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COMPLETE SOLUTIONS OF
A LEBESGUE-RAMANUJAN-NAGELL TYPE EQUATION

Priyanka Baruah, Anup Das, and Azizul Hoque

Abstract. We consider the Lebesgue-Ramanujan-Nagell type equation x2 +
5a13b17c = 2myn, where a, b, c,m ≥ 0, n ≥ 3 and x, y ≥ 1 are unknown
integers with gcd(x, y) = 1. We determine all integer solutions to the above
equation. The proof depends on the classical results of Bilu, Hanrot and
Voutier on primitive divisors in Lehmer sequences, and finding all S-integral
points on a class of elliptic curves.

1. Introduction

The Lebesgue-Ramanujan-Nagell type equation

(1.1) x2 +Dm = λyn, λ = 1, 2, 4 ,

in integer unknowns x, y, m ≥ 1 and n ≥ 3, has a long and distinguished history.
The first result concerning the solutions of (1.1) was due to Lebesgue [21], who
proved that (1.1) has no solutions when λ = D = 1 and y > 1. Later, many authors
become interested in this equation and thus there are good amount of research
concerning the solutions of (1.1). We direct the readers to the beautiful survey [20]
for further information. Several authors studied some generalizations of (1.1) in
[5, 9, 10, 13, 16, 19].

Recently, many authors become interested to find the integer solutions of the
Lebesgue-Ramanujan-Nagell type equation

x2 + pa1
1 pa2

2 . . . pakk = yn, x, y ≥ 1, gcd(x, y) = 1, a1, a2, . . . , ak ≥ 0, n ≥ 3 ,

where p1, p2, . . . , pk are distinct primes with k ≥ 2. There are many results concer-
ning the integer solutions of this equation, but we refer to the very recent papers
[2, 4, 6, 11, 12, 15, 17, 27]. From existing results, it is quite natural to consider
Diophantine equations similar to the above one, where the right side is a product
of an unknown integer with unknown exponent and a known prime with unknown
exponent.
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Here, we consider the Diophantine equation
(1.2) x2 + 5a13b17c = 2myn, x ≥ 1, y > 1, gcd(x, y) = 1, a, b, c,m ≥ 0, n ≥ 3 ,
and we find all its the integer solutions (x, y, a, b, c,m, n). It is noted that by reading
(1.2) modulo 4, we see that x2 + 1 ≡ 0 (mod 4) which does not satisfy for any
integer x. Therefore (1.2) has no solution when m ≥ 2, and thus we consider (1.2)
for m = 0, 1. More precisely, we prove the following:
Theorem 1.1. If n 6= 3, 4, 6, 12, then (1.2) has no integer solutions. In case of
n = 3, 4, 6, 12, the integer solutions (x, y, a, b, c,m) are given below.

(i) For n = 3, (x, y, a, b, c,m) are given in Table 2.
(ii) For n = 4, (x, y, a, b, c,m) are given in Table 1.
(iii) For n = 6, (x, y, a, b, c,m) = (716, 9, 1, 1, 2, 0).
(iv) For n = 12, (x, y, a, b, c,m) = (716, 3, 1, 1, 2, 0).

Remarks. We mention some earlier results which can be retrieved from Theorem
1.1.

(i) For m ≥ 2, reducing (1.2) modulo 4, one can see that it has no integer
solutions.

(ii) Abu Muriefah and Arif proved that the Diophantine equation x2 + 5a = yn,
n ≥ 3, x ≥ 1, y > 1, gcd(x, y) = 1, has no integer solutions when a is odd (see,
[1, Theorem]). Later, Tao completely solved it in [25] and proved that it has no
integer solutions. We can get these results from our theorem. In fact, our theo-
rem shows that (x, y, a,m, n) = (239, 13, 0, 1, 4), (7, 3, 1, 1, 3), (99, 17, 2, 1, 3)
are the only integer solutions of the Diophantine equation

x2 + 5a = 2myn, n ≥ 3, x ≥ 1, y > 1, gcd(x, y) = 1.
(iii) It follows from [23, Theorem 1.1] that (x, y, b, n) = (70, 17, 1, 3) is the

only integer solution of the Diophantine equation x2 + 13b = yn (b, x, y ≥
1, gcd(x, y) = 1, n ≥ 3). A consequence of Theorem 1.1 extends this re-
sult to the Diophantine equation x2 + 13b = 2myn (x, y ≥ 1, gcd(x, y) =
1, b,m ≥ 0, n ≥ 3). In this case, the only integer solutions are (x, y, b,m, n) =
(70, 17, 1, 0, 3), (9, 5, 2, 1, 3), (239, 13, 0, 1, 4).

(iv) In [3], Abu Muriefah et al. proved that the Diophantine equation x2 +
5a13b = yn, n ≥ 3, x ≥ 1, y > 1, gcd(x, y) = 1, has no integer solutions, except
(x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2), (4, 3, 1, 1). We can get this result from
our theorem. Our theorem also confirms that the integer solution of the
Diophantine equation x2 + 5a13b = 2yn (n ≥ 3, x ≥ 1, y > 1, gcd(x, y) = 1),
are (x, y, a, b, n) = (239, 13, 0, 0, 4), (9, 5, 0, 2, 3), (7, 3, 1, 0, 3), (99, 17, 2, 0, 3),
(19, 7, 2, 1, 3), (253, 73, 2, 4, 3), (79137, 1463, 2, 3, 3), (188000497, 260473, 8, 4, 3).

(v) Pink and Rábai completely solved the Diophantine equation x2 + 5a17c =
yn (x, y ≥ 1, gcd(x, y) = 1, a, c ≥ 0, n ≥ 3) in [24]. However, our theorem gives
all the integer solutions of an extension of this equation, namely x2 + 5a17c =
2myn (x, y ≥ 1, gcd(x, y) = 1, a, c ≥ 0, n ≥ 3).

Theorem 1.1 yields the following straightforward corollary. In case of m = 0,
this corollary follows from the work of Gou and Wang [18].
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Corollary 1.1. The Diophantine equation
x2 + 17k = 2myn, x ≥ 1, y > 1, gcd(x, y) = 1, k,m ≥ 0, n ≥ 3,

has no integer solutions, except (x, y, k,m, n) = (8, 3, 1, 0, 4), (31, 5, 2, 1, 4),
(239, 13, 0, 1, 4).

The next corollary immediately follows from Theorem 1.1.

Corollary 1.2. The only integer solutions of the Diophantine equation
x2 + 13k17` = 2myn, x ≥ 1, y > 1, gcd(x, y) = 1, k, `,m ≥ 0, n ≥ 3

are (x, y, k, `,m, n) = (70, 17, 1, 0, 0, 3), (9, 5, 2, 0, 1, 3), (8, 3, 0, 1, 0, 4), (31, 5, 0, 2,
1, 4), (239, 13, 0, 0, 1, 4).

We organize this article as follows. In §2, we deal with the exponent n satisfying
4 | n. In this case, we transform (1.2) into quartic curves, and thus the problem
is reduced to finding all {5, 13, 17}-integral points on these curves. Recall that
for a finite set of prime numbers S, an S-integer is a rational number r/s with
coprime integers r and s > 0 such that any prime factor of s lies in S. We treat
(1.2) in §3 for prime exponent n ≥ 3. For n ≥ 5 with n 6= 7, we apply the result
of Bilu, Hanrot and Voutier [7] concerning the existence of primitive divisors in
Lehmer sequences. In case of n = 7, we first use some criteria for the existence
of primitive divisors in Lehmer sequences to handle some cases of (1.2). For the
remaining cases, we somehow transform them into elliptic curves. Analogously, we
transform (1.2) into elliptic curves for n = 3. Then we solve the problem by finding
all {5, 13, 17}-integral points on these elliptic curves. In §4, we summarize the proof
of Theorem 1.1. All the computations are done using MAGMA [8].

2. The case: 4 | n

Here, we prove the following proposition.

Proposition 2.1. If n is a multiple of 4, then all integer solutions of (1.2) are
given in Table 1.

Tab. 1: All the solutions of (1.2) when 4 | n

x y a b c m n x y a b c m n

8 3 0 0 1 0 4 4 3 1 1 0 0 4
26556 163 5 1 1 0 4 36 7 1 1 1 0 4
716 27 1 1 2 0 4 716 3 1 1 2 0 12
239 13 0 0 0 1 4 31 5 0 0 2 1 4

Proof. Assume that n = 4t, where t ≥ 1 is an integer. Then (1.2) can be written
as
(2.1) x2 + 5a13b17c = 2m

(
yt
)4
, x ≥ 1, y > 1, gcd(x, y) = 1, a, b, c,m ≥ 0, t ≥ 1.

Recall that (2.1) has no integer solution when m ≥ 2. Let a ≡ a1 (mod 4), b ≡ b1
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(mod 4) and c ≡ c1 (mod 4). Then (2.1) can be written as

x2 + 5a113b117c1z4 = 2m
(
yt
)4
,

where 5a13b17c = 5a113b117c1z4. This can be written as
(2.2) X2 = 2mY 4 − 5a113b117c1 ,
where X = x/z2 and Y = yt/z. Now the problem of finding integer solutions of
(2.1) is transformed to finding all {5, 13, 17}-integer points on the 128 quartic curves
defined by (2.2). Here, we use MAGMA [8] subroutine SIntegralLjunggrenPoints
to determine all {5, 13, 17}-integer points on these elliptic curves. Note that we
avoid {5, 13, 17}-integer points with XY = 0 as they yield to xy = 0. Also taking
into account that gcd(x, y) = 1, we don’t consider {5, 13, 17}-integer points such
that the numerators of X and Y are not coprime. We finally get only 8 integer
points (X,Y ) with XY 6= 0 and the numerators of X and Y are coprime. We then
use the relations

X = x

z2 , Y = yt

z
and 5a13b17c = 5a113b117c1z4,

to find the integer solutions (x, y, a, b, c,m, n), which are listed in Table 1. �

3. The case: n ≥ 3 is prime

We rewrite (1.2) by changing n to p to emphasize that the exponent is prime:
(3.1)
x2 + 5a13b17c = 2myp, x,≥ 1, y > 1, gcd(x, y) = 1, a, b, c ≥ 0, p ≥ 2,m = 0, 1.

Proposition 3.1. The equation (3.1) has no integer solutions for p > 3. When
p = 3, its integer solutions are given by (x, y, a, b, c,m) ∈ S, where

S :={(70, 17, 0, 1, 0, 0), (716, 81, 1, 1, 2, 0), (94, 21, 2, 0, 1, 0), (142, 29, 2, 2, 0, 0),
(2034, 161, 3, 0, 2, 0), (9, 5, 0, 2, 0, 1), (7, 3, 1, 0, 0, 1), (99, 17, 2, 0, 0, 1),
(63, 13, 2, 0, 1, 1), (19, 7, 2, 1, 0, 1), (33, 7, 2, 2, 1, 1), (118699, 1917, 2, 2, 1, 1),
(79137, 1463, 2, 3, 0, 1), (253, 73, 2, 4, 0, 1), (188000497, 260473, 8, 4, 0, 1),
(267689, 3297, 2, 2, 3, 1), (336049, 4317, 10, 0, 3, 1), (17127, 553, 6, 2, 1, 1)}.

Before proceeding further, we need to recall some results and to fix some
notations. The following lemma follows from [26, Corollary 3.1]; however, the idea
goes back to the work of Ljunggren [22].

Lemma 3.1. Let d ( 6= 3) be square-free positive integer. If n ≥ 3 is an odd integer
coprime to h(−d), the class number of Q(

√
−d), then all integer solutions (X,Y, Z)

of the Diophantine equation
X2 + dY 2 = 2mZn, X, Y ≥ 1, gcd(X, dY ) = 1,m = 0, 1,

can be expressed as

X + Y
√
−d√

2m
= ε1

(
u+ ε2v

√
−d√

2m

)n
,
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where u and v are positive integers satisfying 2mZ = u2 + dv2 and gcd(u, dv) = 1,
and ε1, ε2 ∈ {−1, 1}.

Assume that Fk (resp. Lk) denote the k-th Fibonacci (resp. Lucas) number
defined by F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 (resp. L0 = 2, L1 = 1, Lk =
Lk−1 + Lk−2) for k ≥ 2. Then the following lemma follows from Theorems 1,2,3
and 4 in [14].
Lemma 3.2. Let Fk and Lk be the k-th Fibonacci and Lucas numbers, respectively.
Then

(i) if Fk = x2, then (k, x) = (0, 0), (1,±1), (2,±1), (12,±12);
(iii) if Fk = 2x2, then (k, x) = (0, 0), (3,±1), (6,±2);
(iii) if Lk = x2, then (k, x) = (1,±1), (3,±2);
(iv) if Lk = 2x2, then (k, x) = (0,±1), (6,±3).
A pair (α1, α2) of algebraic integers is said to be a Lehmer pair if (α1 + α2)2

and α1α2 are two non-zero coprime rational integers, and α1/α2 is not a root of
unity. Also for a positive integer n, the Lehmer number corresponds to the pair
(α1, α2) is defined as

Ln(α1, α2) =


αn1 − αn2
α1 − α2

if n is odd,

αn1 − αn2
α2

1 − α2
2

if n is even.

Note that all Lehmer numbers are non-zero rational integers. A prime divisor p
of Ln(α1, α2) is primitive if p - (α2

1 − α2
2)2L1(α1, α2)L2(α2, α2) · · ·Ln−1(α1, α2).

Further,
(
(α1 + α2)2, (α1 − α2)2) is known as the parameters of the Lehmer pair

(α1, α2).
Proof of Proposition 3.1. We first rewrite (3.1) as follows:
(3.2) x2 + dz2 = 2myp, x, y ≥ 1, gcd(x, y) = 1, a, b, c ≥ 0, p ≥ 2,m = 0, 1,
where d ∈ {1, 17, 13, 221, 5, 85, 65, 1105} and z = 5a113b117c1 for some integers
a1, b1, c1 ≥ 0. Using MAGMA, we see that h(−d) ∈ {1, 2, 4, 8, 16}, and thus
p - h(−d). As gcd(x, y) = 1, so that gcd(x, dz) = 1. Therefore by Lemma 3.1, we
have (from (3.2))

(3.3) x+ z
√
−d√

2m
= ε1

(
u+ ε2v

√
−d√

2m

)p
,

where u and v are positive integers satisfying 2my = u2 + dv2 and gcd(u, dv) = 1,
and ε1, ε2 ∈ {−1, 1}. Note that 2 - duvy.

We define,

α := u+ ε2v
√
−d

ε1
√

2m
.

Then α and its conjugate ᾱ are algebraic integers such that gcd((α+ ᾱ)2, αᾱ) = 1.
It is easy to see that α/ᾱ satisfies

yZ2 − 21−m(u2 − v2d)Z + y = 0 .
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This shows that α/ᾱ is not a root of unity as gcd(2m−1(u2− v2d), y) = 1. Thus
(α, ᾱ) is a Lehmer pair and (22−mu2,−22−mv2d) is the corresponding parameter.

Let Ln be the Lehmer number corresponding to the Lehmer pair (α, ᾱ). Then

(3.4) |Lp(α, ᾱ)| = z

v
= 5a113b117c1

v
.

We divide the remaining part of the proof into several parts depending of the values
of p.

Case I: When p > 7. Assume that q is a primitive divisor of Lp(α, ᾱ). Then by
(3.4), q ∈ {5, 13, 17}. We now utilize the fact that any primitive divisor of Lp(α, ᾱ)
is congruent to ±1 modulo p, to conclude that none of these values of q is primitive
divisor of Lp(α, ᾱ). This contradicts to a consequence of the Primitive Divisor
Theorem for Lehmer sequences which states that, if p ≥ 3, then Lp(α, ᾱ) has a
primitive prime divisor except for finitely many pairs (α, ᾱ). The Lehmer sequences
correspond to these exceptional pairs (α, ᾱ) are given in [7, Tables 2 and 4] in
terms of their parameters ((α+ ᾱ)2, (α− ᾱ)2). Since (22−mu2,−22−mv2d) are the
parameters, so that p = 13 and (22−mu2, 22−mv2d) = (1, 7), which is not possible
as m = 0, 1. This concludes that (3.1) has no integer solutions when p > 7.

Case II: When p = 7. As in Case I, if q is a primitive divisor of L7(α, ᾱ),
then only possibility is q = 13. If b1 = 0, then L7(α, ᾱ) has no primitive di-
visors, and hence as in Case I by [7, Table 2], we have (22−mu2, 22−mv2d) =
(1, 7), (1, 19), (3, 5), (5, 7), (13, 3), (14, 22). These are not possible as m = 0, 1. There-
fore (3.1) has no solutions. Analogously, we can conclude that (3.1) has no solutions
if a1 = b1 = c1 = 0.

We now consider b1 ≥ 1. Note that

(3.5) (α2 − ᾱ2)2 = −24−2mu2v2d.

Thus if 13 | vd then 13 is not a primitive divisor, and hence as before (3.1) has
no solutions. Therefore d = 1, 5, 17, 85 and 13 - v. Also using the fact that for a
primitive divisor q, the sign of q ≡ ±1 (mod p) coincides with that of the Legendre
symbol

(
−4d
q

)
, we get d = 5, 85. Equating imaginary parts in (3.3), we get

(3.6) 23m5a113b117c1 = εv(7u6 − 35u4v2d+ 21u2v4d2 − v6d3) ,

where ε = ε1ε2 = ±1. Since gcd(u, v) = 1 and 2, 13 - v, so that (3.6) gives

v = 1, 5a1 , 17c1 , 5a117c1 .

For v = 1, (3.6) becomes

23m5a113b117c1 = ε(7u6 − 35u4d+ 21u2d2 − d3) .

We can rewrite this equation as

(3.7) DY 2 = 7X3 − 35dX2 + 21d2X − d3,
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where X = u2, Y = 2m5a213b217c2 , a2 = ba1/2c, b2 = bb1/2c, c2 = bc1/2c and
D = ε2m5i13j17k with i, j, k ∈ {0, 1}. We now multiply both sides of (3.7) by
72D3 and then rewrite as follows:
(3.8) V 2 = U3 − 35dDU + 147d2D2U − 49d3D3 ,

where U = 7DX and V = 7D2Y . Here, we use IntegralPoints subroutine
of MAGMA [8] to compute all integral points on the 64 elliptic curves defi-
ned by (3.8). We then apply the relations U = 7DX,V = 7D2Y,X = u2, Y =
2m5a213b217c2 , a2 = ba1/2c, b2 = bb1/2c, c2 = bc1/2c and D = ε2m5i13j17k with
i, j, k ∈ {0, 1}. We check that none of these integral points leads to an integer
solution of (3.1).

We now consider v = 5a1 with a1 ≥ 1. Then (3.6) becomes
23m13b117c1 = ε(7u6 − 35u4v2d+ 21u2v4d2 − v6d3) .

Dividing both sides of this equation by v6, we obtain the following elliptic curves
(3.9) DY 2 = 7X3 − 35dX2 + 21d2X − d3,

whereX = u2/v2, Y = 2m13b217c2/v3, b2 = bb1/2c, c2 = bc1/2c andD = ε2m13j17k
with j, k ∈ {0, 1}. As before, multiplying both sides of (3.9) by 72D3, we get
(3.10) V 2 = U3 − 35dDU + 147d2D2U − 49d3D3,

where U = 7DX and V = 7D2Y . Here, we use SIntegralPoints subroutine of
MAGMA to compute all {5}-integral points on the 32 elliptic curves defined by
(3.9). As in the previous case, we apply the relations U = 7DX,V = 7D2Y,X =
u2/52a1 , Y = 2m13b217c2/53a1 , a2 = ba1/2c, b2 = bb1/2c, c2 = bc1/2c and D =
ε2m13j17k with j, k ∈ {0, 1}, to find the corresponding integer solutions of (3.1).
However, none of these integral points leads to an integer solution of (3.1).

Assume that v = 17c1 with c1 ≥ 1. Then (3.6) becomes
23m5a113b1 = ε(7u6 − 35u4v2d+ 21u2v4d2 − v6d3) .

As before, we first divide both sides of this equation by v6 and then multiply by
72D3 to arrive at
(3.11) V 2 = U3 − 35dDU + 147d2D2U − 49d3D3,

where U = 7DX = 7Du2/v2, V = 7D22m5a213b2/v3, a2 = ba1/2c, b2 = bb1/2c
and D = ε2m5i13j with i, j ∈ {0, 1}. As in the previous case, we compute all
{17}-integral points on the elliptic curves defined by (3.10), but none of these
integral points leads to an integral solution of (3.1).

Finally let v = 5a117c1 with a1, c1 ≥ 1. Then (3.6) becomes
23m13b1 = ε(7u6 − 35u4v2d+ 21u2v4d2 − v6d3) .

In the same way as before, we divide both sides of this equation by v6 and then
multiply by 72D3 to get
(3.12) V 2 = U3 − 35dDU + 147d2D2U − 49d3D3,

where U = 7DX = 7Du2/v2, V = 7D22m13b2/v3, b2 = bb1/2c and D = ε2m13j
with j ∈ {0, 1}. We compute all {5, 17}-integral points on the 16 elliptic curves
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defined by (3.11), but none of these integral points leads to an integer solution of
(3.1).

Case III: When p = 5. Let q be a primitive divisor of L5(α, ᾱ). Then by (3.4)
only possibility q = 5 or q = 13 or 17. Again the fact that any primitive divisor
of Lp(α, ᾱ) is congruent to ±1 modulo p confirms that none of 5, 13 and 17 is
a primitive divisor of L5(α, ᾱ). Therefore as in Case I, using Primitive Divisor
Theorem for Lehmer sequences and [7, Table 4], we get

(3.13) (22−mu2, 22−mv2d) =
{

(Fk−2ε, 4Fk − Fk−2ε) with k ≥ 3 ,
(Lk−2ε, 4Lk − Lk−2ε) with k 6= 1 ,

where Fk (resp. Lk) denotes the k-th Fibonacci (resp. Lucas) number. Utilizing
Lemma 3.2 in (3.13), we conclude the following:
• (k− 2ε,m, 2u) = (1, 0, 1), (2, 0, 1), (12, 0, 12); none of these are possible as u is

odd.
• (k− 2ε,m, u) = (3, 1, 1), (6, 1, 2), but the only possibility (k− 2ε, u) = (3, 1, 1).

This leads to (k,m, u, v, d) = (5, 1, 1, 3, 1), and thus y = (u2 + dv2)/2 = 5.
Therefore (3.1) becomes x2 + 1 = 2× 55, which has no integer solutions.
• (k − 2ε,m, 2u) = (1, 0, 1), (3, 0, 2), but the only possibility is (k − 2ε,m, u) =

(3, 0, 1). This leads to v2d = 8, which is not possible as vd is odd.
• (k − 2ε,m, u) = (6, 1, 3), which gives (k,m, u, vd) = (4, 1, 3, 5), (8, 1, 3, 89).

The only possibility is (k,m, u, vd) = (4, 1, 3, 5), which yields y = 7. Thus
(3.1) becomes x2 + 5 = 2× 75, which has no integer solutions.

Case IV: p = 3. In this case, the facts of primitive divisors of L3(α, ᾱ) does not
provide any fruitful conclusion. Thus, we transfer the problem of finding integer
solutions of (3.1) into the problem of finding {5, 13, 17}-integral points on the
corresponding elliptic curves. For p = 3, (3.1) becomes

(3.14) x2 + 5a13b17c = 2my3, x, y ≥ 1, gcd(x, y) = 1, a, b, c ≥ 0, p ≥ 2,m = 0, 1 .
We write
(3.15) 22m5a13b17c = Az6,

where (A, z) =
(
22m5a113b117c1 , 5a23b27c2

)
with a = 6a2 + a1, b = 6b2 + b1, c =

6c2 + c1, a1, b1, c1 ∈ {0, 1, 2, 3, 4, 5} and a2, b2, c2 ≥ 0.
We now multiply the both sides of (3.14) by 22m and then subsequently divide

both sides of z6, and put X := 2mx/z3 and 2my/z2 to reduce to
(3.16) X2 = Y 3 −A .
Here, we again use SIntegralPoints subroutine of MAGMA to determine all
{5, 13, 17}-integral points on the 432 elliptic curves defined by (3.16). Taking into
account that xy 6= 0 and gcd(x, y) = 1, we don’t consider the {5, 13, 17}-integer
points such that XY = 0 or the numerators of X/2m and Y/2m are not coprime.
Finally, we utilize the relation (3.15) along with the conditions on A and z, and
on their exponents to find the corresponding integer solutions of (3.14). These
solutions are given by (x, y, a, b, c,m) ∈ S. �
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4. Proof of Theorem 1.1

We first assume that n is a multiple of 4. Then all integer solution of (1.2) are
given by Proposition 2.1 (see, Table 1).

Let n ≥ 3 be an integer such that 4 - n. Then we can write n = p` for some odd
prime p and some odd integer ` ≥ 1. Thus, (1.2) can rewritten as
(4.1) x2+5a13b17c = 2m(yn/p)p, x ≥ 1, y > 1, gcd(x, y) = 1, a, b, c,m ≥ 0, p ≥ 3 .
By Proposition 3.1, the only integer solutions of (4.1) are given by

(x, yn/p, a, b, c,m) ∈S.

These solutions lead to the integer solutions of (1.2), which are listed in Table 2.

Tab. 2: All the solutions of (1.2) when 3 | n

x y a b c m n x y a b c m n

70 17 0 1 0 0 3 716 81 1 1 2 0 3
716 9 1 1 2 0 6 716 3 1 1 2 0 12
94 21 2 0 1 0 3 142 29 2 2 0 0 3

2034 161 3 0 2 0 3 9 5 0 2 0 1 3
7 3 1 0 0 1 3 99 17 2 0 0 1 3
63 13 2 0 1 1 3 19 7 2 1 0 1 3
33 7 2 2 1 1 3 118699 1917 2 2 1 1 3

79137 1463 2 3 0 1 3 253 73 2 4 0 1 3
188000497 260473 8 4 0 1 3 267689 3297 2 2 3 1 3

336049 4317 10 0 3 1 3 17127 553 6 2 1 1 3
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