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Abstract. Let X be an n-dimensional normal projective variety with terminal, Gorenstein, Q-
factorial singularities. Let L be an ample line bundle on X. Let t be the nefvalue of (X, L).
Then we classify (X, L), describing the structure of the nefvalue morphism of (X, L), when t
satisfiesn —k <t <n—k+1and n > 2k — 3, k = 4. In the smooth case, we discuss the case
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Introduction

Let X be an n-dimensional projective variety with terminal, Gorenstein, Q-factorial
singularities and let L be an ample line bundle on X. If the canonical bundle Ky is
not nef, the Kawamata rationality theorem and the Kawamata—Shokurov basepoint
free theorem imply that there is a fraction 7 = u/v, with u, v positive coprime inte-
gers, and a morphism ¢ : X — W with connected fibers onto a normal projective
variety W such that vKy + uL ~ ¢*H for an ample line bundle H on W and u <
max,,c p{dim¢ ' (w)} + 1. We call 7 the nefvalue and ¢ the nefoalue morphism of
(X, L) respectively.

Thus 7 <n+ 1 and by the Kobayashi—Ochiai theorem 7 =n+ 1 if and only if
(X,L) = (P", Ops(1).

It is a natural question to classify polarized pairs (X, L) in terms of the numer-
ical values of 7 and the structure of the morphism ¢. The range n —3 <t <n+1
has been extensively studied by several authors. We refer to [4, Chapter 7] for the
case n —3 < t<n+1withn >3, to[7] for the n = 4 case, to [11], [12] for the case
7=mn— 3, and to [1] for a refinement in a more general context when ¢ is birational
with 7 =n — 1,n — 2. Recently, the case where 7 is not integer satisfying the condi-
tion n —4 <t <n—3, with n > 5 (as well as the case when 7 satisfies n — 3 < 7 <
n — 2), has been studied in [13].
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In this paper we consider the more general situation when © = u/v is not integer
and satisfiesn — k <t <n—k+ 1, withn > 2k — 3, k > 4, which includes the results
of [13]. If X is smooth, we study also the case n = 2k — 4, k = 5. Following [3], we
use a new polarization 4 on X such that the nefvalue of (X, A4) is u. Whenever
n = 2k — 3 we fall in the range up to the second reduction in the adjunction theoretic
sense, i.e., u =n— 2. If n =2k — 4, then u = n — 3 and we need the third adjunction
results [11], as well as the classification [2] of some codimension 2 small contractions
which occur.

1 Background material

We work over the complex field €. Throughout the paper we deal with projective
varieties V' (i.e., irreducible and reduced projective schemes), and we follow the usual
notation in algebraic geometry. We denote by =~ (respectively ~) the linear (respec-
tively numerical) equivalence of line bundles.

The book [4] is a good reference for standard results and notation of adjunction
theory. We also refer to [8] for some facts from Mori theory we use.

The paper is based on the following special case of a major theorem of Kawamata

[8].

Theorem 1.1 (Kawamata rationality theorem). Let V be a normal projective variety
of dimension n with terminal Gorenstein singularities. Let n: V — Y be a projective
morphism onto a variety Y. Let L be a n-ample Cartier divisor of V. If Ky is not n-nef
then

7 =min{r € R| Ky + tL is n-nef’}

is a rational number. Furthermore expressing t = u/v with u, v coprime positive inte-
gers, we have u < b + 1 where b = max,,c y {dimg(,) 7' ()}

Definition 1.2. Let 7 be a normal variety of dimension n with terminal Gorenstein
singularities. Let 7: V' — Y be a projective morphism onto a variety Y. Let £ be
a m-ample Cartier divisor of V. Assume that Ky is not n-nef. Let 7 be the positive
rational number given by the Kawamata rationality theorem (1.1).

We say that the rational number 7 is the n-nefvalue of (V,%). If Y is a point, 7 is
called the nefvalue of (V,¥). Note also that, if Y is a point, then K + 7% is nef
and hence by Theorem 1.1 we have that t = u/v for two coprime positive integers,
u and v. Thus by the Kawamata—Shokurov basepoint free theorem we know that
|m(vKy + u)| is basepoint free for all m > 0. Therefore for such m, |m(Ky + t.%)|
defines a morphism f : V' — P¢. Let f = s 0 ¢ be the Remmert—Stein factorization
of f where ¢ : V' — W is a morphism with connected fibers onto a normal projective
variety, W, and s : W — [P¢ is a finite-to-one morphism. By [4, (1.1.3)] we know that
the morphism, ¢, is the same for any m > 0 such that |m(vKy + u?)| is basepoint
free, and thus only depends on (7, %#). Note that, by [4, (1.1.3)], s is an embedding
for m > 0 and therefore ' = ¢ for m > 0. We call ¢ : V' — W the nefvalue morphism
of (V, ). We also know by [4, (1.1.3)] that there is an ample line bundle H on W
such that vKy +u¥ ~ ¢*H.
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Remark 1.3. Let V' be as in Theorem 1.1 and . an ample line bundle on V. Let ©
be the nefvalue of (V, %) and ¢ the nefvalue morphism of (V,%). Then % is
¢-ample and

t=min{r € R | Ky + t¥ is nef} = min{zr € R | Ky + 1% is ¢-nef’}.
That is 7 coincides with the ¢-nefvalue of (V, %).

Lemma 1.4 ([4, (1.5.5)]). Let (V, %) be as in Theorem 1.1. A real number 7 is the
nefvalue of (V, %) if and only if Ky + ¥ is nef but not ample.

Let us recall a few results from adjunction theory.

Lemma 1.5 ([4, (3.3.2)]). Let ¥ be a nef and big line bundle on a normal projec-
tive variety, V, of dimension n with only terminal Gorenstein singularities. Then if
t(aKy + b)) ~ Oy for some integers a >0, b >0, t >0 one has aKy + b ~ Oy,
andb/a < n+ 1. If a, b are coprime, there exists a nef and big line bundle M on V such
that Ky ~ —bM, ¥ ~aM. If & is ample, then so is M.

1.6 Special varieties. Let 7 be a normal Gorenstein variety of dimension #n, and
let L be an ample line bundle on V. We say that V' is a Gorenstein—Fano variety (or
simply that V is Fano) if —Ky is ample. We say that (V,L) is a Del Pezzo variety
(respectively a Mukai variety) if Ky ~ —(n — 1)L (respectively Ky ~ —(n — 2)L).

We also say that (V,L) is a scroll (respectively a quadric fibration; respectively
a Del Pezzo fibration; respectively a Mukai fibration) over a normal variety Y of
dimension m if there exists a surjective morphism with connected fibers p: V' — Y,
such that Ky + (n —m+ 1)L ~ p* & (respectively Ky + (n — m)L =~ p* % respectively
Ky + (n—m—1)L~p*¥,; respectively Ky + (n —m — 2)L ~ p*#) for some ample
line bundle ¥ on Y.

We say that a normal Gorenstein n-dimensional variety V' is a Fano variety of
index i, if i is the largest positive integer such that Ky ~ —iH for some ample line
bundle H on V. Note that i < n+ 1 (see Lemma 1.5 below) and n — i + 1 is referred
to as the co-index of V.

We refer to Fujita [5] and [6] for classification results on Del Pezzo varieties. Note
that Del Pezzo manifolds are completely described by Fujita [5, 1, §8]. We refer to
Mukai [9] and [10] for results on Mukai varieties.

We also refer e.g. to [4, (3.1.6)] for a generalized version of Kobayashi—Ochiai
theorem (characterizing projective spaces and quadrics) which we systematically use
in the sequel.

The following useful fact was noted in [13, (1.1)]. It is an easy consequence of the
Kawamata rationality theorem (1.1), and the assumption that 7 is not integer.

Lemma 1.7 (Zhao). Let V be an n-dimensional normal projective variety with Goren-
stein, terminal, Q-factorial singularities. Let ¥ be an ample line bundle on V. Let ©
be the nefvalue of (V,%). By the Kawamata rationality theorem, t = u/v, with u, v
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positive coprime integers. Assume n —k <t <n—k+ 1 for positive k < n. Then 2 <

v < Spand T = n — k + < for some positive integer i < v and i, v are coprime.

Finally, let us recall for reader’s convenience the main results from [3].

Lemma 1.8 ([3, (1.1), (1.2)]). Let X be a normal projective variety with terminal
Gorenstein singularities. Let L be an ample line bundle on X. Let ¢ : X — W be a
surjective morphism onto a normal variety W. Assume that ¢ has at least one positive
dimensional fiber and that vKy + ul ~ ¢*H, for some ample line bundle H on W and
coprime integers u, v.

1. There exist positive integers a, b such that av — bu = 1;

2. Let A :=bKy + aL. Then A is ample, Ky + uA ~ ¢*(aH) and u is the nefvalue of
(X, 4).

Theorem 1.9 ([3, (1.4)]). Let X be a projective variety of dimension n with Gorenstein
rational singularities. Assume Ky not nef. Let L be an ample line bundle on X. Let
T = u/v be the nefvalue of (X, L), u, v coprime positive integers. Let ¢ : X — W be the
nefvalue morphism of (X,L). Let A := bKx + aL be an ample line bundle on X given
by Lemma 1.8.

1. Assume that u = max,,c w{dim ¢~'(w)} + 1. Then (X, A) is a scroll over W under
¢. If X is smooth, or more generally if cody Sing(X) > dim W, then (X, A) is in
fact a P~ "-bundle over W under ¢. Furthermore § is a fiber type contraction of an
extremal ray.

2. Assume that u = max,,. y{dim ¢! (w)}. If ¢ is not birational, then either

(a) (X, A) is a scroll over W under ¢; or

(b) (X,A) is a quadric fibration over W under ¢, and all fibers are equidimen-
sional.

If ¢ is birational, X is smooth, and u = (n+ 1)/2, then

(€) ¢ is the simultaneous contraction of a finite number of extremal rays and is
an isomorphism outside of ¢71(%) where A is an algebraic subset of W which
is the disjoint union of irreducible components of dimension n —u — 1. Let B
be an irreducible component of B and let E = ¢~ (B). The general fiber, A, of
the restriction, ¢p of ¢ to E is a linear P", (A, Apr) = (IP", Op«(1)), N x|a =
Op«(—1) and W is factorial with terminal singularities.

Note that if X has terminal singularities, then X has rational singularities and it is
a general fact that cody Sing(X) > 3, so that the above condition cody Sing(X) >
dim W is always true if dim W < 2.

2 The case of dimension n > 2k — 3

The following theorem includes the results of [13], which correspond to the cases
k=3,4.
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Theorem 2.1. Let X be a normal projective variety of dimension n =2k — 3, k > 4

with terminal, Gorenstein, Q-factorial singularities. Let L be an ample line bundle on
X. Let © be the nefvalue of (X,L) and let ¢ : X — W be the nefvalue morphism of
(X,L). Assumen —k <t <n—k+1. Then (X, L) is described as follows:

1on=2k =" (X,L) = (P", Ops(2));

2. n=2k—1,1=1%, A:= Ky + kL is ample and either:
(a) (X,L) = (2,05(2)), 2 a hyperquadric in P"*'; or
(b) (X,4), ¢: X — W, isa P" '-bundle over a smooth curve, and ¢ is a fiber type
contraction of an extremal ray;

3.n=2k—-2,t="51 4:= Ky + (k— 1)L is ample and either:

(a) (X, A) is a Del Pezzo variety, L ~2A4; or

(b) (X,A4), ¢: X — W, is a quadric fibration over a smooth curve and all fibers are
equidimensional, or

(c) (X,4), ¢: X — W, is a scroll over a normal surface; or

(d) (X,A4), ¢: X — W, is a P" *-bundle over a normal surface; furthermore ¢ is a
fiber type contraction of an extremal ray; or

(€) ¢: X — W is the simultaneous contraction to distinct smooth points of dis-
joinl divisors E; =~ P"~! such that E; = Reg(X), Og,(E;) = Opr1(—1) and Ag, =

Opni(1) fori =1,... 1. Furthermore Aw := (¢, A)" and Ky + (n — 1) Ay are

ample and Ky + (n - l)A ~ " (K + (n—1)Ay);

4. n=2k-3,7= Tz A = Kx + (k — 2)L is ample and either:
(a) (X, A4) is a Mukai variety, L ~ 2A4; or
(b) (X,4), ¢: X — W, is a Del Pezzo fibration over a smooth curve; or
(c) (X,4), ¢: X — W, is a quadric fibration over a normal surface; or
(d) (X,4), ¢ : X — W, is a scroll over a normal threefold, or
(e) ¢: X — W is the simultaneous contraction of a finite number of extremal rays

and is an isomorphism outside of ¢~ (Z), where Z is an algebraic subset of W

such that dim Z < 1. Moreover ¢ is the blowing up of W along Z and the fol-

lowing cases can occur:

1. The 1-dimensional component Z| of Z is the disjoint union of locally com-
plete intersection curves and it is contained in the regular set of W or

ii. If z is a O-dimensional component of Z, then ¢ (z) is an irreducible reduced
divisor and either (E,Ag) = (P"', Ops1(1)) with Nejx = Opna (=2), or
(E,Ag) = (2,05(1)), 2 a (possibly singular) hyperquadric in P", with
Ny = Oo(—1);

S5.n=61t=1(X,L) = (P°% Ops(3));
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(a) (X,L)=(2,04(3)), 2 hyperquadric in P%; or
(b) A := 2Ky + 5L is ample, (X,A), ¢ : X — W, is a PC-bundle over a smooth
curve; moreover ¢ is a fiber type contraction of an extremal ray;

9. n=>51=%,3,3.%and (X, L) is described as in [13, (1.2), (iv)].

Proof. Throughout the proof we use over and over all the results from §1 without
always explicitly referring to them. Let © =%, where v > 2 since 7 is not integer. By
Lemma 1.8 there exist positive integers a, b such that av — bu = 1 and the line bundle
A := bKy + aL is ample. Thus

Ky +uAd = a(vKy + uL) (1)

and hence Ky + ud ~ ¢* () for some ample line bundle # on W and u is the nef-
value of (X, A4).

We put m(¢) := max,,c y{dim ¢~ (w)} and, if ¢ is not birational, we denote by
f(¢) the dimension of the general fiber F. Note that in this case Kr + udr ~ O and
hence

u f(@)+1<m@)+1<n+1. 2)
Let us first consider the case v = 2. Then, by Lemma 1.7,

gl
= 2 2

and hence, recalling the assumption on n, one hasn+1>u=2n—-2k+1>n-2.

Ifu=n+1,then n=2k, A=Ky + (k+ 1)L, (X,A4) = (IP",Op+(1)) and we are
in Case 1.

If u=n, or n=2k—1, we have 1 =% and 4= Ky +kL. Then Ky +nd =
k(2Kx +nL) by (1). Since Ky + nA nef and big implies Ky +nA ample by [4, (7.2.3)],
we conclude that ¢ is not birational. Hence we have u = n < m(¢) + 1 < n+ 1. Then
either m(¢) = n and ¢ contracts X to a point, or u = n = m(¢) + 1. In the first case
2Ky +nL ~ Oy, so that —Ky ~nM, L ~2M for some ample line bundle M on X
(and hence A ~ (—n+ 2k)M = M), and therefore (X,L) = (2, 0(2)) as in Case 2
(a). In the latter case, by Theorem 1.9, (X, 4) is a P"~!-bundle over W as in Case 2
(b).

Ifu=n—1,o0rn=2k—2 thent ="' and 4 = Ky + (k — 1)L. If ¢ is not bira-
tional, we have u = n — 1 < m(¢) + 1, and therefore n — 2 < m(¢) < n. If m(¢p) = n,
then ¢ contracts X to a point, and hence 2Ky + (n — 1)L ~ Ox. Thus, since n — 1 is
odd, there exists an ample line bundle M on X such that Ky ~ —(n — )M, L ~2M
(and hence A~ (1 —n+2(k—1))M = M) and therefore (X,A4) is a Del Pezzo
variety as in Case 3 (a). Let m(¢) = n — 1. Thus (2) yields n — 1 < f(¢) + 1 < n and
hence either f(¢) =n—1 or f(¢) = n — 2. Since u = m(¢), and recalling that Ky +
(n—1)A ~ ¢*(A), we conclude from Theorem 1.9 that (X, A4), ¢ : X — W, is either
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a quadric fibration over a smooth curve, or a scroll over a normal surface as in Cases
3 (b), 3 (c). If m(¢) =n — 2, Inequality (2) givesu=n—1=m(¢)+ 1, f(§) =n—2
and (X, A4), ¢ : X — W, is a P" 2-bundle as in Case 3 (d).

If ¢ is birational, since u = n — 1 is the nefvalue of (X, A), the structure theorem (4,
(7.3.2)] applies to give Case 3 (e).

Next, assume u=n—2, or n =2k —3. Then t="32 and 4 = Ky + (k —2)L.
Assume ¢ is not birational. We have u=n—-2<m(¢)+1, so that n—3 <
m(¢) < n. If m(¢) = n, then ¢ contracts X to a point, and hence 2Ky + (n —2)L ~
Ox. Thus, since n — 2 is odd, there exists an ample line bundle M on X such that
Ky~—-(n—2)M, L~2M (so that A~ (2—n+2(k—2))M = M) and therefore
(X, A) is a Mukai variety as in Case 4 (a). Let m(¢) = n — 1. Then (2) yields n — 2 <
f(#)+ 1 <nmand hence n —3 < f(¢) <n—1.Let f(§) =n— 1 (respectively f(¢) =
n — 2; respectively f(¢) =n — 3). Thus, since Ky + (n —2)4A ~ ¢*(#’), we see that
(X,A), ¢: X — W, is a Del Pezzo fibration over W as in Case 4 (b) (respectively
(X,A), ¢: X — W, is a quadric fibration over W as in Case 4 (c); respectively
(X,A4), ¢: X — W, is a scroll over W as in Case 4 (d)). Assume now m(¢) =n — 2.
Then n—2 < f(¢) +1<n—1, and hence either f(¢) =n—2, or f(¢) =n—3.
Since u = m(¢), we conclude from Theorem 1.9 that (X, 4), ¢ : X — W, is either
a quadric fibration over a normal surface (and all fibers are equidimensional in this
case) as in 4 (c), or a scroll over a normal threefold as in 4 (d). Finally, let m(¢) =
n—3. Then we find f(¢) =n—3 and, since u=m(¢)+ 1, (X,A4), ¢: X — W, is
again a scroll over a normal threefold as in Case 4 (d) (and in fact a linear IP"3-
bundle if X is smooth by Theorem 1.9).

If ¢ is birational, since u = n — 2 is the nefvalue of (X, A), the structure theorem [1,
Theorem 3] (see also [4, (7.5.3)] in the smooth case) applies to give Case 4 (e).

From now on, we may assume v > 3. Lemma 1.7 yields the inequality

3<v<nfk. (3)

If n =2k —1, we find 3k = 2n > 22k — 1), or k <2, contradicting our assump-
tion on k.

Letn=2k—2. Then 3k >2n >4k — 4, or k <4. Hence k =4, n=6 and v = 3.
Therefore Lemma 1.7 yields 7 = 2+§, with i=1,2. If i=2 one has 7 :g, u==_,
which contradicts the bound u < 7 from the Kawamata rationality theorem (1.1).
Thus i = 1, 7 =, and hence u = 7 = m(¢) + 1. Then m(¢) = 6, so that ¢ contracts
X to a point. In this case 3Ky + 7L ~ (/y, and we are in Case 5.

Assume now n = 2k — 3. Inequality (3) gives now n <9, so that n=9,7,5 by
parity.

Let n =9. Then k = 6 and v = 3. Therefore 7 =3 —|—§ with i = 1,2. If i = 2, then
T= %, u = 11, contradicting the bound u < 10 from Theorem 1.1. Thusi =1, 7 = %
and hence u = 10 = m(¢) + 1, so that m(¢) = 9 and ¢ contracts X to a point. In this
case 3Ky + 10L ~ Oy, and we are in Case 6.

Let n=7. Then k =5 and again v = 3 by (3). Therefore r =2+ % with i =1,2.
If i =2 we have t =%, and u = 8 = m(¢) + 1. Thus m(¢) = 7, so that ¢ contracts X
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to a point. In this case 3Ky + 8L ~ Oy, and we are in Case 7. If i = 1, then 7 :%
and u =7 <m(¢)+ 1 <8, so that either u=m(¢) =7, oru=7=m(p) + 1. Ifu =
m(¢) =7, ¢ contracts X to a point and therefore 3Ky + 7L = Uy, so we are in Case 8
(a). Let u=7 =m(¢) + 1. Note that 4 = 2Ky + 5L in this case. If ¢ is not bira-
tional, Theorem 1.9 applies to say that (X, 4) is a IP®-bundle over W under ¢ as in
Case 8 (b). We claim that ¢ is not birational. Indeed, otherwise, we conclude from
Lemma 1.8 that Ky + 74 (=5(3Ky + 7L)) is nef and big and not ample. Since n = 7,
this contradicts [4, (7.2.3)].

Letn=>5.Then k =4 and 3 <v<35by(3). Therelations t = %=1+, (i,0) = 1,
i<wv, and u <n+1=6 yield for 7 the values 3, 3, 3, 3, ¢. If =3 we are in the
previous Case 4 of the statement. The remaining cases are described in [13, (1.2), (iv)],

to which we refer for details. O

Remark 2.2. Note that, if X is smooth, in the scroll Cases 3 (c) and 4 (d) of Theorem
2.1, ¢ is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if 4 is very
ample, then ¢ is a linear P"~4™(")_bundle by [4, (14.1.3)].

3 The case of dimension n = 2k — 4

In this section we deal with the case of a manifold of dimension n =2k — 4. The
smoothness assumption is needed to use the Ionescu—Wisniewski inequality (see e.g.
(4, (6.3.6)]).

Theorem 3.1. Let X be a smooth projective variety of dimension n =2k —4, k = 5.
Let L be an ample line bundle on X. Let t be the nefvalue of (X,L) and let ¢ : X — W
be the nefvalue morphism of (X,L). Assume n—k <t<n—k+1. Then (X,L) is
described as follows:

a fiber type contraction of an extremal ray; or

(g) n =8, ¢ is the simultaneous contraction of a finite number of extremal rays
and is an isomorphism outside of qﬁ*l(@) where B is an algebraic subset of
W which is the disjoint union of irreducible components of dimension 2. Let
B be an irreducible component of B and let E = ¢! (B). The general fiber, A,
of the restriction, ¢ of ¢ to E is a linear P"3, (A, Ap) = (IP"3, Opn-3(1)),
Neyx|a = Opns(—1) and W is factorial with terminal singularities; or

(h) n=6. Let R be an extremal ray subordinated to ¢, i.e., (Kxy +34) - R=0.
Let E be an irreducible component of the exceptional locus of the contrac-
tion p: X — Y of R. Let A be any irreducible component of any fiber of the
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restriction, pg, of p to E. Thus p is a birational third adjoint contraction with

supporting divisor Ky + 3A4, and either:

1. p is of divisorial type, E is a prime divisor and E, A are described as in [11,
Theorem 1.3]; or

ii. E=A E=P*and Nyjy = Ops(—1) @ Ope(—1).

n=12t=8 (X L) = (P" 0p:(3));
= 10 and either:
@) =4, (X,L) = (P, Opn(3)); or
(b) 7= TO (X,L) = (2,05(3)), 2 a hyperquadric in IP''; or
() T= 3 , A:= 2Ky + 7L is ample, (X, A), ¢: X — W, is a P°-bundle over a

smooth curve, and ¢ is a fiber type contraction of an extremal ray;

.n=8,t=1,4:=2Ky+ 5L is ample and either:

(a) (X, A) is a Del Pezzo variety, L ~ 3A4; or

(b) (X,4), ¢: X — W, is a quadric fibration over a nonsingular curve, and all
fibers are equidimensional; or

(c) (X,4), ¢: X — W, is a scroll over a normal surface; or

(d) (X,A4), ¢: X — W, is a P-bundle over a normal surface, and ¢ is a fiber type
contraction of an extremal ray; or

(€) ¢: X — W is the simultaneous contraction to distinct smooth points of dis-
joint divisors E; =~ 7 such that Ug,(E;) = Opr(—1) and Ag, = Op:(1) for i =
1,...,t Furthermore Ay := (¢, A)"" and Ky + TAw are ample and Ky +7TA ~

= %, A = Ky + 3L is ample and either:
L) = (2,045(3)), 2 a hyperquadric in IP%; or

) ¢: X — W, is a P'-bundle over a nonsingular curve, and ¢ is a fiber
type contraction of an extremal ray;

¢
8,7
a) (X,
b) (X,

n=8, =3, (X.L) = (P°, Op(4));
&

=6,1=73, A:= 2Ky + 3L is ample and either:
(a) (X,A) is a Mukai variety, L ~ 3A4; or
(b) (X,A4), ¢ : X — W, is a Del Pezzo fibration over a smooth curve; or
(c) (X,4), ¢: X — W, is a quadric fibration over a normal surface; or
(d) (X,4), ¢: X — W, is a scroll over a normal threefold, or
(e) (X,A), ¢: X — W, is a P*-bundle over a normal threefold, and ¢ is the con-

traction of an extremal ray; or

(f) ¢ is the simultaneous contraction of a finite number of extremal rays and
is an isomorphism outside of ¢~ (B) where B is an algebraic subset of W
which is the disjoint union of irreducible components of dimension 1. Let B
be an irreducible component of # and let E = ¢~ (B). The general fiber, A, of
the restriction, ¢y, of ¢ to E is a linear P*, (A, Ap) = (IP*, Ops(1)), Ng/x|a =
Op+(—1) and W is factorial with terminal singularities;
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8. n=6,71=3, A:= Ky + 2L is ample and either:

a) (X,4) zs a Del Pezzo variety, L ~ 3A4; or

b) (X,A4), ¢: X — W, is a quadric fibration over a smooth curve, and all fibers

are equidimensional; or

(c) (X,4), ¢: X — W, is a scroll over a normal surface; or

(d) (X,4), ¢: X — W, is a P*-bundle over a normal surface, and ¢ is the con-
traction of an extremal ray; or

(e) ¢ is the simultaneous contraction of a finite number of extremal rays and is
an isomorphism outside of ¢~ (B) where B is the union of a finite set of points.
For each point b e B let E = ¢~ (b). Then (E, Ag) = (P°, Ups(1)), Ox(E) =
@]Ps(—l) and W is factorial with terminal singularities;

9. n=6,t= 4, A := 3Ky + 4L is ample and either:

A,_\

(@) (X, A) is a Del Pezzo variety, L ~4A4; or
(b) (X,4), ¢: X — W, is as in one of cases 8 (b), 8 (c), 8 (d), 8 (e) respectively;
10. n=6,1=1, (X,L) = (P, Ope(4));
11. n=6,7=%, A:=4Ky + 5L is ample and either:
(X,L) = (2,0,(5)), 2 a hyperquadric in P”; or

(a)
(b) (X A), ¢: X — W, is a P°-bundle over a nonsingular curve; furthermore ¢ is
a contraction of an extremal ray;

12.n=6,1=1, (X,L) = (P, Ope(5));
13. n=6,1=1, (X,L) = (IP%, Ops(6)).

Proof. Throughout the proof we use over and over all the results from §1 without
always explicitly referring to them. Let 7 =%, where v > 2 since 7 is not integer. By
Lemma 1.8 there exist positive integers a, b such that av — bu = 1 and the line bundle
A :=bKy +aL is ample. Thus Ky +ud = a(vKy + uL) and hence Ky +ud =
¢*(A) for some ample line bundle # on W and u is the nefvalue of (X, 4).

We put m(4) := max,.c w{dim¢ ' (w)} and, if ¢ is not birational, we denote by
f(¢) the dimension of the general fiber F. Note that in this case K + udr ~ Op and
hence Inequality (2) holds true.

Step I: Let us first consider case v = 2. From Lemma 1.7 we have

_n_k+l_2](—_7—n_3
= 2- 2 T 2

Therefore u = n — 3 and hence 4 = Ky + (k — 3)L.

If ¢ is not birational, then the same arguments as in the proof of Theorem 2.1 lead
to Cases (a) to (f) in 1.

Thus we can assume ¢ birational. If n > 8, we are in the range u > ;! and there-
fore we are in Case 1 (f) by using Theorem 1.9, (c).

Then we can assume n = 6. Hence u = 3 is the nefvalue of (X, 4) and Ky + 34 ~
¢*(A). Let R be an extremal ray subordinated to Ky + 34 (i.e., (Ky +34) - R =0)
and let £ be an irreducible component of the exceptional locus of the contraction p =



Higher dimensional polarized varieties with non-integral nefvalue 297

contg : X — Y of R. Let A be any irreducible component of any fiber of the restric-
tion, pg, of p to E. Then, since X is smooth, the lonescu—Wisniewski inequality (see
e.g. [4, (6.3.6)]) yields dim E + dim A > dim X + /(R) — 1, where /(R) denotes the
length of R. In our case /(R) = 3 (cf. [4, (4.2.15)]), so that the above inequality gives

dim £ + dim A > 8. 4)

Thus 2dim E > 8, or dim E > 4. Note that since Ky + 34 is the supporting divisor
of p, p is a 6-dimensional third reduction in the sense of [11]. If dim E = 5, i.e., if p is
of divisorial type, then E, A are completely described in [11, Theorem 1.3]. We are in
Case 1 (h), i. If dim E = 4, Inequality (4) yields dim A > 4, which implies A = E and
hence p contracts E to a point. Thus [2, (5.8.1)] applies to give Case 1 (h), ii.

Thus from now on we can assume v > 3. Inequality (3) gives for n the possible
values n = 12, 10, 8, 6.

If n = 12,10, the same arguments as in the proof of Theorem 2.1 (cases n = 9,7)
easily lead to Cases 2, 3.

Step 1I: The case n = 8. We have k = 6 and (3) yields v = 3,4. We deal first with
the case v = 3. From Lemma 1.7 either t =1, u=7ort =%, u=38.

Let 7t = %, so that 4 = 2Ky + 5L. Assume ¢ is not birational. We have 7 < f(¢) +
1 <m(¢) + 1 from Inequality (2) and hence 6 < m(¢) < 8. If m(¢) =8, ¢ contracts
X to a point so that 3Ky + 7L ~ Oy. It follows that Ky ~ —7A4, L ~ 34, and we are
in Case 4 (a). If u = m(¢) = 7, one has 6 < f(¢) < 7. Then, recalling that Ky + 74 ~
¢ (AH), (X,A), ¢ : X — W, is a quadric fibration over a nonsingular curve as in
Case 4 (b) if f(¢) =7; and (X, A4), ¢ : X — W, is a scroll over a normal surface as
in Case 4 (c) if f(¢) = 6. If m(¢) =6, then u =m(¢p) + 1 and (X, 4), ¢: X — W is
a PS-bundle over a normal surface as in Case 4 (d). Whenever ¢ is birational, since
u=7=n—1is the nefvalue of (X, 4), we are in Case 4 (e) by using [4, (7.3.2)].

Let =%, so that 4 = Ky + 3L. If ¢ is not birational, we have 8 < f(¢) +1 <
m(¢) + 1 from Inequality (2) and hence 7 < m(¢) < 8. If m(¢) =8, ¢ contracts X
to a point, so that 3Ky + 8L ~ Oy and we are in Case 5 (a). If m(¢) =7, then
u=m(¢)+1 and (X,4), ¢: X — W, is a IP’-bundle over a smooth curve as in
Case 5 (b).

We claim that ¢ is not birational. Indeed, if it was, then Ky + 84 = Ky +
8(Ky + 3L) = 3(3Kx + 8L) would be nef and big and not ample; since n = 8 this is
not possible by [4, (7.2.3)].

Let v=4. From Lemma 1.7 either t=2, u =9, or t =1, u = 11. The second
case contradicts the bound u < 9 from the Kawamata rationality theorem. Therefore
t=2. Then u=m(¢) +1=09, that is m(¢) =8 and ¢: X — W contracts X to a
point. Hence 4Ky + 9L ~ Oy and we are in Case 6.

Step 111: The case n = 6. We have k = 5 and (3) yields 3 < v < 6.

Let v=3. From Lemma 1.7 either t=3%, u=4 or t=3, u=>5. Consider
first the case 7 = 3. Then 4 = 2Ky + 3L. Assume ¢ is not birational. Then Inequal-
ity (2) yields 4 < f(¢) + 1 <m(¢) + 1, so that 3 <m(¢) < 6. If m(¢) =6, ¢ con-
tracts X to a point, and therefore 3Ky + 4L ~ Oy; it follows that Ky ~ —44, L ~ 34
and we are in Case 7 (a). If m(¢) =5, then 3 < f(¢) < 5. If f(¢) =5 (respectively
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f(¢) = 4; respectively f(¢) = 3), recalling that Ky + 4L ~ ¢* ('), we see that (X, 4),
¢: X — W, is a Del Pezzo fibration over a smooth curve as in Case 7 (b) (respec-
tively a quadric fibration over a normal surface as in Case 7 (c); respectively a scroll
over a normal threefold as in Case 7 (d)). If u = m(¢) =4, then 3 < f(¢) <4 and
(X,A4), ¢ : X — W, is either a quadric fibration over a normal surface if f(¢) =4
(and all fibers are equidimensional since u = m(¢)), or a scroll over a normal three-
fold if f(¢) = 3; we fall again in Cases 7 (c), 7 (d). If m(¢) = 3, then u = m(¢p) + 1
and (X,A4), ¢: X — W, is a P>-bundle over a normal threefold as in Case 7 (e).
Whenever ¢ is birational Theorem 1.9, (c) applies to give Case 7 (f).

Let = %, and hence 4 = Ky + 2L. If ¢ is not birational, Inequality (2) gives
5< f(¢)+1<m(¢p) + 1. Thus 4 < m(¢) < 6 and exactly the same argument as in
the case T =%, shows that we are in one of Cases 8 (a), 8 (b), 8 (c), 8 (d) (note that
in Case 8 (c) all fibers are equidimensional since u = m(¢)). If ¢ is birational we are in
Case 8 (e) by using again Theorem 1.9, (c).

Let v =4. From Lemma 1.7 either t=2, u=5,or =1, u=7. Let 1 =2, so
that 4 = 3Ky +4L. If ¢ is not birational, we have 5 < f(¢) + 1 < m(¢) + 1, so that
4 <m(p) <6. If m(¢) =6, ¢ contracts X to a point and hence 4Ky + 5L ~ Oy.
Thus Ky ~ =54, L ~4A4 and (X, A) is a Del Pezzo variety as in Case 9 (a). If u =
m(¢) =5, we have 4 < f(¢) < 5. Therefore, since Ky + 54 ~ ¢*(A#’), we see that
(X,A4), ¢ : X — W, is a quadric fibration over a smooth curve, and all fibers are
equidimensional, if f(¢) = 5; and (X, A4), ¢ : X — W, is a scroll over a normal sur-
face if f(¢) = 4; we find the first two cases of 9 (b). If m(¢) = 4, then u = m(¢) + 1
and (X, 4),¢: X — W, isa P*-bundle over a normal surface as in the third case of 9
(b). If ¢ is birational, Theorem 1.9 applies again and we are in the last case of 9 (b).

Let 7 =1. Since u = m(¢) + 1 = 7 we have m(¢) = 6, that is ¢ contracts X to a
point, and therefore 4Ky + 7L ~ Ox; we are in Case 10 (a).

Next, let us assume v = 5. Lemma 1.7 yields 7 = 1 4 é with i = 1,2,3,4. Hence we
find for 7 the possible numerical values ¢, 1, %, 2. Clearly the last two cases cannot
occur since they contradict the bound u < 7 from the Kawamata rationality theorem.

Let 7 = %, and hence 4 = 4Ky + 5L. Note that ¢ is not birational. Indeed, if it
was, Ky + 64 (=5(5Ky + 6L)) would be nef and not ample, contradicting [4, (7.2.3)].
Thus ¢ is a fibration satisfying 6 < f(¢) + 1 < m(¢) + 1, and hence 5 < m(¢) < 6. If
m(¢$) = 6, ¢ contracts X to a point, so that SKy + 6L ~ Uy and we find Case 11 (a).
If m(¢) = 5, we are in Case 11 (b) since u = m(¢) + 1.

Finally, let t=1. Since u=m(¢)+1=7 we have m(¢) =6 and therefore
5Ky + 7L ~ (Oy; we are in Case 12.

If v=6, then t=1 +é, i=1,5 by Lemma 1.7. The case i = 5 is excluded by
the usual bound u < 7. Therefore 7 = % and hence 6Ky + 7L ~ (Oy; we are in Case

13. O

Remark 3.2. Note that in the scroll Cases 1 (e) (with n>7), 4 (c), 7 (d), 8 (c) of
Theorem 3.1, ¢ is a contraction of an extremal ray by [4, (14.1.1)]. Furthermore, if 4
is very ample, in Cases 4 (c), 7 (d), 8 (c), ¢ is a linear IP"~4™(")_bundle by [4, (14.1.3)].

Note also that in the quadric fibration Cases 1 (d) (with n = 7), 4 (b), 7 (c), 8 (b), ¢
is a contraction of an extremal ray by [4, (14.2.1)].
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