ARCHIVUM MATHEMATICUM (BRNO)
Tomus 59 (2023), 383-395

SOME PROPERTIES OF ALGEBRAS OF REAL-VALUED
MEASURABLE FUNCTIONS

ALl AKBAR ESTAJI AND AHMAD MAHMOUDI DARGHADAM

ABSTRACT. Let M (X, o) (M*(X, <)) be the f-ring of all (bounded) real-mea-
surable functions on a T-measurable space (X, &), let M (X, <) be the family
of all f € M(X, <) such that coz(f) is compact, and let Mo (X, %) be all
f e M(X,d) that {x € X : |f(z)| > %} is compact for any n € N. We
introduce realcompact subrings of M (X, <), we show that M*(X, <) is a
realcompact subring of M (X, <), and also M (X, <) is a realcompact if and
only if (X, «7) is a compact measurable space. For every nonzero real Riesz
map ¢ : M (X, o) — R, we prove that there is an element z¢ € X such that
o(f) = f(xo) for every f € M(X, ) if (X, o/) is a compact measurable space.
We confirm that Mo (X, o) is equal to the intersection of all free maximal
ideals of M*(X, /), and also M (X, &) is equal to the intersection of all free
ideals of M (X, o) (or M*(X, «/)). We show that M (X, /) and Mg (X, <)
do not have free ideal.

1. INTRODUCTION

For any nonempty completely regular Hausdorff space X, C(X) (C*(X)) stands
for the set of all (bounded) real-valued continuous functions defined on X, with
pointwise operations of addition and multiplication (see [14] [12]). Recall that a real
bounded Riesz map ¢: C(X) — R is a linear map preserving lattice operations with
(1) =1 (see [6]). By a classical representation theorem, for every such ¢ there is
an z € X such that ¢(f) = f(z) for every f € C(X), whose proof is in [6]. Karimi
Feizabadi and Ebrahimi represent the pointfree version of this representation see
[4]. In this paper, we present representation of bounded Riesz map for the f-ring
of all real-measurable functions on a T-measurable space (X, &), i.e., M(X, 7).
We replace a realcompact Hausdorff space X by realcompact T-measurable space.
We show that if T-measurable space (X, .o7) is compact if and only if M (X, &)
is realcompact (see Proposition . Also, if (X, &) is a compact T-measurable
space, we prove that for any nonzero f-ring homomorphism ¢: M (X, o) — R,
there is a unique =z € X such that ¢(f) = f(z) for every f € M(X, /) (see
Proposition [4.10)). Therefore, there is a one-to-one correspondence between bounded
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Riesz maps (nonzero f-ring homomorphism) from M (X, <) to R with elements of
X if T-measurable space (X, &) is compact (finite).

In [15] Kohls introduced the subring C (X) of all functions C'(X) which vanish
at infinity, and showed that

Coo(X) = m{I: I is a free maximal ideal of C*(X)}.
Also he showed
Ck(X)= ﬂ{[: I is a free ideal of C*(X) or C'(X)}

see [12, 7.E and 7.F].
Let L be a completely regular frame, let R L be the ring of real-valued continuous
functions on L, and let R L be the family of all functions ¢ € RL for which the

-1 1
set Tgo(7, ;), ordered by relation of L, is a compact frame for any n € N. R, L

was introduced by Dube in [3]. Estaji and Mahmoudi Darghadam in [§] proved
that RooL is precisely the intersection of all the free maximal ideals of R*L (also,
(10, 9]).

In Section 5 we introduce M (X, o) and Mk (X, /) for every T-measurable
space (X, o), and we give an answer to a question which was posted by Acharyya
et al. [I, Question 4.11]. In fact, we show that

Mo (X, o) = ﬂ{M M is a free maximal ideal of M*(X, o)},
and
Mg (X, o) = m{[: I is a free ideal of M*(X, o) or M (X, )}.
In [2] it was showed that Coo(X) and Ck(X) do not have free ideal. In this paper,

we show that M., (X,.o7) and My (X, .o/) do not have free ideal (see Corollary
and Corollary [5.10]).

2. PRELIMINARIES

In this section, we introduce the concepts of measurable space and commutative
ring which is used in this paper.

Let us recall some general notation from [16]. Let o be a collection of subsets
of a nonempty set X. It is well known that (X, o) is called a measurable space if
&/ has the following three properties:

(i) X e &.
(if) If A € &7, then A° € o/, where A€ is the complement of A relative to X.
(iii) If {An}nen C &, then |, .y An € .
Also, the members of &/ are called the measurable sets in X. If X is a measurable
space, Y is a topological space, and f is a mapping of X into Y, then f is said
to be measurable provided that f~!(V) is a measurable set in X for every open

set V in Y. If X is a measurable space, then the set of all measurable maps from
X into R is denoted M (X, o), and the members of M (X, o7) are called the real

neN
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measurable functions on X, where R denotes the set of all real numbers with the
ordinary topology.

Addition, multiplication, joint, and meet in RX are defined by the formulas
(f +9)(@) = f(x) + 9(2), (f9)(x) = F(@)g(), (f V 9)(x) = max{f(z), g(x)}, and
(f A g)(z) = min{f(x),g(z)}. (R¥;+,-,V,A) is proved an f-ring, this conclusion
is the immediate consequence of the corresponding statements about the field R.
Also, if (X, &) is a measurable space, then (M (X, «);+,-,V,A) is a sub-f-ring
of RX. The subset M*(X,.o/) of M(X,.o/), consisting of all bounded functions in
M (X, 4), is also closed under the algebraic and order operations. A measurable
space (X, /) is said to be pseudocompact it M*(X, /) = M(X, o).

An element a of a lattice L is said to be compact if a =\/ S, S C L, implies
a = \/ F for some finite subset F' of S. A bounded lattice L is said to be compact
whenever its top element T is compact (see [B]). A measurable space (X, &) is called
a compact measurable space if o7 is a compact lattice (see [7, [I1]). A measurable
space (X, o) is said to be T-measurable if whenever x and y are distinct points in
X, there is a measurable set containing one and not the other (see [I1]). In [I1]
proved that if (X, .o7) is not a T-measurable space, we can find a T-measurable
space (Y, «7’) for which M (X, /) = M(Y, o/"). Therefore, throughout this paper,
(X, /) denotes a T-measurable space.

We recall from [I1] that an ideal I of M (X, &) is called fixed if the set (), Z(f)
is nonempty; otherwise, I is called free. In [I1] it showed that a compact measurable
(X, o) is determined by fixed maximal ideals of M (X, 7). Also, the following
proposition that was proved in [7] is needed in this paper.

Proposition 2.1. The following statements are equivalent.
(1) The measurable space (X, o) is a compact measurable space.
(2) The set X is a finite set and o = P(X).
(3) The measurable space (X, o) is a pseudocompact measurable space.

Throughout this paper, we put
M, = {f € M(Xvﬂ) f(l‘) = 0}7

for every x € X. Tt is evident that M, is a fixed maximal ideal of M (X, .o/) for
every x € X.

Recall that a totally ordered field F' is said to be archimedean if for every element
a € F, there exists an element n in N such that n > a. Thus, a nonarchimedean
field is characterized (among all totally ordered fields) by the presence of infinitely
large elements, that is, elements a such that a > n for every n € N. An element
b is infinitely small if it is positive but smaller than % for every n € N. Hence
b is infinitely small if and only if % is infinitely large. Therefore, the presence
of infinitely small elements also characterizes the nonarchimedean fields. Every
archimedean field is embeddable in R (see [12] page 70]).

3. QUOTIENT LATTICE-ORDERED AND TOTALLY-ORDERED RINGS OF M (X, .o7)

In this section, we show that every quotient ring of M (X, &) and M*(X, <)
is a lattice-ordered ring and we obtain several equivalent conditions for ideal I
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of M(X, ) such that the quotient ring M is a totally-ordered ring. The

concepts as well as the results of this section are counterparts of the results in the
text book [12].

Definition 3.1. Let (X, .o/) be a measurable space. A subset U of X is called
relatively pseudocompact if f(U) is a bounded subset of R for all f € M (X, ).

Asusual, if f € M(X,.47), then z(f) :={x € X: f(z) =0} and coz:= X\ z(f)
are called zero set and cozero set of f, respectively. Also, for every f,g € M (X, o),

we have 2(fg) = 2(f) U =(g), 2(f? +g%) = (If] + lgl) = (/) 1 2(g), and =(f) =
z(|f) = 2(f™) for every n € N. Also, for every subset H of M (X, <), we put

ZH):={=z(f): feH}.
Lemma 3.2. Let (X, o) be a measurable space. For every f,g € M (X, o), the
following statements hold.
(1) If coz(f) < coz(yg), then there is an element h of M(X, /) such that
f=gh.
(2) If 0 < f < g, then there is an element h of M(X, /) such that f = gh.
(3) If0< f<gand g e M*(X, o), then there is an element h of M*(X, <)
such that f = gh.
Proof. Consider the h: X — R given by
f@=@)
W) = 4 90 if x € coz(g)
0 it x¢ coz(g).
O

We recall that an ideal I of an f-ring A is called an f-ideal or an absolutely
convex ideal if |z| < |y|, and y € I imply « € I. Also, I is called a convex ideal if
whenever 0 <z <y, and y € I, then z € I.

As an immediate consequence of Lemma we now have the following proposi-
tion:

Proposition 3.3. The following statements hold.

(1) For every ideal I of M(X, ), f €1 if and only if |f| € I.

(2) Every ideal of M(X, ) is a convex ideal of M(X, 7).

(3) Ewery ideal of M (X, o) is an absolutely convex ideal of M (X, ).
Remark 3.4. For every ideal I of M (X, <), by Theorem 5.2 in [12], M is a
partially ordered ring, according to the definition:
f+ 1 >0 if there exists an element g in M (X, ) such that g >0 and f —g € I.

Throughout this paper, this notation will be used. Also, by Theorem 5.3 in [12], the
following statements hold for every ideal I of M (X, o) and every f,g € M(X, o).

(1) f,g €I implies fVgel.
2) (fvg+I=f+Ivg+1.
(3) f+I>0ifand onlyif f —|f| € 1.
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The above results are true for M*(X).

Proposition 3.5. For every proper ideal I of M(X, o) (M*(X, <)), the following
statements hold.
(1) For every f € M(X, ), f +1 >0 if and only if f is nonnegative on an
element Z of Z[I].
(2) For every f € M(X, ), if f is positive on at least one Z of Z[I|, then
f+1I>0.
(3) LetI be a mazimal ideal of M(X, o/) (M*(X, o)). For every f € M(X, <),
f s positive on at least one Z of Z[I] if and only if f +1 > 0.

Proof. (1) Necessity. Let f € M(X, o) with f+ I >0 be given. By Remark [3.4]
f—1fl € I. Since f and |f| have the same sing on z(f — |f|), we conclude that f
is nonnegative on z(f — | f]).

Sufficiency. Let f € M(X, /) and g € I with f|.,) > 0 be given. Since
2(9) < f74[0,4+00)) = z(f — |f]), we conclude from Lemma that there
is an element h of M (X, o) such that f — |f| = gh € I, which implies that
f+I=|f|+1>0.

(2) Let f € M(X, o) and g € I with f|.4 > 0 be given. Since z(f) N z(g) = 0,
we conclude that f & I. Hence, by the first statement, f + I > 0.

(3) Let f € M(X, <) with f 4+ I > 0 be given. Hence, by the first statement, if
g=f—|f|, then f|.) > 0and g € I. By [LI} Proposition 3.7], there is an element
h of I such that z(h) N z(f) = 0, and so f|.(g2442) > 0 which >+ h?el. O

The following example shows that the maximal condition on I in Proposition
[3-5] is necessary.

Example 3.6. Let I and J be proper ideals of M (X, ) such that I C J and

feJ\I By Lemma f? & I. Since 2(f?) € Z[J], we infer that 2(f2) N Z # ()
for any Z € Z[I] C Z[J]. Hence f2+ 1 > 0 and f2|z # 0 for any Z € Z[I].

Proposition 3.7. Let I be a proper ideal of M (X, o). Then the following state-
ments are equivalent.

(1) w is a totally ordered ring.

(2) For every f € M(X, <), there is a zero set of Z[I| on which f does not
change sign.

(3) The ideal I is a prime ideal of M (X, o).

Proof. (1) = (2) For a given element f of M (X, <), since is a totally
ordered ring, we infer that f +7 < 0 or f+ I > 0, which from Proposition [3.5
implies that there is a zero set of Z[I] on which f does not change sign.

(2) = (3) Given gh € I, consider the function |g| —|h|. By hypothesis, there is an
element f of I such that z(f)N(|g|—|h|)~1(—00,0) = 0. Hence Z(f)NZ(g) C Z(h).
Since

Z((hg)? + f?) = Z(hg) N Z(f) = [Z(h) N Z()] U [Z(9) N Z(f)] € Z(h)
and (hg)? + f? € I, we conclude from Lemmathat h € I. Thus, I is prime.

M(X, o)
I
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(3) = (1) Observe that for every f € M(X, <), (fVO)(f AO) =0 € I. Since,
by hypothesis, either f V0 € I or f A0 € I, we conclude that Z(f Vv 0) € Z[I] or
Z(fNO) € Zﬂj which implies that f does not change sign on them. Therefore, by

Proposition M is a totally ordered ring. O

Similar to the proof of Proposition M*(X,o/)/1 is a totally ordered ring if
and only if I is a prime ideal of M*(X) for every proper ideal I of M*(X, «).

Definition 3.8. A subring R’ of a partial order ring R is called absolutely convex,
if f € R and g € R such that |g| <|f], then g € R'.

It is clear that M*(X, ) is an absolutely convex subring of M (X, .«7).

Proposition 3.9. Let R be an absolutely convex subring of M(X, o). If P is a
prime ideal of R, then P is an absolutely convez ideal of R.

Proof. Let g € P and f € R such that |f| < |g|. Then the function h: X — R

given by
)
h(z) = { 9 it x¢z(g)
0 it ze€z(g)
belongs to M (X, /), and, by hypothesis, h € R, because |h| < |f|. Since f? =
gh € P, we infer that f € P. O

We recall from [13] that M (X, .«7) is a regular reduced ring, which implies that
every prime ideal of M (X, /) is a maximal ideal of M (X, /). Then for every

prime ideal P of M (X, <), w is a totally ordered filed.

4. REAL COMPACT T-MEASURABLE SPACE AND REAL RIESZ MAP ON M (X, <7).

In this section, we introduce realcompact T-measurable space and prove that
realcompact T-measurable spaces are the same compact T-measurable spaces.
Also we show that for every realcompact T-measurable space (X, o) and nonzero
homomorphism ¢: M (X, /) — R there exists an element zy in X such that
o(f) = f(xg) for every f € M(X, o).

For every proper ideal P of M (X, <), it is clear that §: R —

r+— r + P is a monomorphism, which implies that w has a copy of R. This
fact leads to the following definition. Except for Proposition [£.10] the concepts as
well as the other results of this section are counterparts of the results in the text
book [12].

Definition 4.1. Let R be a subring of M(X,.</). A maximal ideal M of R is
called real if % = R, otherwise it is called hyper-real.

w given by

Recall that a totally ordered field F' is said to be archimedean if for every element
a € F, there exists an element n in N such that n > a. Hence, by [12, Theorem
0.21], we have:

Proposition 4.2. A mazimal ideal M of M (X, o) (resp., M*(X, o)) is real if
and only if %ﬂﬂ (resp., W} is archimedean.
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Proposition 4.3. Let M be a maximal ideal of M(X,<7) and f € M(X, o).
Then the following statements are equivalent.

. o M(X, o)
(1) |f + M| is an infinitely large element of (T

(2) flz is unbounded for every Z € Z|M].
(3) The zero set Z,, :={x € X: |f(x)| > n} belongs to Z|M] for every n € N.

Proof. (1) & (2) Let n € N be given. Then, by Proposition |f+ M| <nif
and only if |f||z < n for some Z € Z[M].
(1) < (3) Let n € N be given. Then, by Proposition[3.5] | f+M| > n if and only if
|fllz = n for some Z € Z[M], and since Z C Z,,, we conclude that Z,, € Z[M]. O
The following corollary relates unbounded functions on X with infinitely large
elements modulo maximal ideals.

Corollary 4.4. Let f € M (X, ) be given. Then f € M(X, o)\ M*(X, <) if

and only if there exists a mazimal ideal M of M (X, /) such that |f + M| is an

infinitely large element of M

Proof. Necessity. We put Z,, := {z € X: |f(z)| > n} for any n € N. Because
{Z,: n € N} has the finite intersection property, we conclude that there is an
ultrafilter F of & such that {Z,: n € N} C F. Since, by [LI], Proposition 3.6.],
M := Z~'[F] is a maximal ideal of M (X, /), we conclude from Proposition
that |f + M| is an infinitely large element of M(X )

Sufficiency. It is obvious. O

Lemma 4.5. Let Z € & be given. Z is a compact element of o if and only if
Z & F for every free ultrafilter F of <7 .

Proof. Necessity. Let Z € F for some free ultrafilter F of o/. Then

Z = con(x,) N X = coz(x,) N | (X\F) = [ (coz(x,) N coz(x ),
FeF FeF

which implies that there are Fy, Fy,--- , F,, € F such that
Z = U (coz(x,) N COZ(XX\F,i)) =7ZnN U(X \F;) e F,
i=1 i=1
and so 0 = ZN (., F; € F, which is a contradiction.
Sufficiency. Let Z be not compact. Since (Z, Z/) is not a compact measurable
space, we conclude from Proposition that there is an element f of M(Z) such
that f ¢ M*(Z). Then the function g: X — R given by

If(x)+1 if zeZ
9() =4 g if reX\Z

belongs to M (X, o)\ M*(X, o). We put Z,, :== {x € X: |g(z)| > n} for every
n € N. Then there exists a free ultrafilter F of &/ such that {Z,: n € N} C F,
because {Z,: n € N} has the finite intersection property. Since Z € F, we obtain
a contradiction, by Lemma O
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Proposition 4.6. Let f € M(X,o) be given. |f + M| is an infinitely large
element of %ﬂ) for every free mazimal ideal M of M (X, <) if and only if f|z
is unbounded for every noncompact measurable set Z € of .

Proof. Necessity. Let Z € o/ be not compact, and let f|z be bounded. By Lemma
Z € F for some free Z-ultrafilter F of o7. If we put M := Z~!(F), then
|f + M| is bounded, which is a contradiction.

Sufficiency. Let M be a free maximal ideal of M (X, &), then, by [I1], Proposition
3.6], F := Z(M) is a free ultrafilter of . Since, by Lemma [£.5] no element of Z (M)
is compact, we conclude from our hypothesis and Proposition that |f + M| is

an infinitely large element of W O

The following proposition relates compactness of X with the real maximal ideals
of M(X, o).
Proposition 4.7. The following statements hold.
(1) Every mazimal ideal of M*(X, <) is real.
(2) Ewvery maximal ideal of M (X, /) is real if and only if X is compact.

Proof. (1) Let M be a maximal ideal of M*(X). If f € M*(X, o), then |f| <n
for some n € N, and hence |f + M| < n. Therefore, W
so, by Corollary M is a real maximal ideal of M*(X, o).

(2) Necessity. We argue by contradiction. Let us assume that X is not compact.
By Proposition there exists an element f of M (X, /) such that f ¢ M*(X, ).

Hence, by Corollary a maximal ideal M of M (X, /) such that |f + M| is an
(X, o)

is archimedean, and

infinitely large element of , which implies that there is a maximal ideal
M of M(X, /) which is not real. This is a contradiction to the fact that every
maximal ideal of M (X, &) is real.

Sufficiency. Since, by Proposition 2.1 M (X, &) = M*(X, /), we conclude from
the first statement that every maximal ideal of M (X, o) is real. O

Definition 4.8. Let A be a Q-algebra (or a R-algebra). A function ¢: A — R is
called a real Riesz map if ¢(ra + be) = r¢(a) + ¢(b)d(c) for every a,b,c € A and
r € Q (r € R). Also, a nonzero real Riesz map is called a real bounded Riesz map.

Remark 4.9. Let ¢: M (X, %) — R be a ring homomorphism, i.e., o(f + gh) =
o(f) + o(g)p(h) for every f, g, h € M(X, ), then the following statements hold.
(1) If f > g, then o(f) > p(g) for every f,g € M(X, ).
(2) If ¢ # 0, then p(r) = r for every r € R.
(3) If ¢ # 0, then ¢ is a real bounded Riesz map.

The next proposition contains a complete description of the real bounded Riesz
map on M (X, ).

Proposition 4.10. Let o: M(X, /) — R be a nonzero homomorphism. If every
maximal ideal of M(X, <) is real, then there exists an element x¢ of X such that

o(f) = f(xg) for every f € M(X, o).
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Proof. By Proposition (X, o) is compact and so, by [II], Proposition 4.11],

every proper ideal of M (X, /) is fixed. Since, by Remark @ is an f-ring

epimorphism, we infer that the canonic map @: J\iif(g) — R given by f+ker(p) —

©(f) is an isomorphism. Therefore, ker(y) is a maximal ideal of M (X, o7), then
there exists an element xy of X such that ker(p) = M,,. We claim that ¢(f) =
f(zg) for every f € M(X, /). We have ¢(g) = 0 = g(xg) for every g € ker(p).
If g € M(X, o)\ ker(p) with ¢(g) = r # g(xo) for some r € R\ {0}, then
?(1+ ker(p)) =1 =3(Lg + ker(y)), and this is a contradiction, which proves the
claim. g

5. THE INTERSECTION OF FREE IDEALS

In this section, we show that M. (X, ) is equal to the intersection of free
maximal ideals of M* (X, .o/) and Mg (X, ) is equal to the intersection of free
ideals of M*(X, <) (M (X, <)), also we prove that M (X, o) and Mk (X, <) do
not have free ideal.

Lemma 5.1. Let {f,}nen € M(X, o) such that 0 < f,(x) < fni1(x) for every
n € N and every x € X. If the sequence {fn}nen converges to f pointwise on X,
then f € M(X, o).

Proof. Consider r € R. Since 0 < f,,(z) < fny1(x) for every (z,n) € X x N, we
conclude from lim, _, frn(z) = f(z) for every z € X that

{reX: f(x)>r}= U{xeX:fn(x)>r}€@7
neN
for every r € R, which implies that f € M (X, o). O

We can now state the counterpart of [12, Theorem 5.14] for M (X, 7). Also,
the next proposition provides a complete description of the real maximal ideals of
M(X, ).

Proposition 5.2. Let M be a mazimal ideal of M(X, /). Then the following
statements are equivalent.

(1) M is real.

(2) Z[M] closed under countable intersection.

(3) Z[M] has countable intersection property.

Proof. (1) = (2) Let {z(fn): n € N} C Z[M] with (), oy 2(fn) & Z[M]. We define
9n = |fa| A5 for every n € Nand g = Z,engy. By Lemma g € M(X, ). Since
2(9) = Nyen 2(fn) € Z[M], we conclude from [IT, Proposition 3.13] that g ¢ M.
For every m € N and every = € (-, 2(f;), we have g(z) < Zpcpen2™" = 27™.

Hence, by Proposition g+M < 27™ for each m € N, i.e, g+ M is infinitely small,
M(X, o)
M

and hence is nonarchimedean and M is not real, which is a contradiction.
(2) = (3) It is clear, because O ¢ Z[M].
(3) = (1) By way of contradiction assume that M is not a real ideal of M (X, &),
then there is an element f of M (X, /) such that f + M is an infinitely large
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element of %”Q{), and by Propositionm7 Zy ={x € X:|[f(z)| > n} € Z[M]
for every n € N. It is clear that [, cyy Z, = (), which is a contradiction. O

Definition 5.3. Let (X, /) be a measurable space. An ultrafilter F of &7 is called
real if Z71(F) is a real maximal ideal of M (X, </).

Proposition 5.4. Let F be an ultrafilter of <7, then the following statements hold.

(1) F is a real ultrafilter of <7 if and only if F is closed under countable
intersection.

(2) If F is a real ultrafilter of & and {fn: n € N} C M(X, <) such that
Mnen 2(fn) € F, then z(fn) € F for somen € N.

Proof. (1) It follows from Proposition

(2) We argue by contradiction. Let us assume that z(f,,) € F for every n € N.
Then, by [I1, Proposition 3.7], there is an element z(g,) of F such that z(f,) N
2(gn) = 0 for every n € N. By the first statement, (), cy2(9n) € F and by
hypothesis

0 ( ﬂ Z(gn)) N ( m Z(fn)) eF,

neN neN

which is a contradiction. O

We say that f € M(X,«/) vanish at infinity if the set {z € X: |f(z)| > 1}
is compact for every n € N. Let M (X, o) denote the family of all functions of
M (X, <) that vanish at infinity. It is clear that M (X, &) is an absolutely convex
subring of M (X, ).

We can now give an answer to a question which was posted by Acharyya et al.
[l Question 4.11].

Theorem 5.5. The subset Mo (X, o) of M*(X, o) is equal to the intersection
of all free maximal ideals of M*(X, o).

Proof. Let f € N{M: M is a free maximal ideal of M*(X, )} be given. We
argue by contradiction. Let us assume that f ¢ My (X, 7). Then there exists an
element n € N such that Z,, :== {z € X: |f(2)| > 1} is not a compact element of
/. By Lemma [L.5] there exists a free ultrafilter F in 7 such that Z, € F. On the
other hand, note that z(f) € F, hence § = Z,, N z(f) € F, which is a contradiction.
Therefore,

m{M: M is a free maximal ideal of M*(X, o)} C M (X, ).
Let M be a free maximal ideal of M*(X, o) and f € M (X, ). Then, by

Proposition M is a real maximal ideal of M* (X, </), and so, by Proposition
Z[M] is closed under countable intersection. We put Z,, := {z € X: [f(z)| > ~}
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for every n € N. Then
f € M(X,o) = Z, is compact for every n € N
= Z, & Z|M] for every n € N, by Lemma [4.5]
= X\ Z, € Z[M] for every n € N
= 2(f) = [ (X\ Z,) € Z[M]

neN
= feM.

Hence,
My (X, o) C m{M M is a free maximal ideal of M*(X, &)} .

Therefore, M (X, <7) is equal to the intersection of all free maximal ideals of
M*(X, o). O

Lemma 5.6. If I is a free ideal of M (X, /) or M*(X, ), then for any compact
(finite) measurable subset A of X, there exists an element fa of I such that
A C coz(fa).

Proof. Let I be a free ideal of M (X, o) or M*(X, /), and let A be a compact
element of «7. Since I is a free ideal of M (X, ), we conclude that for any
x € A, there exists an element f, of I such that = € coz(f,), which implies that
A C Jyeq coz(fz), and so there exists a finite subset A’ of A such that A C
Usear coz(fz) = coz(Y,ca f2) and > 4 f2 € I, because A is compact. O

Let Mk (X) denote the family of all functions in M (X, o) having compact
cozero set. It is clear that My (X, /) is an absolutely convex subring of M (X, <),
and also, Mg (X, o) C M (X, o).

Proposition 5.7. Let (X, /) be a T- measurable space, then the following state-
ments hold.

(1) Mg(X)C({I:1 is a free ideal of M*(X, </)}.
(2) Mg (X)C({I: 1 is a free ideal of M(X, o/)}.
Proof. (1) Let I be an arbitrary free ideal of M*(X, o) and f € Mk (X). Since
coz(f) is compact and I is a free ideal of M*(X, /), we conclude from Lemma
that there exists an element g of I such that coz(f) C coz(g), and so, by Lemma
there exists an element h of M*(X, /) such that f = gh € I. Therefore,
Mg (X) C({I:1is a free ideal of M*(X, o)}
The proof of the second statement is similar to the proof of the first statement.
O
The following theorem relates the intersection of all free ideals of M (X, .o7) with
Mk (X, o).
Theorem 5.8. The following statements hold.

(1) The subset M (X, o) of M(X, o) is equal to the intersection of all free
ideals of M(X, o).
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(2) The subset M (X, o) of M*(X, o) is equal to the intersection of all free
ideals of M*(X, ).

Proof. (1) Let f ¢ Mg (X, ) be given. Then coz(f) is not compact, which
from Lemma implies that coz(f) € F for some free ultrafilter F of &, i.e.,
f € Z71[F]. Hence,

fé ﬂ{]: I is a free ideal of M (X, .o7)}.

Therefore, by Proposition the proof is now complete.
(2) The proof of the second statement is similar to the proof of the first statement.
O

In the following corollaries, we show that M. (X, %) and Mk (X, <) do not
have free ideal.

Corollary 5.9. Every proper ideal of Mo (X, o) is fived.

Proof. Let @ be a free maximal ideal of M. (X, /), then there exists a maximal
ideal M of M*(X, /) such that Mo (X, /) € M and Q = M N M (X, &), which
implies that M is a free ideal of M*(X, o) such that M. (X, /) € M, but this is
a contradiction to the fact that M., (X, /) is equal to the intersection of all free
maximal ideals of M*(X, o). On the other hand, note that every proper ideal of
Moo (X, /) is contained in a maximal ideal of M (X, <), and so every proper

ideal of M (X, o) is fixed. O
Corollary 5.10. Every proper ideal of Mk (X, <) is fixed.
Proof. The proof is similar to the proof of Corollary O
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