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AN IMPROVED OSCILLATION THEOREM FOR NONLINEAR
DIFFERENTIAL EQUATIONS OF ADVANCED TYPE

Nurten Kiliç, Özkan Öcalan, and Mustafa Kemal Yildiz

Abstract. This paper deals with the oscillatory solutions of the first order
nonlinear advanced differential equation. The aim of the present paper is
to obtain an oscillation condition for this equation. This result is new and
improves and correlates many of the well-known oscillation criteria that were
in the literature. Finally, an example is given to illustrate the main result.

1. Introduction

We consider the first order nonlinear differential equation with advanced argu-
ment
(1.1) x′(t)− p(t)f(x (τ(t))) = 0 , t ≥ t0 ,
where the functions p(t), τ(t) ∈ C([t0,∞),R+) (R+ = [0,∞)) and τ(t) is not
necessarily monotone such that
(1.2) τ(t) ≥ t for t ≥ t0 , lim

t→∞
τ(t) =∞

and
(1.3) f ∈ C(R, R) and xf(x) > 0 for x 6= 0 .
By a solution of (1.1), we mean a continuously differentiable function defined on
[t0,∞) such that (1.1) is satisfied for t ≥ t0. A solution of (1.1) is called oscillatory
if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory. Equation (1.1)
is called oscillatory if all its solutions are oscillatory.

When f(x) = x, we have the following equation which is the linear form of (1.1)
(1.4) x′(t)− p(t)x (τ(t)) = 0 , t ≥ t0 .
Many scientists investigated the question of obtaining sufficient oscillation criteria
for the solutions of (1.4). Ladas and Stavroulakis [5], Li and Zhu [7], Koplatadze and
Chanturija [2], Kusano [4], Kulenovic and Grammatikopoulos [3] studied equation
(1.4) with constant argument and obtained some oscillation results.

In 1987, Ladde et al. [6] obtained the following criteria for (1.4).
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If τ(t) is nondecreasing and

(1.5) lim inf
t→∞

τ(t)∫
t

p(s) ds > 1
e

or

(1.6) lim sup
t→∞

τ(t)∫
t

p(s) ds > 1

then, all solutions of (1.4) are oscillatory.
Now, we define the following function

(1.7) h(t) := inf
s≥t
{τ(s)} , t ≥ 0 .

Apparently, h(t) is nondecreasing and h(t) ≤ τ(t) for all t ≥ 0.
Also, suppose that f in (1.1) satisfies the following condition

(1.8) 0 <
∼
N := lim sup

|x|→∞

x

f(x) <∞ .

In 2019, Öcalan et al. [8] studied equation (1.1) with nonmonotone advanced
argument and established the theorem given below.

Theorem 1.1. Assume that (1.2) and (1.3) hold. If τ(t) is not necessarily mono-
tone and

(1.9) lim inf
t→∞

τ(t)∫
t

p(s) ds >
∼
N

e
, 0 ≤

∼
N <∞

or

(1.10) lim sup
t→∞

h(t)∫
t

p(s)ds >
∼
N , 0 <

∼
N <∞

where h(t) and
∼
N are defined by (1.7) and (1.8), respectively, then all solutions of

(1.1) are oscillatory.

There are many papers about linear advanced differential equations, but there
are a few articles about nonlinear differential equations with advanced argument.
As far as we know, there are only two criteria for the oscillatory solutions of
(1.1) with nonmonotone argument in the literature. In view of this, an interesting
question that arises in the case that τ(t) is not necessarily monotone and (1.9)
and (1.10) do not hold, is whether we can obtain a new oscillation criterion for
(1.1). In this article, we will answer this question in a positive way. So, our purpose
is to essentialy improve the conditions given above and to present new sufficient
conditions for the oscillation of all solutions of (1.1) by using the ratio x(h(t))

x(t) .
The paper is arranged as below. Firstly, we give some information about the

advanced differential equations. Next, we establish a new condition involving
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lim sup and lim inf for all the oscillatory solutions of (1.1). We present an example
to confirm the applicability of the main results.

2. Main results

In this section, we establish a new oscillation result for the solutions of (1.1),
under the assumption that the advanced argument τ(t) is not necessarily monotone.

The following lemmas are useful to prove the main theorem.

Lemma 2.1 ([9, Lemma 2.2]). Assume that

lim inf
t→∞

τ(t)∫
t

p(s) ds > 0 .

Then, we get

(2.1) lim inf
t→∞

τ(t)∫
t

p(s) ds = lim inf
t→∞

h(t)∫
t

p(s) ds ,

where h(t) is given by (1.7).

Lemma 2.2. Assume that x(t) is an eventually positive solution of (1.1). If

(2.2) lim sup
t→∞

h(t)∫
t

p(s) ds > 0 ,

where h(t) is given by (1.7), then lim
t→∞

x(t) =∞.

Proof. If we take m = 1 in [1, Lemma 2], we obtained the above result. So, the
proof of the lemma is omitted here. �

Lemma 2.3. Assume that x(t) is an eventually positive solution of (1.1) and

(2.3) α := lim inf
t→∞

τ(t)∫
t

p(s) ds > 0 .

Then, we have

(2.4) lim sup
t→∞

x(h(t))
x(t) ≤

(2
∼
N

α

)2
,

where h(t) and
∼
N are given by (1.7) and (1.8), respectively.

Proof. Let x(t) be an eventually positive solution of (1.1). Then, there exists
t1 > t0 such that x(t), x(τ(t)), x(h(t)) > 0 for all t ≥ t1. Thus, from (1.1), we have

x′(t) = p(t)f(x (τ(t))) ≥ 0
for all t ≥ t1, which means that x(t) is an eventually nondecreasing. Also, with
the help of Lemma 2.1, (2.3) implies (2.2), then from Lemma 2.2, we know that
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lim
t→∞

x(t) = ∞. Then, from (1.8), we can choose t2 > t1 and there exists ε1 such
that

(2.5) f
(
x (τ(t))

)
>

1
∼
N + ε1

x (τ(t)) for t ≥ t2.

Using the fact that x(t) is nondecreasing, h(t) ≤ τ(t) and (2.5), from (1.1), we
have

(2.6) x′(t)− 1
∼
N + ε1

p(t)x (h(t)) > 0 .

Moreover, from (2.3) and Lemma 2.1, we have

(2.7)
h(t)∫
t

p(s) ds ≥ α− ε2 , ε2 ∈ (0, α) ,

then, there exists t∗ < t such that

(2.8)
t∫

t∗

p(s) ds ≥ α− ε2

2 and
h(t∗)∫
t

p(s) ds ≥ α− ε2

2 .

Then, integrating (2.6) from t∗ and t and using the fact that x(t) and h(t) are
nondecreasing and (2.8), we have

x(t)− x(t∗)− 1
∼
N + ε1

t∫
t∗

p(s)x(h(s)) ds > 0

so,

x(t)− x(t∗)− 1
∼
N + ε1

x
(
h(t∗)

) t∫
t∗

p(s) ds > 0

and

(2.9) x(t) > 1
∼
N + ε1

x
(
h(t∗)

)α− ε2

2 .

By using the same facts as above, integrating (2.6) from t to h(t∗), we have

x
(
h(t∗)

)
− x(t)− 1

∼
N + ε1

h(t∗)∫
t

p(s)x
(
h(s)

)
ds > 0

so,

x
(
h(t∗)

)
− x(t)− 1

∼
N + ε1

x
(
h(t)

) h(t∗)∫
t

p(s) ds > 0

and

(2.10) x
(
h(t∗)

)
>

1
∼
N + ε1

x
(
h(t)

)α− ε2

2 .
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Finally, combining (2.9) and (2.10), we get

x(t) >
( 1
∼
N + ε1

)( 1
∼
N + ε1

)
x
(
h(t)

)(α− ε2

2

)(α− ε2

2

)
so,

x(h(t))
x(t) <

(2(
∼
N + ε1)
α− ε2

)2
.

Hence, we have

lim sup
t→∞

x(h(t))
x(t) ≤

(2(
∼
N + ε1)
α− ε2

)2
.

Because of ε1 and ε2 are arbitrary, by letting ε1 → 0 and ε2 → 0, we obtain (2.4),
and this completes the proof. �

Theorem 2.4. Assume that (1.2) and (1.3) hold. If τ(t) is not necessarily mono-
tone, 0 < α ≤

∼
N
e and

(2.11) lim sup
t→∞

h(t)∫
t

p(s)
∼
N

ds > 1−
( α

2
∼
N

)2
,

where h(t) and
∼
N are given by (1.7) and (1.8), respectively, then all solutions of

(1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that there is an eventually positive
solution x(t) of (1.1). If x(t) is an eventually negative solution of (1.1), the proof
can be done in a similar way. Then, there exists t1 > t0 such that x(t), x (τ(t)),
x (h(t)) > 0 for all t ≥ t1. So, from (1.1), we get

x′(t) = p(t)f
(
x (τ(t))

)
≥ 0

for all t ≥ t1, which implies that x(t) is nondecreasing function. Lemma 2.2 and
the condition (2.11) imply that lim

t→∞
x(t) = ∞. Then from (1.8), we can choose

t2 > t1 and there exists ε1 such that

(2.12) f
(
x (τ(t))

)
>

1
∼
N + ε1

x (τ(t)) for t ≥ t2.

Using the fact that inequality (2.12), x(t) is nondecreasing and h(t) ≤ τ(t), from
(1.1), we obtain

(2.13) x′(t)− 1
∼
N + ε1

p(t)x(h(t)) > 0 .

Integrating (2.13) from t to h(t), we have

x
(
h(t)

)
− x(t)− 1

∼
N + ε1

h(t)∫
t

p(s)x
(
h(s)

)
ds > 0
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so,

x
(
h(t)

)
− x(t)− 1

∼
N + ε1

x
(
h(t)

) h(t)∫
t

p(s) ds > 0

and

x
(
h(t)

)[
1− 1

∼
N + ε1

h(t)∫
t

p(s) ds
]
− x(t) > 0 .

Hence, we get

1
∼
N + ε1

h(t)∫
t

p(s) ds < 1− x(t)
x(h(t)) .

Then, by Lemma 2.3, we obtain

lim sup
t→∞

h(t)∫
t

p(s)
∼
N

ds ≤ 1−
( α

2
∼
N

)2
,

which contradicts to (2.11), so this completes the proof. �

Example 2.5. We consider the following first order nonlinear advanced differential
equation

(2.14) x′(t)− 0.213x (τ(t)) ln(e−|x(τ(t))| + 3.03739) = 0 , t ≥ 0 ,
where

τ(t) =



5k + 3, t ∈ [5k, 5k + 1]
4t− 15k − 1, t ∈ [5k + 1, 5k + 2]
−3t+ 20k + 13, t ∈ [5k + 2, 5k + 3]
5t− 20k − 11, t ∈ [5k + 3, 5k + 4]
−t+ 10k + 13, t ∈ [5k + 4, 5k + 5]

, k ∈ N0

and

h(t) := inf
s≥t
{τ(s)} =



5k + 3, t ∈ [5k, 5k + 1]
4t− 15k − 1, t ∈ [5k + 1, 5k + 1.25]
5k + 4, t ∈ [5k + 1.25, 5k + 3]
5t− 20k − 11, t ∈ [5k + 3, 5k + 3.8]
5k + 8, t ∈ [5k + 3.8, 5k + 5]

, k ∈ N0 ,

then, we have
∼
N = lim sup

|x|→∞

x (τ(t))
x (τ(t)) ln(e−|x(τ(t))| + 3.03739)

= 1
ln(3.03739)

∼= 0.9 .

On the other hand, as we can see from the following process, the previous results,

which are lim inf
t→∞

τ(t)∫
t

p(s) ds >
∼
N
e and lim sup

t→∞

h(t)∫
t

p(s) ds >
∼
N for the first order
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nonlinear advanced differential equation, are not satisfied.

α = lim inf
t→∞

τ(t)∫
t

p(s) ds = lim inf
t→∞

5k+4∫
5k+3

(0.213) ds ∼= 0.213 ≯
∼
N

e

∼= 0.33112

and

lim sup
t→∞

h(t)∫
t

p(s)ds = lim sup
t→∞

5k+8∫
5k+3.8

(0.213) ds ∼= 0.8946 ≯
∼
N = 0.9 .

So, the earlier results which were given in the Theorem 1.1 ((1.9) and (1.10)) are
not valid in this example.

However, by using the result given in the present paper, we obtain

lim sup
t→∞

h(t)∫
t

p(s)
∼
N

ds
∼= 0, 994 > 1−

( α

2
∼
N

)2
= 0, 986.

Then, all conditions of the main theorem are satisfied and all solutions of (2.14)
are oscillatory.
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