Address.
Department of Mathematics, Masaryk University, Janackovo nam. 2a, 662 95 Brno, Czech Republic
E-mail. polak@math.muni.cz
Abstract.
We prove here an Eilenberg type theorem: the so-called
conjunctive varieties of rational languages correspond to the
pseudovarieties of finite semilattice-ordered monoids.
Taking complements of members of a conjunctive variety of languages
we get a so-called disjunctive variety. We present here a non-trivial
example of such a variety together with an equational characterization of the
corresponding pseudovariety.
AMSclassification. Primary: 68Q70; Secondary: 20M07, 06F05.
Keywords. Syntactic semilattice-ordered monoid, conjunctive varieties of rational languages.