A VARIANT OF THE COMPLEX LIOUVILLE-GREEN APPROXIMATION THEOREM

Renato Spigler and Marco Vianello

Address. R. Spigler, Dipartimento di Matematica, Universita di Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, ITALY

M. Vianello, Dipartimento di Matematica Pura e Applicata, Universita di Padova, Via Belzoni 7, 35131 Padova, ITALY

E-mail: spigler@dmsa.unipd.it, marcov@math.unipd.it

Abstract. We propose a variant of the classical Liouville-Green approximation theorem for linear {\em complex\/} differential equations of the second order. We obtain rigorous error bounds for the asymptotics {\em at infinity\/}, in the spirit of F.\,W.\,J. Olver's formulation, by using rather arbitrary $\xi$-progressive paths. This approach can provide higher flexibility in practical applications of the method.

AMSclassification. 34E20, 34M60

Keywords. Complex Liouville-Green, WKB, asymptotic approximations