalities:{
1
3 ≤ x ≤

1
2

0 ≤ y ≤ 1
3

.

Since f ′x(x, y) = 8x3 − (1− y)3, the equation f ′x(x, y) = 0 implies that x = 1
2 −

1
2y.

Moreover f ′y(x, y) = 16y3 − (1− y)3 − 3(1− y)2(1− x− y). Hence

f ′y

(1
2 −

1
2y, y

)
= 16y3− (1−y)3−3(1−y)2(1− 1

2 + 1
2y−y) = 16y3− 5

2(1−y)3 = 0

at y0 = 5
2 3√100+5 >

1
3 . Thus there is no stationary point in Df .

The boundary of the rectangle Df consists of four segments.
• The segment y = 1/3 with 1/3 ≤ x ≤ 1/2. The function

f1(x) = f
(
x,

1
3

)
= 2x4 − 8

27x+ 23
81

for x ∈ [1/3, 1/2] reaches its lowest value 17/81 at x = 1/3.
• The segment x = 1/3 with 0 ≤ y ≤ 1/3. Consider the function

f2(y) = f
(1

3 , y
)

= 5y4 − 11
3 y

3 + 5y2 − 3y + 59
81

for y ∈ [0, 1/3]. Since
f ′2(y) = 20y3 − 11y2 + 10y − 3

and
f ′′2 (y) = 60y2 − 22y + 10 > 0 ,

it follows that
f ′2(y) ≤ f ′2

(1
3

)
= − 4

27 < 0

for y ≤ 1/3, i.e., the function f2 is decreasing in interval [0, 1/3]. Thus
f2(y) ≥ f2(1/3) = 17/81 for 0 ≤ y ≤ 1/3.

• The segment x = 1/2 with 0 ≤ y ≤ 1/3. Consider the function

f3(y) = f
(1

2 , y
)

= 5y4 − 9
2y

3 + 9
2y

2 − 5
2y + 143

216 .

for y ∈ [0, 1/3]. Since

f ′3(y) = 20y3 − 27
2 y

2 + 9y − 5
2

and
f ′′2 (y) = 60y2 − 27y + 9 > 0

it follows that
f ′3(y) ≤ f ′3(1/3) = − 7

27 < 0
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for y ≤ 1/3, i.e., the function f3 is decreasing for y ∈ [0, 1/3]. Thus f3(y) ≥
f3(1/3) = 145/648 > 17/81 for 0 ≤ y ≤ 1/3.

• The segment y = 0 with 1/3 ≤ x ≤ 1/2. The function

f4(x) = f(x, 0) = 2x4 − x+ 1 + 1
27 > 2

(1
3

)4
− 1

2 + 28
27 = 91

162 >
17
81 .

Appendix C.

We will show that the global minimum of the function
g(x, y) = 2x4 + 12y4 + (1− x− y)(1− y)3

in the extended (for simplicity of calculations) domain Dg given by the following
inequalities: {

0 ≤ x ≤ 1
2

0 ≤ y ≤ 1
3

is greater than 17/81. Since g′x = 8x3 − (1− y)3, the equation g′x(x, y) = 0 implies
that x = 1

2 −
1
2y. Moreover g′y(x, y) = 48y3− (1− y)3− 3(1− y)2(1− x− y). Hence

g′y

(1
2 −

1
2y, y

)
= 48y3 − 5

2(1− y)3 = 0

at y0 = 5
2 3√300+5 <

1
3 . Then x0 =

3√300
2 3√300+5 ∈ [1/3, 1/2] and

g(x0, y0) = 1500
(2 3
√

300 + 5)3
≈ 0.2412 > 17

81 .

The boundary of the rectangle Dg consists of four segments.
• The segment y = 1/3 with 0 ≤ x ≤ 1/2. The function

g1(x) = g
(
x,

1
3

)
= 2x4 − 8

27x+ 28
81

for x ∈ [0, 1/2] reaches its lowest value 22/81 at x = 1/3.
• The segment x = 0 with 0 ≤ y ≤ 1/3. The function

g2(y) = g
(

0, y
)

= 12y4 + (1− y)4

for y ∈ [0, 1/3] reaches its lowest value 12/(1 + 3
√

12)3 ≈ 0.3371 > 17/81 at
y = 1/(1 + 3

√
12).

• The segment x = 1/2 with 0 ≤ y ≤ 1/3. Consider the function

g3(y) = g
(1

2 , y
)

= 2
(1

2

)4
+ 12y4 +

(1
2 − y

)
(1− y)3

for y ∈ [0, 1/3]. Since y ≤ 1/3, we get

g3(y) ≥ 1
4 + 12y4 +

(1
2 − y

)(
1− 1

3

)3
= 12y4 − 8

27y + 59
216

Let ψ(y) = 12y4 − 8
27y + 59

216 . Since ψ for y ∈ [0, 1/3] reaches its lowest
value (177− 8 3

√
36)/648 ≈ 0.23238 > 17/81 at x = 1/(3 3

√
6), it follows that

g3(y) > 17/81.
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• The segment y = 0 with 0 ≤ x ≤ 1/2. The function

g4(x) = g(x, 0) = 2x4 − x+ 1 > −1
2 + 1 = 1

2 >
17
81 .
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