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A‰ne-regular hexagons of extreme areas inscribed in a
centrally symmetric convex body
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Abstract. Let M be a planar centrally symmetric convex body. If H is an a‰ne regular
hexagon of the smallest (the largest) possible area inscribed in M, then M contains (respec-
tively, the interior of M does not contain) an additional pair of symmetric vertices of the a‰ne-
regular 12-gon TH whose every second vertex is a vertex of H. Moreover, we can inscribe in M

an octagon whose three pairs of opposite vertices are vertices of an a‰ne-regular hexagon H

and the remaining pair is a pair of opposite vertices of TH . A corollary concerns packing M

with its three homothetical copies. Another corollary is that the unit disk of any Minkowski
plane contains three points in distances at least 1þ
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=3.
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Every non-degenerate a‰ne image of the regular n-gon is called an a‰ne-regular

n-gon. It is well known that in every convex body we can inscribe at least one a‰ne-
regular hexagon. This was proved by Besicovitch [1]. In the case of a centrally sym-
metric convex body M, for every direction there is an a‰ne regular hexagon abcdef

inscribed in M such that the side ab is of this direction (this was established in many
papers and the priority seems to belong to Goła̧b [4]). What is more, the vertices of
M vary continuously along the boundary of M as the prescribed direction of the side
ac rotates (see [6]).

Our basic aim is to consider the positions of H in M with the smallest possible
area and with the greatest possible area. We show that in the first case M contains
an additional pair of symmetric vertices of the a‰ne-regular 12-gon TH whose every
second vertex is a vertex of H, and that in the second case the interior of M does not
contain a pair of symmetric vertices of TH .

Applying continuity arguments, we conclude that there is an a‰ne-regular
hexagon H inscribed in M such that at least one additional pair of symmetric
vertices of TH is in the boundary of M. In other words, in M we can inscribe
a centrally symmetric octagon with four pairs of vertices at some vertices of an
a‰ne-regular 12-gon and such that the convex hull of three of those pairs is an
a‰ne-regular hexagon. Recall here the result of Grünbaum [5] who proved that



in every centrally symmetric planar convex body we can inscribe an a‰ne-regular
octagon.

Theorems on a‰ne-regular polygons inscribed in convex bodies have many
applications. Also our results lead to some corollaries. A corollary asserts that every
centrally symmetric convex body M can be packed with three homothetical copies

of M of ratio 4þ
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13 A0:441. This ratio is not far from the value 5þ2
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17 A0:4605 con-

jectured by Doyle, Lagarias and Randall [3], and also, in an equivalent form, by the
author [7]. Another corollary says that the boundary of the unit disk of any Min-
kowski plane contains three points in equal distances at least 1þ 1
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A1:577. This
improves the estimate 1:546 . . . of Bezdek, Fodor and Talata [2].

1 Inscribed a‰ne-regular hexagons of extreme areas

Theorem 1. Consider the family H of all a‰ne-regular hexagons inscribed in a planar

centrally symmetric convex body M. For each H A H denote by TH the a‰ne-regular

12-gon whose every second vertex is a vertex of H. If H A H has the smallest pos-

sible area, then M contains at least one additional pair of symmetric vertices of TH .
If H A H has the greatest possible area, then the interior of M contains at most two

additional pairs of symmetric vertices of TH .

Proof. We present the proof of the first statement. The proof of the second is analo-
gous; basically it is su‰cient to exchange every symbolc into the symbold.

Denote by o the center of M and H. Let H ¼ h1h2h3h4h5h6 (see Figure 1). By the

Figure 1
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definition of the a‰ne-regular hexagon, we do not make our considerations narrower
assuming that H is a regular hexagon of sides of length 1. Denote by g1 the midpoint
of h6h1 and by g2 the midpoint of h3h4.

Since M is centrally symmetric, we can inscribe in M an a‰ne-regular hexagon
with a side of any given direction ([4]). Let S ¼ s1s2s3s4s5s6 be such an a‰ne-regular
hexagon inscribed in M with a side parallel to g1g2. We choose the notation such that
on the boundary of M we successively find h1; s1; h2; s2; . . . . There are points t1; . . . ; t6
such that TH ¼ h1t1h2t2h3t3h4t4h5t5h6t6. Since the hexagon H is regular, also the 12-
gon TH is regular. Observe that the points o; g1; g2; s3; s6; t3; t6 are collinear.

If jos3jd 1, that is, if js6s3jd 2, then t3 A M and also t6 A M, and thus the first
statement of Theorem 1 holds true.

Now we consider the opposite case when jos3j < 1. Denote by L the straight line
through t1 and t2. Since the area of S is not smaller than the area of H and since
jos3j < 1 ¼ jot3j, the line L intersects the segments h1s1 and s2h3. Let r1 and r2 be the
corresponding points of intersection.

Denote by p the intersection of the straight line containing h1; r1; s1 with the
straight line containing h3; r2; s2.

Put w ¼ jh1h3j, r ¼ jr1r2j and s ¼ js1s2j. On the other hand, denote by g 0; w 0; r 0 and
s 0 the distances of p from the straight lines containing the segments g1g2; h1h3; r1r2
and s1s2, respectively. Of course, we have

w

w 0 ¼
r

r 0 ¼
s

s 0 :

Since t1t2t3t4t5t6 is a regular hexagon of side of length 1, we have g 0 � r 0 ¼ 1
2
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Since H is a regular hexagon, g 0 � w 0 ¼ 1
2 . Thus we obtain r 0 ¼ w 0 � 1

2

ffiffiffi

3
p

þ 1
2 . This

together with w
w 0 ¼ r

r 0 and w ¼
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gives

r ¼
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Þ: ð1Þ

The hexagon S has area not smaller than the area of the regular hexagon H of side 1
and thus not smaller than the area of the regular hexagon t1t2t3t4t5t6 of side 1. This
and js1s2j ¼ jos3j < 1 lead to the conclusion that the area 1

2 ðg 0 � s 0Þs of the triangle
os1s2 is not smaller than the area 1

4
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of the triangle ot1t2. Consequently, g
0 � s 0 d

1
2s
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. Thus g 0 � w 0 ¼ 1
2 implies s 0 c w 0 � 1

2s
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2 . This inequality, w

w 0 ¼ s
s 0 and

w ¼
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d
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From (1) and (2) we conclude that

rd
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Of course, s ¼ js1s2j ¼ jos3j < 1. Consequently, from (3) we obtain that r > 1. Thus
jr1r2j > 1.
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From jr1r2j > 1 and from jt1t2j ¼ 1 we see that jr1r2jd jt1t2j. Thus, since r1; r2 are
points of M and since M is convex, we conclude that at least one of the points t1; t2
belongs to M. Consequently, from the central symmetry of M we obtain the first
thesis of Theorem 1. r

It is easy to see that the largest discrepancy between the areas of a‰ne-regular
hexagons H inscribed in M is when M is an a‰ne regular hexagon. Then the maxi-
mum area of H is equal to AreaðMÞ and the minimum area is 1
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�AreaðMÞ. Every
a‰ne-regular hexagon inscribed in M has area at least 3

4 �AreaðMÞ as shown in
[8]. This estimate cannot be improved when M is any parallelogram. So we see that
the area of the largest a‰ne-regular hexagon inscribed in M is always between
3
4 �AreaðMÞ and AreaðMÞ. The author conjectures that the area of each a‰ne-regular

hexagon of the smallest possible area inscribed in M is always at most 3
ffiffi
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2p �AreaðMÞ
and that is attained only for ellipses. Sometimes the areas of all a‰ne-regular hexa-
gons inscribed in a centrally symmetric convex body M are equal. This happens when
M is an ellipse or a parallelogram (are there other bodies M with this property?).
Thus for every a‰ne-regular hexagon inscribed in any ellipse or a parallelogram both
statements of Theorem 1 hold true.

2 Inscribed octagons with vertices at vertices of an a‰ne-regular 12-gon

Theorem 2. In every planar centrally symmetric convex body we can inscribe a cen-

trally symmetric octagon whose three pairs of opposite vertices are vertices of an a‰ne-

regular hexagon H and whose remaining two opposite vertices are vertices of the a‰ne-

regular 12-gon TH whose every second vertex is a vertex of H.

Proof. Consider a planar centrally symmetric convex body M. From [6] we know
that for every direction l there exists exactly one a‰ne-regular hexagon HðlÞ, with
successive vertices aðlÞ; bðlÞ; cðlÞ; dðlÞ; eðlÞ; f ðlÞ in the positive order, inscribed in M

such that the vector aðlÞcðlÞ
����!

has direction l. Moreover, as l rotates, then the vertices
of HðlÞ vary continuously along the boundary of M (see [6]).

For every hexagon HðlÞ denote by pðlÞ the vertex of the related a‰ne-regular 12-
gon such that the neighboring vertices of it are aðlÞ and bðlÞ. Of course, as l rotates,
then pðlÞ and the symmetric vertex rðlÞ vary continuously.

For a position l1 of l we obtain an a‰ne-regular hexagon Hðl1Þ of the smallest
possible area from amongst all the hexagons HðlÞ. What is more, we may assume
that pðl1Þ and rðl1Þ are the two additional vertices of TH (promised in the first state-
ment of Theorem 1) which also belong to M. Analogously, for a position l2 of l we
obtain an a‰ne-regular hexagon Hðl2Þ of the greatest possible area. We may assume
that pðl2Þ, rðl2Þ are those two additional vertices of TH as in the second statement of
Theorem 1, which are not in the interior of M.

Since pðl1Þ; rðl1Þ A M and since pðl2Þ; rðl2Þ do not belong to the interior of M, the
continuity mentioned earlier implies that there is a direction l0 for which pðl0Þ and
rðl0Þ are in the boundary of M. Consequently, Hðl0Þ is the a‰ne-regular hexagon
promised in the formulation of Theorem. r
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Usually, we cannot inscribe an a‰ne-regular hexagon H such that more than one
additional pair of vertices of the 12-gon TH is in the boundary of M. A simple ex-
ample is a square. The square always contains one or two additional pairs of vertices
of the 12-gon TH which depends on the direction l. Figure 2 shows such possibilities.
The last of those figures shows the position of an a‰ne-regular hexagon with one
additional pair of vertices of TH on the boundary of the square. So we see here the
inscribed centrally symmetric octagon and the inscribed a‰ne-regular hexagon as in
Theorem 2.

We may distinguish three kinds of centrally symmetric octagons with vertices at
the vertices of the regular 12-gon v1 . . . v12. The first kind is when some vertices vi; viþ1

are not vertices of the octagon, the second kind is when some vertices vi; viþ2 are
not vertices of the octagon, and the third kind is when some vertices vi; viþ3 are not
vertices of the octagon. Theorem 2 says that in every centrally symmetric convex
body we can inscribe an octagon which is a‰nely equivalent to the octagon of the
second kind, as mentioned above. A question appears if analogous properties about
an inscribed octagon hold true when we exchange here the word ‘‘second’’ into ‘‘first’’
and into ‘‘third’’.

In connection with Theorems 1 and 2 the following question appears. Does every
centrally symmetric convex body M permit to inscribe an a‰ne-regular hexagon H

such that two additional pairs of vertices of TH belong to M ? A dual question is
about the existence of an a‰ne-regular hexagon H with two additional pairs of ver-
tices of TH outside of the interior of M. The example of the square in the part of M
shows that the claim, as in Theorem 1, that ‘‘each a‰ne-regular hexagon H of the
minimum (respectively, maximum) area inscribed in M has this property’’ is false.

3 Some applications

Let C be a convex body. By the C-distance of points a and b we mean the ratio of jabj
to 1

2 ja 0b 0j, where a 0b 0 is a longest chord of C parallel to the segment ab (see [7]). If
there is no doubt about the body C, we also use the term the relative distance of a and
b. If we consider a centrally symmetric body M, then the M-distance is nothing else
but the distance in the Minkowski space whose unit ball is M.

Conjectures say that in the boundary of every planar convex body there are three
points in relative distances at least 1

2 ð
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þ 1Þ, and that in the boundary of every cen-
trally symmetric convex body there are three points in pairwise relative distances at
least 1þ 1

2
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A1:707 (i.e. that the boundary of the unit disk of the Minkowski plane
contains three points in pairwise distances at least 1þ 1

2

ffiffiffi

2
p

), see [7]. Theorem 2.3 of

Figure 2
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[2] guarantees that there are three such points in relative distances at least 1:546 . . . .
The following Corollary 1 improves this estimate.

Corollary 1. The boundary of any planar centrally symmetric convex body contains

three points in equal pairwise relative distances at least 1þ 1
3

ffiffiffi
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p

A1:577.

Proof. Consider a centrally symmetric convex body M. By Theorem 2 there is
an a‰ne-regular hexagon H ¼ abcdef inscribed in M such that an additional pair of
opposite vertices v, w of the related a‰ne-regular 12-gon TH is also in the boundary
of M. To fix notation, let a; v; b be successive vertices of the 12-gon (see Figure 3).

Denote by P the triangle with sides of the directions of the main diagonals of the
hexagon H and with one vertex at v and the other two vertices u, z on the segments
ef and cd.

Since the relative distance does not change under a‰ne transformations, we may
assume for simplicity that H is a regular hexagon of sides of length 1. Since M is cen-
trally symmetric, the longest chord in any given direction passes through the center of
M. Hence the longest chords of M in the directions of the main diagonals of H are
just the main diagonals of H. Consequently, they are of the Euclidean length 2. We
omit a simple calculation which shows that the sides of P are of the Euclidean length
1þ 1

3
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.
We have shown that an arbitrary planar centrally symmetric convex body M

contains a triangle whose vertices are in pairwise M-distances 1þ 1
3
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. Consider
the largest positive homothetical copy of this triangle which is still contained in M.
Since M is centrally symmetric, this copy is a triangle inscribed in M. Its vertices are
the three points promised in the formulation of Corollary 1. r

In other words, Corollary 1 says that in the unit disk M of each Minkowski

Figure 3
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plane we can inscribe an equilateral triangle whose vertices are in distances at least

1þ 1
3
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A1:577.

Corollary 2. An arbitrary planar centrally symmetric convex body M can be packed

with three of its homothetical copies of ratio 4þ
ffiffi

3
p

13 A0:441.

Proof. Let us treat M as the unit disk of a Minkowski plane. Corollary 1 guaran-
tees that on the boundary of M there are three points in pairwise equal Minkowski
distances at least d ¼ 1þ 1

3
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. From Theorem 3.1 of [3] we know that if an m-gon
with sides of Minkowski length d can be inscribed in the unit disk M, then M can
also be packed with m translates of M of radius 1þ 2

d
. In our proof we wish to pack

smaller homothetic copies of M into M, so the above described picture, where m ¼ 3,
is reduced by a factor of 1þ 2

d
times. Consequently, a packing of three homothetic

copies of M into M is possible provided the homothety ratio is 1=ð1þ 2=dÞ ¼
d=ðdþ 2Þ ¼ 4þ

ffiffi
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13 . r

In connection with Corollary 2 remember that Doyle, Lagarias and Randall
say that the regular octagon is the worst centrally-symmetric body, for packing itself
with three homothetic copies, that they have found (see [3]). In this case the homo-

thety ratio of those three copies is 5þ2
ffiffi

2
p

17 A0:4605. Also observe that by Theorem 3.1
of [3] their conjecture is equivalent to the conjecture from [7] mentioned just before
Corollary 1.
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