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SOME APPLICATIONS OF NEVANLINNA THEORY
TO ENTIRE FUNCTIONS THAT SHARE A SMALL FUNCTION
WITH TWO DIFFERENCE OPERATORS

Boupaoup MILOUDI

ABSTRACT. In this work, we are implementing some applications of Nevanlinna
theory to entire functions that share a small function with two difference
operators and we also generalize one of the results in the paper [3].

1. INTRODUCTION

Nevanlinna theory is considered one of the most important theories in complex
analysis, especially in the study of entire functions. We say that an entire function
a (z) is a small function of f (2) if T (r,a) = S (r, f), where S (r, f) = o(T (1, f)),
as r — oo outside of a possible exceptional set of finite logarithmic measure. We
use S (f) to denote the family of all small functions with respect to f (z). For an
entire function f (z) we define its shift by

fe(z)=f(z+¢),
and its difference operators by

Llf(z)=anf(z+ne)+--+a1f(z+c)+apf(z), neN, n>1

where a,, (#£0),..., a1, g are complex numbers. In particular for the case
a; = (’?)(_1)”—% jEN, 0<j<n
J

we define its difference operators by
Acf(2)=fz4+c)=f(2), LTf(2) = A"f(2) = A" (Af(2) , nEN, n>2.

We say that f(z) and g(z) share a(z) CM (counting multiplicities), provided that
f(z) — a(2) and ¢g(2) — a(z) have the same zeros counting multiplicities. The
uniqueness of meromorphic functions sharing values with their difference operators
has been studied in many papers see e.g. [ 2 3, 4, 8, [IT], and sharing values with
their shifts has been investigated by many authors see e.g. [3] [6] [7, [9].

In 2015, A. El Farissi, Z. Latreuch and A. Asiri [3] proved:

2020 Mathematics Subject Classification: primary 30D35; secondary 39A45.
Key words and phrases: uniqueness, entire functions, difference operators.
Received October 7, 2023, revised June 2024. Editor M. Kolar.

DOI: 10.5817/AM2024-3-177


http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2024-3-177

178 B. MILOUDI

Theorem A. Let f(z) be a transcendental entire function of finite order such
that f(z) £ f(z+c¢). Then f(z), f(z+c¢) and A.f (z) can not share any finite
value a # 0 CM. Furthermore; if a = 0, f(z) must be of the following form
f(z) = h(z)e<?, where a # 0 and h(z) is a periodic entire function of period c.

It is interesting now to see what is happening when f (2), f (z + ¢) and L2 f (2)
(n > 1) share a (z) CM. The main result of this paper is to prove that the conclusion
of Theorem [A] remains valid when we replace A.f (z) by L7 f (z), and we obtain
the following results.

Theorem 1.1. Let f(z) be an entire function of finite order such that f(z) Z£ fe(z),
and let a (z) € S (f) be a periodic entire function with period c. If f (z), f(z+¢)
and L2 f (z) (n > 1) share a(z) CM, then

flz) = h(z)egz +a(z) and a(z)=0 or nZai -1=0,
i=0

where B # 0 and h(z) is a periodic entire function of period c.

In the following examples, we take several cases to illustrate Theorem [I.T}

Example 1.1. In this example we illustrate the case Zn:ai —1=0and a(z)#0.
The entire function f(z) = cos (z) €27 % + ¢ satisfies -
f(z+42mn) = e"cos(z)eﬁz +e, neN.
We put o; = —1,1<i<n,ay=n+1and a(z) = e, then
L f(z)=—f(z+2mn)—---—f(z+2m)+(n+1)f(2), neN".
We can get

f(z+2n)—a(z) ecos(z)er? B

f(z) —a(z) - cos (z) ezr? -
and
L3, f(2) —a(z) —Cos(z)eﬁz(e”_y..._,_e)_ne
f(z) —a(z) N cos (z) ez~
(n+1)cos(z)ez?+ (n+1)e—e _ et e -
cos (z) €277 1—e ;
and hence f(z), f(z+2x) and L, f (2) share a (2) CM

Example 1.2. In this example we illustrate the case a(2) =0 and > a; — 1 #0.
i=0
The entire function f(z) = e* satisfies

f(z+n)=e"e*, neN.
We put a; =1, 0 < i < n, then
Lif(z)=fz+n)+--+f(z+1)+ f(2), neN".
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We can get
flz+1) e
flz) e
and
Lif(z) e (e"+--41)
flz) e
1 —entl
ST

and hence f(z), f(z+ 1) and L} f (z) share 0 CM.

Example 1.3. In this example we illustrate the case iai —1=0anda(z)=0.
The entire function f(z) = sin (z) e* satisfies o
f(z+2mn) =e*"sin(z)e*, neN.
Weput a; = 1,1 <i<n,ap=—(n—1) and a(z) =0, then
Ly f(z)=f(z+2m)+--+f(z+2r)—(n—1)f(2), mneN".
We can get
f(z+2m) €2 sin(z)e? o
f(z) sin (2) e* ’

and

L5 f () sin()e (&7 40t 7~ (n—1))
f(z) sin (z) e?

e27r(n+l) _ 6271'

2627T—_1_n+17

and hence f(z), f(z+ 2m) and L%, f (z) share 0 CM.

In this corollary, we have replaced f(z+ ¢) with L?f (z + ¢) in Theorem [L.1
and we obtained the same result.

Corollary 1.1. Let f(z) be an entire function of finite order such that f(z) £ f.(2),
and let a (z) € S (f) be a periodic entire function with period c. If f (z), L2 f ()
and L2 f (z+¢) (n > 1) share a(z) CM, then

flz) = h(z)egz +a(z) and a(z)=0 or nZai -1=0,
i=0

where B # 0 and h(z) is a periodic entire function of period c.
Example 1.4. The entire function f(z) = e?Z, where b # 0 satisfies
f(z+nbd) —¢"et?, neN.



180 B. MILOUDI

We put o; = 1,0 <i <nand a(z) =0, then
vfZ)=f(z+nb)+---+f(z+b)+ f(2), neN*

and
pfz+b)=fz+n+1)b)+---+ f(2+20)+ f(2+b), neN",
we can get
L?f(z)—a(z):f(z)(e”—O—---—I—e—|—1):1—6"+1
f(z) —a(z) f(z) l—e¢
and
Lyf(z+b) —a(z) _ f(&) (" +-+e)
f(z) —a(z) f(z)
e —ent?
T 1 e

and hence f(z), Ly f (2) and L} f (z + b) share 0 CM.

It is natural to ask what happens if L7 f () is replaced by AZ f (z) in Theorem
Corresponding to this question, we obtain the following result.

Theorem 1.2. Let f(z) be an entire function of finite order such that f(2) £ f.(z),
and let a (z) € S (f) be a periodic entire function with period c. If f (z), f(z+¢)
and A f (z) (n > 1) share a(z) CM, then

f(z) = h(z)egz, and a(z) =0,
where B # 0 and h(z) is a periodic entire function of period c.
Example 1.5. The entire function f(z) = sin (z) 2 satisfies
f(z+2mn)=e"f(z), neN.
We can get

[(z+2m) _ef(2)
[ICINIC)

:e’

and

. fAHXO) ),
AL f(z) i=0 ' _ mY (_qyn—i g
Ch i) ;()( D

and hence f(z), f (z+2m7) and AY_f (z) share 0 CM.

In the following corollary we have replaced f (z 4 ¢) with A% f (z + ¢) in Theorem
and we obtained the same result.
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Corollary 1.2. Let f(z) be an entire function of finite order such that f(z) £ f.(2),
and let a (z) € S(f) be a periodic entire function with period c. If f (z), Al f (2)
and A" f (z+4¢) (n > 1) share a(z) CM, then

flz) = h(z)e%'z, and a(z)=0,
where 8 # 0 and h(z) is a periodic entire function of period c.

Example 1.6. The entire function f(z) = sin () 2 satisfies
f(z+2mn)=e"f(z), neN.
We can get

e ) ECL) e

and

AL f(z+2m) = ("), n—i i+l
I 76 ‘20( Ve

and hence f(z), f(z+2mr) and A} f (z) share 0 CM.

2. LEMMAS
For the proof of our results, we need the following lemmas.

Lemma 2.1 ([I0]). Let c € C, n € N, and let f (z) be a meromorphic function of
finite order. Then for any small periodic function a (z) with period c, with respect

to f(z),
m(r Agf)—S(rf)
,f—a, - b

where the exceptional set associated with S (v, f) is of at most finite logarithmic
measure.

Lemma 2.2 ([5]). Suppose that f1(2), fa(2),..., fn(2) (n > 2) are some mero-
morphic functions and g1 (2),92(2),...,9n (2) (n > 1) entire functions satisfying
the following conditions:

(i) Zn: fi(2)e9) = 0;
Jj=1

(i) g; (2) — gk (2) are not constants for 1 < j <k <mn;
(ili) for1<j<mn,1<j<k<n.T(rf;)=o0 {T(r, egj(z)’gk(z))} (r — oo,
ré¢FE).
Then f; (2) =0, (j=1,2,...,n).
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Lemma 2.3 ([5]). Let f(z) be a non-constant meromorphic function in the complex
plane and

P(f)
R(f) = ==
D=am
where P(f) = kzpjoakfk and Q(f) = quobjfj are two mutually prime polynomials in
= Jj=

f(2). If the coefficients ay, b; are small functions of f(z) and a,(z) # 0, by(z) # 0,
then

T(r,R(f)) = max {p,q} T(r, f) + S (r, f) .

3. PROOFS OF THE THEOREMS AND COROLLARIES

Proof of Theorem [I.1l Suppose that f(z), f (z + ¢) and L7 f (z) share a (z) CM.
Then

f(Z+C) —a(z) :ep(z)

3.1
31 (IR
and

Ly f(z) —a(2)

3.2 Zel VD (@)
32 F@—a(
where p and ¢ are polynomials. From (3.1)) it’s easy to prove the following

z_:p(z-&-ic)
(3.3) fzt+ne)—a(z)=1[f(2) —a(z)]e=° ;
by using equations (3.2)), and (3.3]), we obtain
z_:p(eric)
anlf()—a()]e™  +a()an+ - +aolf(z)—a(@)]+a(z) a0 —al(z)
f(z) —a(z)
— (%) ,
then
nilp(z-i-ic) ) a (Z) (Zai - 1) )

4 i= e p(=z 1= — e4(2)

(3.4) oy, ei=0 +---+aje + g + o) —ale e

From and (3.2)), we get
(3.5) Lif(z40) = Lif (2) _ anBef (z+nc) + -+ aoAef (2)
’ f(z)—al(z) N f(z)—al(z)

— P tac(z) _ (=)

Set

@ (z) = PP He() _ pa(z)
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We show that ¢ (z) Z 0. If ¢ (2) =0, then

(3.6) eP(Z) — eQ(Z)_QC(Z) ,

thus, by equations (3.1) and (3.6)), we have

(3.7) flzteo)—alz) _ p1(2)—ac(2)
f(z)—a(z)

If eP(*) is a constant or deg g (z) = 1, then by equations and respectively,
we get
feto)-alz) _ g
f(z) —a(z) ’
where 3 # 0, we leave this situation to come back to it in the end.
If ¢ (2) is a constant, then by we get the following contradiction

fz+o)=[(2).
By equation (3.7)) it is easy to see
(3.8) f(z4ne) —a(z) — 1(2)=ane(2)
f(z) —a(z)
By using equations (3.3)), (3.8) and (3.4), we have
a(z) (Z:Oai -1)
 f@-al?)

If a (2) (En:ai —1) =0, then
i=0

(3.9) = el =me(2) 4 o4 693 72e(2) 4 ) — e9(2)

e(I(z) — aneQ(z)_an(Z) + oo+ ale‘I(Z)_(IC(Z) 4+ ag ,
we get the following contradiction

T(r,e?) = S(r,e?).

If a(z) (Zai — 1) # 0, then by using equations (3.7) and (3.9), we have

=0
a(z) (;)ai -1)
() —al?)
thus, by equations (3.9) and (3.10)), we have

aneQ(z)_q(n+1)c(Z) + (an—l _ an) e(I(Z)_‘InC(Z) + . _|_ (ao _ 041) eQ(Z)_QC(Z) —ap = O’

(3.10) — aneCI(Z)—Q(n+1)c(Z) N aoeq(z)—qc(z) — e4(2) ,

as we know from the above that degq(z) > 2, then by Lemma we get the
following contradiction

an:aj,l—aj:agzo, OSJS’H,

thus, we deduce ¢ (z) £ 0.
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Since ¢ (z) # 0, by Lemma and equation (3.5, we deduce that
T (r,) =m(r,p)

Acf (z+nc) Acf (2) _
(3.11) §m(7",f_7a(z))+'~~+m(r,m)+S(7"7f)*5(7",f)~
eP(2)+4c(2) fa()

Note that
p(z
(3.11)), we have

q _ q _ — 1
T(r,e—> SN(T,B—)+N(T g0)—|—N<T,
¥ @

— o = 1. By using the second main theorem and equation

) eiq

()70 2) 7))

7 e eP+ae
el
(3.12) —S(r )+ S(r, ;) .
Thus, by equations (3.11f) and (3.12)), we have
(3.13) T(r,e?)=S5(r,f).
Similarly, we get
(3.14) T(r,e?)=S(r, f).

By using the first main theorem, we have

a(z)(Zoi 1)
(315) T(ﬁf._a(z)):T(rvf)—’_S(raf)
From equations and , we deduce that
ni:lpic
(3.16) T(r,f) <T(rjei=0 )+ .- +T(r,e?)+T(r,e?)+ S(r, f).

If a(2) (Y1 g — 1) # 0, by equations (3.13), (3.14) and (3.16), we deduce the

contradiction

T(r, f) < S(r, f)
and from this, we deduce that either a (2) = 0 or > ;a; —1 = 0, and by equation
(13.4), we have

ip(eric)
(3.17) O, €i=0 o ageP®) fap =)

Next, we prove that p(z) and ¢(z) are constants. We need to treat the following
cases:

First of all, we set

P(2) = anz™ + an12"" 1+ -+ ag = anz" + a(z)
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and

q(2) =bnpz"+ b1z £ by = by 2™+ v (2),

where a,, # 0, an_1,...,00, b # 0,b;m_1,...,bg are constants, o and  are
polynomials where dega < n — 1, and degy < m — 1.
On the other hand we have

z_:p(z—i—ic)=p(z)+p(z+c)+---+p(z+(j—1)c)
=0

=japz" + X (2),

where ); are polynomials with degree at most n —1 for j = 1,2,...,n. By equation
(3.17), we have

n n n m
(3.18) an, (e“"z ) @ o paent ME) 4 gp = PmFT (@)

Define functions H (z) = e**", and G (z) = e’»*". Then, equation ([3.18)
becomes

(3.19) an [H(2)]" M o f a1 H(2) NP 4 ag =G (2) e

(i) If m # n, then we have two subcases:

Case (A): If m < n, then by using equation (3.19) and applying Lemma we
see that
nT(r,H)=S(r,H),

which is impossible.
Case (B): If n < m, then, by using equation and applying Lemma we
see that
T(r,G) =S(r,G),
which is impossible.
(ii) If n = m # 0, then we have two subcases:
Case (A): If by, = jan, 1 < j < n, then by using equation , we have
an [H (2)]" @ 4+ 4o [H (2)) (emz) _ ew(z)) b H() M 1ag=0,
then by Lemma we deduce the contradiction
nT(r,H)=S(r,H).
Case (B): If by, # jan, 1 < j < n, then by using equation (3.18), we have
" A L g etn 2 NG g = b ()
then by Lemma [2.2) we deduce the contradiction
l=ap=aj=ap=0, 0<j<n.

Finally, we conclude that p(z) and ¢ (z) are constants, suppose that e?(*) = ef
(the same situation we left earlier) where 3 # 0, from equation (3.1]), we have

(3.20) flete)—a(z)=e’[f(2) —a(2)] .
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If f(z) and g (z) are two solutions of the equation (3.20)), then h(z) = % is

a periodic function of period ¢. Obviously g (z) = % ta (z) is solution of ([3.20)).

Hence the entire solution of (3.20) must be of the form f (z) = h(z) e +a (2),
where h (z) is a periodic entire function of period c. O

Proof of Corollary Suppose that f(z), L?f (z) and L? f (z + ¢) share a (z)
CM. Then

L?f (Z) — G(Z) — ep(z)
(3:21) F)—a(z) |
and
(3.22) Leflzt0)—al?) _ o

f(z) —a(z)
where p and ¢ are polynomials. By using equation (3.21)), we deduce that

Lgf (Z + C) —a (Z) _ ep(z+c)
fz+c)—a(z) '

By equations (3.22)) and (3.23]), we get the following result

fletd—alz) _ ge@)-pe+o
(3:24) f@—al?) ’

and finally, using equations ([3.21)) and (3.24)), we can deduce f (z), f (2 + ¢) and
L f(z) (n > 1) share a(z) CM, then by Theorem [L.1| we conclude that

(3.23)

f(z)= h(z)egz +a(z) and a(z)=0 or Zai -1=0,
i=0
Where 3 # 0 and h(z) is a periodic entire function of period c. O

Proof of Theorem [1.2l Suppose that f(z), f(z+c) and A”f (2) share a(2)
CM, we follow the same steps as in Proof of Theorem Equation (3.4) becomes

Z p(z+ic) a (Z)

i=0 e p(2) [ S A — q(z)
ap € + + e + g f (z) a (z) e R

because we know that, if
Ly f(2) = ALS(2)
then

iai =0.
i=0

We continue with the same steps without forgetting that

iai =0.
=0
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In the proof of the previous theorem, following equation (3.16]), we concluded that

n
a(z)=0 or Zai—le,
i=0

but since
n
Zai = 0,
i=0
we conclude that
a(z)=0.

From this, we continue with the same steps until the end of the previous proof.
Finally, we conclude that

f(z)= h(z)egz7 and a(z) =0,
where 3 # 0 and h(z) is a periodic entire function of period c. O

Proof of Corollary Suppose that f(z), A f (z) and A? f (z + ¢) share a (2)
CM. Then

A?f (Z) *G(Z) _ ep(z)

(3.25) f)—at) /
and
(3.26) Aefleto)—alz) _ e

f(z) —a(z)
where p and ¢ are polynomials. By using equation (3.25)), we deduce that
A?f (Z + C) —a (Z) _ ep(erc)
flz+c)—a(z) ’
By equations (3.26]) and (3.27]), we get the following result
(3.28) flete)=alz) _ oe-pero
f(z) —a(z)

and finally, using equations (3.25)) and (3.28)), we can deduce f (z), f (2 + ¢) and
A" f (z) (n > 1) share a (z) CM, then by Theorem |1.2| we conclude that

flz)= h(z)egz, and a(z)=0,

where § # 0 and h(z) is a periodic entire function of period c. O

(3.27)
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