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16-dimensional compact projective planes with 3 fixed points

Helmut Salzmann

Dedicated to Professor Adriano Barlotti on the occasion of his 80th birthday

Let 2 = (P, L) be a topological projective plane with a compact point set P of finite
(covering) dimension d = dim P > 0. A systematic treatment of such planes can be
found in the book Compact Projective Planes [15]. Each line L € £ is homotopy
equivalent to a sphere S, with /|8, and d = 2/, see [15] (54.11). In all known exam-
ples, L is in fact homeomorphic to S,. Taken with the compact-open topology, the
automorphism group X = Aut 2 (of all continuous collineations) is a locally compact
transformation group of P with a countable basis, the dimension dim X is finite [15]
(44.3 and 83.2).

The classical examples are the planes 2 over the three locally compact, connected
fields IK with / = dim K and the 16-dimensional Moufang plane (0 = %p over the
octonion algebra O. If 2 is a classical plane, then Aut# is an almost simple Lie
group of dimension C,, where C; =8, C; = 16, C4 = 35, and Cg = 78.

In all other cases, dimX < %C( + 1 < 5/. Planes with a group of dimension suffi-
ciently close to % C, can be described explicitly. More precisely,

the classification program seeks to determine all pairs (?,A), where A is a connected
closed subgroup of Aut 2 and b, < dim A < 5/ for a suitable bound by = 4/ — 1.

This has been accomplished for /7 < 2 and also for by = 17. Here, the case £/ = 8§
will be studied; the value of b, varies with the configuration of the fixed elements
of A.

Most theorems that have been obtained so far require additional assumptions on
the structure of A. If dim A > 27, then A is always a Lie group [12].

By the structure theory of Lie groups, there are 3 possibilities: (i) A is semi-simple,
or (ii) A contains a central torus subgroup, or (iii) A has a minimal normal vector
subgroup, cf. [15] (94.26). The first two cases are understood fairly well:

(@) If A is semi-simple and dim A > 28, then A =~ SLsH and % is a Hughes plane
(as described in [15] §86), or A = Sping (R, r) with r < 1, or 2 = 0, see [10], [11].

contains a central torus, and if dim A > 30, then A" =~ SL3IH, see .
b) If A / d if dim A > 30, then A’ ~ SL;H 13

A group A of type (iii) fixes a point or a line, cf. [3] (XI.10.19). Hence (a) and (b)
imply
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(c) If dimA > 30 and A has no fixed element, then P is a Hughes plane or
P x0.

The case that A fixes exactly one element has been treated in [14]:
(d) If dim A > 35 and if A fixes one line and no point, then 2 is a translation plane.

All such planes have been determined in [6], [7], [9]. Either 2 =~ @ or dim A = 35.
Little progress has been made in the cases where A fixes exactly two elements,

necessarily a point and a line. If dimA > 40, then £ and its dual are translation

planes [15] (87.7). All translation planes with dim A > 38 are described in [15] (82.28).

(e) If dim A > 34 and A fixes exactly 2 points and only one line, then A contains a
translation group of dimension at least 15.

(f) If dim A = 33 and A fixes 2 points and 2 lines, then A contains a translation group
T = R® and a compact subgroup ® = SpingIR.

A method to construct all planes with exactly 2 fixed points have been given in [8§].
A smaller dimension of A suffices if A fixes more than two points (the last case to
be considered):

Theorem. If dim A > 32 and A has (at least) 3 fixed points, then A contains a transitive
translation group T. Either dim A = 32 and a maximal semi-simple subgroup ¥ of A is
isomorphic to SU4C, or dim A = 37 and 2 = (0.

Translation planes with a group ¥ =~ SU4C have already been studied in [5].
Examples of proper translation planes such that T has a fixed point set S~ S, are
given in [6].

According to the stiffness result [15] (83.23), the stabilizer A of a non-degenerate
quadrangle satisfies dim A < 14. The proof of the theorem depends decisively on
Bodi’s improvement [1] of the stiffness theorem:

(O) If the fixed elements of the connected Lie group A form a connected subplane
&, then A is isomorphic to the 14-dimensional compact group G, or its subgroup
SU;C or dim A < 8. If & is a Baer subplane (dim & = 8), then A is a subgroup of
SU,C.

Corollary. From dim A > 8 it follows that dim & = 2.

Proof. Assume that dim & = 4. If L is any line of & and if ¢ € L\&, then dim A, > 0
and the fixed elements of A, form a Baer subplane {&,c¢). Hence dim A, < 3 and
dim A < 11. An alternative proof is given by [15] (96.35). O

Proof of the Theorem. 1) For any closed subgroup I' < A and any point x the
dimension formula dim " = dim I, + dim x" holds, see [15] (96.10). This fact will be
used repeatedly without mention.

2) By the stiffness theorem, the stabilizer V of a triangle satisfies dim V < 30. Hence
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all fixed points of A are incident with the same line W. There are at least 3 fixed
points u, v,w € W and the stiffness theorem implies dim A < 38.

3) Because of results (a) and (b), the group A has a minimal normal subgroup
® ~ IR'. Choose a¢ W and p eIl < ® such that IT ~ IR and a? # a. Since A acts
linearly on @, the centralizer Csp is also the centralizer of Il, and the dimension
formula gives dim CsI1 > 32 — ¢. The connected component A of A, N CsII fixes the
orbit a'! pointwise, and the fixed elements of A form a connected subplane &, see [15]
(42.1). By (O) we have dimA, — f < dim A < 14 and ¢ > 2; moreover, dim A = 14
or dimA < 8.

4) Assume first that 1 < 8. Then A = G; is compact. Remember that the action
of any compact or semi-simple Lie group on a real vector space is completely
reducible ([2] (35.4)). Each irreducible module of G, on R'® has a dimension divisible
by 7, see [15] (95.10). Since II* =TI, it follows from 7 < 7 that the commutator
[A, @] is trivial.

5) The last statement implies that the orbit ¢® is contained in &. Because O is
commutative, O, fixes each point of ¢®. Hence O, acts trivially on the subplane &
generated by a'! and u, v, w, and the connected component of ®, is contained in A,
but A is simple and AN® = 1. Therefore, dim®, = 0 and dima® = ¢ = 2.

6) Denote the connected component of A, by V. From steps 3) and 5) it follows that
dimV = 16. Consequently, V has a 2-dimensional radical P = +/V, and [A,P] =1.
Hence ¥ = &. If ¢ is a point of & and ¢ € aw\{a, w}, then dim P, > 0. On the other
hand, P, acts trivially on the smallest closed subplane containing «, ¢, u, v, and this
subplane coincides with & by [15] (32.7); thus the connected component of P, would
belong to the simple group A. This contradiction shows that ¢ > 8.

7)If t = 8, then 16 < dimV = dim ¢ + dim A < ¢ + 14 =22 and dim A > 8. Con-
sider the smallest closed subplane % containing ¢® and u,v,w, and assume that
P #F = F". Then V induces on # a group V/K of dimension <7, see [15] (83.17).
Hence dimK > 9 and K contains G;. The Corollary implies that dim % = 2 and
then dimV/K <1 and dimK > 14. This contradiction shows % = 2 and 0, =1
(because @, fixes # pointwise). By (O) there are two possibilities: either A = G, for
some g € ®, or A = SU;3C for each choice of o, and V acts transitively on ®\{1} by
[15] (96.11). These cases will be treated separately.

8) Suppose that A =~ G, and that A is contained in the maximal semi-simple sub-
group ¥ of A. By minimality of ® and [15] (95.6b), the group ¥ acts irreducibly on ®
and A < V. Clifford’s Lemma [15] (95.5) implies that A cannot be contained in a
proper factor of W, hence W is almost simple. Inspection of the list [15] (95.10) of
representations shows that W is locally isomorphic to an orthogonal group. Because
each action of SOsR on a compact projective plane is trivial ([15] (55.40)), the group
Y is simply connected and then ¥ has a subgroup Y = Spin;R. The central involu-
tion o € Y cannot be planar (or else Y would induce a group SO;R on the fixed plane
Z,). Hence o is a reflection with axis " and some center ¢. Because dim A, < 22, we
have dim ¢® > 10 and, therefore, dim o®« > 10. It is well-known that o®« is con-
tained in the group T of translations with axis W and that « inverts each translation
in T. Consequently, Y acts faithfully on each invariant subgroup of T. There is only
one irreducible representation of Y in dimension <16, viz. the natural one on R®. Tt
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follows that T =~ R'® is transitive and that dim TY = 37. Finally, [4] Satz 3.6 or [15]
(81.17) shows that 2 =~ (.

9) Consider now the second case mentioned at the end of 7). By [15] (96.19), tran-
sitivity of V on ®\{1} implies that a maximal compact subgroup ® of V is transitive
on the 7-sphere S consisting of all rays in ®. We know that SU;C =~ A < ® and that
dim® < dimV < dimA + ¢ = 16. From [15] (96.20-22) we can conclude that the
commutator group @’ is isomorphic to SU4C. Let w denote the central involution in
@’ and note that ®'/{w) =~ SOgR. As in step 8), it follows that w is a reflection with
axis W, that the translation group T has dimension at least 10, and that T is the sum
of two 8-dimensional irreducible submodules; moreover, dimA = dimV +dimT =
32, and the theorem is proved in the case ¢ < 8.

10) For ¢ > 8, the vector group ® contains a minimal normal subgroup H =~ R’ of
the connected component I" of A,,. Mutatis mutandis, the arguments in steps 3)-9)
can be applied to I" and H instead of A and ®. Using the same notation as before, we
have

24 < dimT < dima® + dim 0" + dim A < 8 + s+ dim A.

Hence (O) gives s > 2, moreover, A = G, or s > 8.

11) Suppose that s < 8. As in step 4), it follows that [A, H] = 1. Choose a point ¢
in the 2-dimensional subplane & with ¢ € av\{a,v}. Then dim ¢! < 1 and H.N A has
positive dimension, but A is simple. Therefore, s > 8. If s = 8§, the Theorem is true by
the arguments 7)-9).

12) To finish the proof, let s > 8 and consider the smallest closed subplane #
containing ™ and wu,v,w. If k is the dimension of a line of #, then k|8. Note
that a" < av and that H, induces the identity on #. It follows that dim H, > 0,
hence # # # and k < 4. Since H has no compact subgroups other than 1, the stiff-
ness theorem (O) shows that dimH, < 8, moreover, dimH, > 3 implies k < 2.
Only the possibility k =2 remains. By [15] (55.4), each closed subplane of # is
connected, and #" = # because H is normal in T'. There are points b, ¢ € av N #
such that V, . fixes &# pointwise. On the other hand, dimV, . > 12. This contradicts
the Corollary. ]

References

[1] R. Bodi, On the dimensions of automorphism groups of eight-dimensional ternary fields.
II. Geom. Dedicata 53 (1994), 201-216. MR 96¢:51028 Zbl 0829.51007

[2] H. Freudenthal, H. de Vries, Linear Lie groups. Academic Press 1969. MR 41 #5546
Zbl 0377.22001

[3] T. Grundhofer, H. Salzmann, Locally compact double loops and ternary fields. In:
Quasigroups and loops: theory and applications, 313-355, Heldermann, Berlin 1990.
MR 93g:20133 Zbl 0749.51016

[4] H. Héhl, Lokalkompakte zusammenhidngende Translationsebenen mit groBen Sphér-
enbahnen auf der Translationsachse. Resultate Math. 2 (1979), 62-87. MR 82a:51010
Zbl 0437.51011

[5] H. Hihl, SU4(C) als Kollineationsgruppe in sechzehndimensionalen lokalkompakten
Translationsebenen. Geom. Dedicata 23 (1987), 319-345. MR 88;:51023 Zbl 0622.51008


http://www.ams.org/mathscinet-getitem?mr=96c:51028
http://www.emis.de/MATH-item?0829.51007
http://www.ams.org/mathscinet-getitem?mr=41:5546
http://www.emis.de/MATH-item?0377.22001
http://www.ams.org/mathscinet-getitem?mr=93g:20133
http://www.emis.de/MATH-item?0749.51016
http://www.ams.org/mathscinet-getitem?mr=82a:51010
http://www.emis.de/MATH-item?0437.51011
http://www.ams.org/mathscinet-getitem?mr=88j:51023
http://www.emis.de/MATH-item?0622.51008

16-dimensional compact projective planes with 3 fixed points S157

[6] H. Héhl, Sixteen-dimensional locally compact translation planes admitting SU4C - SU,C
or SU4C - SLyR as a group of collineations. Abh. Math. Sem. Univ. Hamburg 70 (2000),
137-163. MR 2003b:51023 Zbl 0992.51007

[7] H. Héhl, Sixteen-dimensional locally compact translation planes with large automor-
phism groups having no fixed points. Geom. Dedicata 83 (2000), 105-117.

MR 2001h:51021 Zbl 0973.51011

[8] H. Hidhl, H. Salzmann, 16-dimensional compact projective planes with a large group of
automorphisms fixing two points. In preparation.

[9] H. Lowe, 16-dimensional locally compact, connected translation planes admitting SL,IH
as a group of collineations. To appear in Pacific J. Math. 209 (2003), 325-337.

[10] B. Priwitzer, Large semisimple groups on 16-dimensional compact projective planes are
almost simple. Arch. Math. (Basel) 68 (1997), 430-440. MR 98e:51020 Zbl 0877.51014

[11] B. Priwitzer, Large almost simple groups acting on 16-dimensional compact projective
planes. Monatsh. Math. 127 (1999), 67-82. MR 2000d:51020 Zbl 0929.51010

[12] B. Priwitzer, H. Salzmann, Large automorphism groups of 16-dimensional planes are Lie
groups. J. Lie Theory 8 (1998), 83-93. MR 99f:51027 Zbl 0902.51012

[13] H. Salzmann, Characterization of 16-dimensional Hughes planes. Arch. Math. (Basel) 71
(1998), 249-256. MR 99i:51013 Zbl 0926.51016

[14] H. Salzmann, Near-homogeneous 16-dimensional planes. Adv. Geom. 1 (2001), 145-155.
MR 2002h:51009 Zbl 1002.51011

[15] H. Salzmann, D. Betten, T. Grundhofer, H. Hdhl, R. Lowen, M. Stroppel, Compact
projective planes. de Gruyter 1995. MR 97b:51009 Zbl 0851.51003

Received 28 August, 2002

H. Salzmann, Mathematisches Institut der Universitdt Tiibingen, Auf der Morgenstelle 10,
72076 Tiibingen, Germany
Email: helmut.salzmann@uni-tuebingen.de


http://www.ams.org/mathscinet-getitem?mr=2003b:51023
http://www.emis.de/MATH-item?0992.51007
http://www.ams.org/mathscinet-getitem?mr=2001h:51021
http://www.emis.de/MATH-item?0973.51011
http://www.ams.org/mathscinet-getitem?mr=98e:51020
http://www.emis.de/MATH-item?0877.51014
http://www.ams.org/mathscinet-getitem?mr=2000d:51020
http://www.emis.de/MATH-item?0929.51010
http://www.ams.org/mathscinet-getitem?mr=99f:51027
http://www.emis.de/MATH-item?0902.51012
http://www.ams.org/mathscinet-getitem?mr=99i:51013
http://www.emis.de/MATH-item?0926.51016
http://www.ams.org/mathscinet-getitem?mr=2002h:51009
http://www.emis.de/MATH-item?1002.51011
http://www.ams.org/mathscinet-getitem?mr=97b:51009
http://www.emis.de/MATH-item?0851.51003

