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1 Introduction

The last twenty years have seen extensive activity in the area of finite geometry,
with the publication of many papers dealing with the connections between flocks
of Laguerre planes, generalized quadrangles, translation planes, ovals and BLT-
sets. In this setting, we identify some significant papers as follows. First, the sequence
of exchanges between Kantor and Payne delineated the evolution of the concept
of a g-clan and the construction of generalized quadrangles as group coset geo-
metries [14, 23, 33, 15, 24], while Thas [40] recognised the connection between flocks
of Laguerre planes and generalized quadrangles. In the case of odd characteristic,
Bader, Lunardon and Thas [2] introduced BLT-sets and Knarr [16] developed a geo-
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metric construction of the generalized quadrangle from the BLT-set. In the case of
even characteristic, Payne and Cherowitzo, Penttila, Pinneri and Royle [24, 6] intro-
duced herds of ovals and elucidated their connection with the generalized quadran-
gles. The sequence of papers by Thas [41, 42, 43] on translation generalized quad-
rangles of order (s,s?) culminated in a geometric construction of the generalized
quadrangle from the flock in all characteristics. Finally, the connection between ovals
and flocks of translation Laguerre planes was explained by Cherowitzo [5].

In the case of odd characteristic, the BLT-set and the Knarr construction provide
useful insights into the connections between the geometries mentioned above, while
recent constructions of families [34, 18] as well as many sporadic examples over small
fields [38, 17] suggest that there may in fact be an embarassment of riches. The situ-
ation in characteristic two stands in stark contrast: there are only four known fami-
lies, to which we add a fifth in this paper, and no known sporadic example. In com-
pensation for this paucity of examples in characteristic two, there is a rich association
with ovals and hyperovals which is missing in odd characteristic. The ovals so arising,
in turn, lead to further generalized quadrangles and Laguerre planes. Furthermore,
characterisation theorems have been proved in characteristic two [13, 9, 19, 39, 20],
suggesting that the rarity of examples in characteristic two is not merely temporary.

Despite the recent activity and advances, there is much work still to be done,
even in characteristic two. In this case, O’Keefe and Penttila [20] obtained charac-
terisations with symmetry hypotheses concerning subgroups of order ¢ and ¢ — 1 of
PGL(2,g), leaving the (cyclic) subgroups of order ¢ + 1 still to be dealt with. The
cyclic hypothesis was first suggested by the Subiaco examples [6, 27, 1, 30] and
the examples for ¢ = 43 and 4* discovered by Penttila and Royle [37]. The different
approach to automorphism calculations possible in characteristic two [28] led to a
further exploration by Payne, Penttila and Royle [31] and to further examples for
g =4°,4% 47 and 48. In this paper we generalise these six examples to a new infinite
family. We remark that the cyclic hypothesis is satisfied by three of the previously
known families (the exception is the family of Payne [24]), and this paper contributes
a unified construction of these three families with the new family. This work should
contribute to an eventual classification in this case, characterising these four families
by the cyclic hypothesis.

Finally, another persistent thread in the recent literature concerns the automor-
phisms of the associated geometries investigated by Payne and several others [32, 26,
27,1, 30, 28, 29, 22]. The recent results by O’Keefe and Penttila [20] allow the inter-
pretation of the cyclic hypothesis in the herd model. This interpretation is important
because it led to the unified construction contained in this paper, as was suggested
at the end of the introduction of [20]. In the current context, we also use O’Keefe
and Penttila’s techniques [20] to calculate the groups of the geometries we construct,
and hence to show that the associated generalized quadrangles, flocks and transla-
tion planes are new. We do not yet have a proof that the associated hyperovals do
not belong to the previously known families, although this is true for those over the
fields of orders 4° and 4*. Such a proof would require more information concern-
ing the groups of the hyperovals. Here it is appropriate to note that the groups of the
Cherowitzo hyperovals [4] have yet to be determined, although the partial results of
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O’Keefe and Thas [21] were enough for Penttila and Pinneri [35] to show that the
Cherowitzo hyperovals were new.

2 Preliminaries

Let € = {4, : t € GF(q)} be a collection of 2 x 2 matrices with entries from GF(g).
Following Payne [25], we call € a g-clan if A; — A, is anisotropic (that is, the equa-
tion (x, y)(A4s — 4,)(x, »)" =0 has only the trivial solution (x, y) = (0,0)) for all
s,t € GF(q) with s # 1.

We will use the (absolute) trace function on GF(g), ¢ =2°¢, as follows. Let
trace : GF(¢q) — GF(qg) be defined by trace(x) = x 4+ x2 + - - + x2°

As is discussed by Cherowitzo, Penttila, Pinneri and Royle [6, 2.1], without loss of

generality we can assume that
1/2
(10
0 ay(?)

where a € GF(q) satisfies trace(a) = 1, f, g : GF(q) — GF(g) are functions satisfying
f(0) =g(0) =0and f(1) =g(1) =1 and

e (L) 110019 al0)) o

s+t

for all s, 1 € GF(g) with s # t.
Conversely, if there exist functions f,g: GF(¢) — GF(g) with f(0) =g¢(0) =0
and f(1) = ¢g(1) = 1 and an element a € GF(g) with trace(a) = 1 such that Equation

: 1/2
(2.1) holds, then the set of matrices { (f E)t) ! (t)) (te GF(q)} is a g-clan.
ag

We call a g-clan normalised if it is written in this standard form and note that it
follows immediately from Equation (2.1) that f and g are permutation polynomials.

In the following subsections we show how g-clans, ¢ even, can be used to construct
various important geometric structures, thus motivating their study. We then survey
the known ¢-clans, ¢ even, to the time of preparation of this paper.

2.1 Flocks of quadratic cones. Let ¢ be an oval in PG(2,¢), and let PG(2,q) be
embedded as a hyperplane in PG(3, ¢). For a point v € PG(3, ¢)\PG(2, g), the union
of the points on the lines incident with v and a point of @ is the cone with vertex v
and base (. A quadratic cone is a cone with base ¢ a (non-degenerate) conic. A flock
of a cone ¢ with vertex v is a set of ¢ planes which partitions #"\{v} into disjoint
ovals. If L is a line of PG(3, ¢) having no point in common with ¢ then the ¢ planes
through L and not v form a flock. Such a flock is called linear, and for ¢ = 2,3 and 4
every flock of a cone is linear [40].

Theorem 2.1 ([24, 40]). Let q be even and let A be the quadratic cone in PG(3,q)
with equation XoX| = X3; thus the vertex is v = (0,0,0,1). The set of planes F =



4 William E. Cherowitzo, Christine M. O’Keefe and Tim Penttila

{a: X0+ X1 + b, Xo + X3 =0:1te GF(q)} is a flock of A" if and only if b, # by for
s # tand

trace (%) =1 foralls+#1.
s + by

. . b .
By Equation (2.1), with ¢ even, we have: € = { (C(l)[ C') ite GF(q)} is a g-clan
t
if and only if 7 = {a, Xy + ¢, X1 + b, X2 + X3 =0:1e GF(q)} is a flock of the qua-
dratic cone %" in PG(3, ¢) with equation XoX; = X7.

2.2 Elation generalized quadrangles. Let % = {(x, ¢, f8) : o, f € GF(q)*, ¢ € GF(q)},
with multiplication defined as:

(e, )& ', p) = (a+ o' c+ "+ foa’, f+ '),

where (since o, § are 2-tuples of elements of GF(gq)) we define:

Boo=+/fPaT, with P = <(1) 1).

0

Let € = {4, : t e GF(q)} be a normalised g-clan, and define the following subgroups
of ¥:

A(0) ={(0,0,) : pe GF(q)’} and
A1) = {(a, Vod,aT, 1'2a) - 0 € GF(q)?}, te GF(q).

For each t € GF(q) U {00} we define A*(f) = A(t)Z where Z = {(0,¢,0) : c € GF(q)}
is the centre of 4. Then # = {A(¢) : t € GF(q) U {o0}} is a 4-gonal family for 4 [24],
see [33, 10.4].

Starting with this 4-gonal family, Kantor’s [14] construction gives an elation
generalized quadrangle of order (g2, ¢) (with base point (c0)) on which % acts by left
multiplication as a group of elations, see [33, 8.2], as follows:

points: (i) elements g € G, (ii) cosets g4*(t) for g € G, t € GF(¢) U {00} and (iii) a
symbol (o0),

lines: (a) cosets gA(¢) for ge G, te GF(q)U{oo} and (b) symbols [4(¢?)] for te
GF(q) U{0}.

(Here we use left cosets, in contrast to some of the literature which uses right cosets,
because throughout this paper groups are acting on the left.) A point g of type (i) is
incident with each line gA () for t € GF(q) U {o0}. A point gA4*(¢) of type (ii) is inci-
dent with the line [A4(7)] and with each line 4A4(¢) contained in gA4*(¢). The point (o0)
is incident with each line [A4(¢)] for t € GF(q) U {c0}. There are no further incidences.
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We have therefore outlined a process by which a (normalised) g-clan € gives rise to
a 4-gonal family for the group ¢4 above, and hence to an elation generalized quad-
rangle GQ(%) of order (g2, q).

2.3 Herds of ovals. A herd [6] of ovals in PG(2, q), ¢ even, is a family of ¢ + 1 ovals
{0s: s € GF(q)U{o0}}, each of which has nucleus (0,0,1), contains the points
(1,0,0),(0,1,0) and (1,1, 1), and is such that

0, = {(1,1,9(1)) : 1€ GF(¢)} U{(0,1,0)} and
05 = {(17 t?fS(t)) as GF(L])} U {(07 170)}a
where

_ folt) +asq(1) + 52412

J(t
(1) 1+ as+ s1/?

for some a € GF(q) satisfying trace(a) = 1.

Theorem 2.2 ([24, 6]). Let q be even. Let fy,g: GF(q) — GF(q) be functions with
Jo(0) =g(0) =0 and fo(1) = g(1) = 1. There exists a € GF(q) with trace(a) = 1 and
such that

trace <a(f0(s) +/0(2))(g(s) + 9(1))

) >—1 forall s #1t

if and only if {0, : s € GF(q)U{c0}} is a herd, where

Oy, ={(1,1,9(2)) : te GF(¢)} U{(0,1,0)} and

, So(t) + asg(t) + s'/2¢1/2
O;=14 (1,1
1 +as+s'/2

) te GF(q)} U{(0,1,0)}.

. . fo(t) /2 .
By Equation (2.1), with ¢ even, we have: € = 0 0 :1eGF(q) p isa
ag

g-clan if and only if {¢; : s e GF(¢q) U {o0}} is a herd.

2.4 Translation planes. Thas [8] and Walker [44] independently showed how to
construct a translation plane from a flock of a quadratic cone. We now give a brief
outline of this construction, and note that relevant details and background can be
found in [10, 12].

Let (%) be the flock of the quadratic cone #  of PG(3,¢) with equation
XoX; = X7, associated with the g-clan . Embed #" into the Klein Quadric Q* (5, ¢)
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in PG(5,¢) and let 1 denote the polarity of PG(5, ¢) associated with Q" (5, ¢). The
set of points Q = Unej,(%,) N Q" (5,4q) is an ovoid of Q" (5, ¢), and we let . be the
spread of PG(3, ¢) associated with Q via the Klein correspondence. By the André—
Bruck Bose correspondence, from % there arises a translation plane 7(%) of order ¢>
with kernel containing GF(g).

2.5 The known g-clans, g even. In this section we list the known g-clans with ¢ = 2¢,
up to isomorphism of the associated generalized quadrangle.
The classical g-clan associated with a linear flock [40], for all g = 2°, is

A2 An
(g:{( 0 at1/2>2l€GF(q)}

for a € GF(gq) with trace(a) = 1. The associated GQ is isomorphic to the GQ com-
prising the points and lines of the Hermitian variety H(3, ¢*) (see [33, 3.1.1]) and the
associated translation plane is Desarguesian. The associated herd is {0, : s e GF(¢q) U
{oo}}, where O, = {(1,1,¢'/?) : t e GF(¢)} U{(0,1,0)} for all s e GF(¢q)U{0}.

The FTWKB g-clan, for ¢ = 2¢ with e odd, is

A2
(6:{(0 13/4>:teGF(q)}

and is classical if and only if ¢ = 2. The associated flock arises by the geometrical

construction of Fisher and Thas [8, Theorem 3.10]; in this case the corresponding

translation plane was discovered by Walker [44] (using flocks) and independently

by Betten [3]. The GQ was discovered by Kantor [14] and the herd comprises g + 1

translation ovals, each projectively equivalent to {(1,1,7/4) : t € GF(q)} U {(0,1,0)}.
The Payne g-clan [24], for ¢ = 2¢ with e odd, is

l1/6 Z1/2

It is classical if and only if ¢ = 2, and FTWKB if and only if ¢ = 8. The herd com-
prises two Segre—Bartocci ovals (equivalent to {(1,¢,¢'/%) : t € GF(q)}U{(0,1,0)})
and ¢ — 1 further ovals now known as Payne ovals. In this case there is (up to iso-
morphism) one associated GQ and translation plane, but two associated flocks, see
[26].

The Subiaco g-clan [6], for g = 2¢, is

({8 ) reema).

where, for some d € GF(g) with 6> +J + 1 # 0 and trace(1/5) = 1, we have
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S (1 +0+0%)
S+ )+ 871+ 54678 + 1)

t + /2 and
Hold) (2 +dt+1)°
o0 _ 3+ 8 (1407 +040 + 07 (1 4+ 0% 512 12
(0% +0° + 0V (22 + 61+ 1)? 0> +6°+0%

It is classical if and only if ¢ =2 and is FTWKB (or Payne) if and only if g = 8.
There is (up to isomorphism) one associated flock and GQ, and if e = 2 (mod 4) then
there are two associated ovals, otherwise only one. The flock in the case ¢ = 16 is due
to De Clerck and Herssens [7], and the associated herd comprises 17 Lunelli—Sce
ovals. In the general case, the associated herd comprises ¢ + 1 ovals which are now
known as Subiaco ovals.

Finally, there are further examples for g = 43,4% 4% 4% 47 and 4% discovered in
the series of three papers [36, 37, 31]. The main result of this paper is the construc-
tion of an infinite family of g-clans which includes these examples. Our construction
in fact gives a unified presentation of the classical, FTWKB, Subiaco and the new
infinite family of g-clans.

3 The Adelaide g-clans

The purpose of this section is to prove our main theorem, Theorem 3.1. After the
statement, we will proceed via a sequence of lemmas.

Theorem 3.1. Let GF(q?) be a quadratic extension of GF(q) with q =2¢. Let
B e GE(¢g*)\{1} be such that 7" = 1, and let T(x) = x + x4 for all x € GF(¢?). Let
a € GF(q) and the functions f,g : GF(q) — GF(q) be defined by:

_T(B") 1
1 T
F(8) = fonp(t) = T(B")(t+1) n T((Br+ BH™) 42

T(p) T(B)(t+ T(B)i' /2 + 1)

T([)’"”) T((ﬁzl + 1)}71) . 1
T(p) T(BT(B")(t+ T(B)/2 + 1)t T(S™)

e {10 o) e

If m=+1 (modq+ 1) then € is the classical g-clan for all g =2¢ and for all B. If
q =2° with e odd and m = +% (modq + 1) then € is the FTWKB g-clan for all

(12

and let
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. If g =2¢withe > 2 and m = +5 (mod q + 1) then € is the Subiaco g-clan for all
such that if A is a primitive element of GF(q?), so that ff = A4 then g+ 1 ) km.
If ¢ = 2° with e > 2 even and m = i% (mod q + 1) then € is a g-clan, which we call
the Adelaide g-clan, for all 5.

First we introduce some notation which will be used throughout this section.
Let K = GF(g?) be an extension field of F = GF(q) with ¢ = 2¢. We let the relative
trace function from K to F be denoted by T, thatis, T : K — F is defined by T'(x) =
x + x4 and let the absolute trace function on F be denoted by tracer.

Let € K\{1} be an element of norm 1 relative to F, that is, f7™' = 1. We define
three auxiliary functions Ay, hy,h3 : F — F by

() = LU
(t+T(P)t'/2+1)
() = TN
(t+T(p)e' /> +1)"
T((t+5)")

hs(t) = T(B"™) (1) + ha(1) = (3-1)

(t+ T(p)' /2 +1)™"

where m e {1,...,q> —2}. Notice that ¢+ T(f)t'/?> + 1 is non-zero for all re F.
To see this, since the roots of #+ T(B)t'/> + 1 are B? and B, it suffices to show
that ¢ F. Let A be a primitive element of K, so # = 2*"Y for some k € {1,...,¢}.
Then f € F if and only if #9~! = 1, which is if and only if ¢ + 1 | k(g — 1)2. But this is
impossible since (¢ + 1,¢—1) =1 and ke {1,...,q}.

Finally, we define a € GF(g) and the functions f, ¢ : F — F by:

=15 !
710 = fnpl0) = S 0+ 1)+ () + 12
and
g, 1 Lo

ha(t) +

ag() = agmp (1) = =1yt gy 2O T

Lemma 3.2. With the notation as above, and for all t,s € F with t # s we have

(ﬂﬂ+ﬂmWﬂ0+W®»
t+s
1 T((MMN™)  T(M]") NMﬁ)

= tracep<l + (™ + T (M, M) T(M,) T(My)

tracep (
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where

12+ B
12711/24_5(1.

Proof. First, write

(S(1) +/(s)(ag(r) +ag(s)) _ 1 AB,

r+s t+s
where
TPt A+ 5) + i (2) 4+ i (s)
A= ) +(t+5)"* and
T ) + g () £ ha(s) s
B= 7(f) T T

As we calculate the absolute trace of this expression we shall encounter terms of
absolute trace 0 (with respect to F). Once such terms have been identified they will be
accumulated in a single term denoted by C, thus C is not constant throughout the
calculation, but at all times tracer(C) = 0. On expanding the product we obtain

12 | ha(t) + ha(s) n T(B")((t) +m(s))
) T(B)* T(B)?
(h1(2) + hi(s)) (ha(1) + ha(s)) n hi (1) + (1) + (s) + ha(s)

T(B")(t + ) T(B)T(P")(t+ )"

+

(3.2)

The sum of the first two terms is an element of absolute trace 0, and
is thus incorporated into C. By (3.1) the sum of the third and fourth terms is
(h3(2) + h3(s)). Now,

1
7(p)
T((pr+p)™) TS+ 1))
(Z—|— T(ﬂ)ll/z + l)m—l (l+ T(ﬁ)ll/z + 1)m—1
_ T T+ 1) 4 BB+ 1) + B (4 )™
= ([+T(ﬁ)[1/2+1)2m72
hi (1) + h3 (1)
(")

/’ll (l)hz(l) =

=T(P"(E+ TPt +1)+
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Hence, the fifth term of (3.2) can be written as:

B3 (0)+h3 (1)+h? (s)+h3(s)

(71 () + () (ha(2) + a(s)) _ (")
T(B)*T(B")(t +3) T(B)*T(B")(t +5)
(

L TB"(+9)" + T (14 9)) +h (Dha(s) + () (s)
TR T(B")(1+3)
_ hi(0) + h3(0) + hi(s) + h3(s) 1+ hi(t)ha(s) + ha(t)hi (s ).

T(B)*T(B")(t +5)

We see that the first term of this expression is the square of the sixth term in (3.2),
and the second term here is the square of the seventh term in (3.2). Thus, there are
two more expressions of absolute trace 0 that can be incorporated into C. Rewriting
(3.2), we now obtain

hs(0) +3(s) | Pa(Dha(s) e (3.3)
2 ' '

1 +
T 1) TR T(F™)(t + )

Let

t+ﬂ2 B (ZI/Z +ﬁ)2 B 11/2 —|—ﬁ
TR+ 1 (R4 B2+ pT) A2 o

=

It follows that

hs(1) _ T((t+ ™)
T(B)? T (t+ T(ﬂ)tl/z_'_l)mﬂ
_ (Z‘+ T( ) 1/2 )( Mtqm)
T(ﬂ)2 '
Then, because
oty ags - B P

112 +ﬁq 112 +ﬁ

IR ARy T(B)?
T2l TR+ 1

we have
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A simple calculation shows that:

hy (l)hz(s) =+ /’lz(l‘)hl (S)

_ T(B")T(((t+ B*)(s +ﬁ2"))m+((t+/>’2")(S+ﬂ N")
((t+ TR+ 1) (s + T(B)s/2 + 1))

=T(B")(t+ T(B)t'"? + 1)(s+ T(B)s'> + )T ((M,M)").

Then, because

(24 B) (s"2 4B | (124 BY) (52 +p)
(74 G4 B) (P4 B) (T )
(B (s + B + (4 B2 (s + B9)
C(t+ TP+ D) (s+ T(B)s/2 4 1)

_ T(B)(1+ )
(t+ T(B)YV2+ 1) (s+ T(B)st/2+1)’

T(M,M?) =

s

we have
h(O)ha(s) + ha ()i (s) _ T((MM)"™)
T(B)*T(B")(1+s) T(M,M) -

We can now rewrite (3.3) as

1 T(MMNH™)  T(M?)  T(M")

T T M) T T s T

1+

and applying the absolute trace function tracer gives the desired result. O

Let Ny = {y e K\{1}|y4*! = 1}. Observe that for any ¢ € F and f € N; we have
M, € Ny, and that for 7,5 € F and f € N; we have M,M ¢ € N; provided ¢ # s.

Lemma 3.3. For g = 2¢, if there exists a constant ¢ € {0, 1} such that

T m
traceF( 7%};) =c¢, forall ye N,

then

races ((f( )+ (s )t)(+ S( ) +ag(s ))) = tracer (T(;MQ

Sfor all e, if ¢ = tracep(l);
holds < for all even e, if ¢ =0;
forall odd e, if c=1.
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Proof. This follows immediately from Lemma 3.2, the additivity of the trace function
and the fact that tracer(1) = 1 if and only if e is odd. ]

Lemma 3.4. Let ) be a primitive element of K so that Ny = {A*"V .k =1,... ¢}.
Then

tracer (ﬁ) =1 (3.4)

for all B = A¥97Y e Ny such that q + 1 ¥ km. In particular, if (m,q+1) =1 then (3.4)
holds for all € Ny.

Proof. First note that tracer(1/T(f™))=1 if and only if the quadratic
x2+ T(f™)x + 1 is irreducible over F. But this quadratic has roots ” and B?",
so tracey(1/T(B™)) = 1 if and only if ™ ¢ F. Now " = 2"~V ¢ N} is an ele-
ment of F if and only if JFma=D* — | Hence if p"™ e F then (q+1)|km, since
(g — 1,9+ 1) = 1. We have shown that if # = A*¢"V and me {1,...,¢% — 2} satisfy
g+ 14 km then tracep(1/T(f™)) =1, as required. Noticing that if (m,q+ 1) =1
then ¢ + 1 ¥ km gives the last statement. O

It is immediate from this lemma that, given K, one can always find a f e N
such that (3.4) holds. Although we permit the exponent m to take any value in
{1,...,¢* — 2}, not all values of m give different functions f and g.

Lemma 3.5. For the functions f and g defined above, we have
SO = fnp(t) = Sonskiger),p(t) and  g(t) = g p(t) = Gmsi(g+1),5(0),
for all integers k.
Proof. This follows immediately from the following calculations.
T ﬁm+k(q+1)) _ ﬂl1z+k(q+l) + ﬁqi7z+kq(q+l)
=BT+ T
=p"+ =T ("),
since 77 = 1.
T((pr+p7)" M) = (B pry" O 4 (fr ey
= (BB ((Br+ B + (BT B (B + )"
= (Bt+BN)"((Br+ BB+ B + (Be+B)" (Bt + B (B + B)*
= (2 + TP+ D (Br+B)" + (Blr+5)")
= (t+ TP + ) T((Br + p1)™).
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Hence,

q\m+k(g+1)
I mek(g).p(1) = (E[’)”[’) ) )

(t+ T(pP)t 1/2 )m+k( g+1)—1
U+ TR DT+ 9"
(t+T(p)i'/2 + 1)m+k(q+l)f1
- T((Br+B")")
(t+ T(B)r/2 + 1)t
_ T((pt+p1)")
(t+T(p) 2+ )"

= h13m“[g([)‘

The last simplification is due to the fact that (r+ T(B)f"/2+1)4"' =1 since
t+ T(B)t'/? + 1 e F\{0}. A very similar computation shows that

ha(t) = ho,m (1) = ha k(g1 5(0).- O

It is now clear that we may restrict m to lie in {1,...,¢ + 1}. However, there is a
further equivalence which shows that at most half of these values lead to distinct
functions.

Lemma 3.6. For the functions f and g defined above, we have

@) = Jnp() = fomp(t) and  g(1) = gm p(1) = g-m p(1).

Proof. First, observe that
5= (5) + () =pm B =107
Now,
T(Br+ ™) =t
(Br+pN" (Bt +P)
_ (B p"+ (B D" T((Br+BD)")
(Pt+pO" B+ B (14 TR/ +1)™™

Thus, we have

TP+ T+ ")
(t+ T(ﬁ)tl/z + 1)7"”*1 ([+ T(ﬂ)tl/z + 1)2m7mfl

h17_m”[,’(l) = :hl,m,/)’(t)~

A similar calculation shows that /iy _,, p(t) = hy m p(2). O

We are now in a position to be able to prove our main result.
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Proof of Theorem 3.1. It is straightforward to verify that f(0) = g(0) =0 and f(1) =
g(1) = 1. As outlined in Section 2, and in the notation of the statement of Theorem
3.1, % is a g-clan if and only if

e (LSOl £ a0 _ 6s)

for all s, 1 € GF(g) with s # ¢. (For, if (3.5) holds, then putting s = 0 and ¢ = 1 shows
that tracer(a) = 1.) By Lemmas 3.2 to 3.6 we need to consider tracer((7(y™)/T(y))
for y € Ny and for each m =1, ¢/2, 5 and (¢ — 1)/3.

If m =1 then, for y € Ny, we have tracer((T(y™)/T(y)) = tracep(1). By Lemmas
3.3 and 3.4, Equation (3.5) is satisfied for all ¢ and for all fe N;. In this case
f(£) = t'/? and the g-clan is classical by [19].

If m = g/2 then, for y € Nj, we have tracer((T(y™)/T(y)) = tracer(1/T(y)) =1
by Lemma 3.4. By Lemmas 3.3 and 3.4, Equation (3.5) is satisfied for all odd e and
for all §# € Ny. In this case f(¢) = ¢3/* + t'/2 4 ¢'/* and the g-clan is FTWKB by [19].

If m=5 then, for ye Ny, we have tracer((T(y™)/T(y)) = tracer((y + y9)* +
(y+79)* + 1) = tracer(1). By Lemmas 3.3 and 3.4, then Equation (3.5) is satisfied
for all e and for all f € N; if (5,9 + 1) =1 . On the other hand if (5,4 + 1) # 1, that
is e is even, then Equation (3.5) holds for only some f € Ni. Let f € N; be such that
tracer(1/T(%)) = 1 and let d = T(f)?; so that T(%) = d'/2(d? + d + 1). It follows
that d> +d + 1 # 0, Equation (3.5) holds, and tracer(1/d) = 1 by Lemma (3.4) since
(2,g+ 1) = 1. Now,

T((Br+B9)°) = (Bt + BO(B** + B*) + (Bl + p)(p*e* + B*)
= (B5+ B+ 1) + (B + B (1* + 1)
:dl/z(d2+d+1)([5+1)_’_d1/2(d+1)(14+t).

Writing 4 = d? +d + 1 gives

)_dl/zA(t+1) dl/zA(t5+1)+d1/2(d+1)([4+t)_|_ll/2
=g d1V2(2 1 di+ 1)
_ AN+ B2 DHACH D+ @ DE 40 g
(2 +dt+1)°
A+ +d(d>+d+ D)(E+P) ),
(2 +di+1) e

A similar calculation shows that
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drd+d?
Carrdrn M
()= PO FE@ AL+ DE 4B+ D) 2
7o (d?>+d5 +d"2) (2 +de+1)° d>+d>+d'/?

By [6, Theorem 5], 4 is the Subiaco g¢-clan.
Finally, let e be even, so 3 | ¢ — 1, and let m = ‘13;1 Let v3 = y € Ny and notice that
ve N since (3,44 1) = 1. Now,

T(y\=D73) _ yla=1/3 4 pala=1)/3 _ ya=1 4 pala=1)
() y+1 e

e sl
IR CRICE=E)

3

v+ N 1
Vgl vl (hplyn)?

Thus,
T(yla=1/3)
t ———— =) =0 forall Ni.
raceF< T0) orall y e N;
By Lemmas 3.3 and 3.4, since (?,q +1) =1, ¢ is a g-clan for all f € N;. ]

4 Automorphism groups of the Adelaide geometries

In this section we calculate the automorphism groups of the Adelaide geometries,
starting with the Adelaide herd. First we recall some notation and definitions from
[20].

Let # denote the collection of all functions f : GF(¢) — GF(g) such that f(0) = 0.
Note that each element of % can be expressed as a polynomial in one variable of
degree at most ¢ — 1 and that Z is a vector space over GF(q). If f(x) =Y a;x' e #
and y € Aut GF(g) then we write f7(x) = 3" a/x' or, equivalently, f7(x) = (f(x'/7))".
We will be concerned with the group PI'L(2, ¢) acting on the projective line PG(1, ¢),
that is,

PIL(2,q) = {x— Ax" : A€ GL(2,q),y € Aut GF(q)}.

Lemma 4.1 ([20]). For each f € # and € PT'L(2,q), where  : x — Ax" for A =
b
<a d> e GL(2,q) and y € Aut GF(q), let the image of f under \y be the function
c
vf : GF(q) — GF(q) such that
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) = a2 (e + v (B S) vy (5) + ()|

Then this definition yields an action of PI'L(2,q) on F, which we will call the magic
action.

By the transitivity of PT'L(3, ¢) on ordered quadrangles in PG(2, g), we can assume
that a given oval has nucleus (0,0, 1) and contains the points (1,0,0),(0,1,0) and
(1,1,1). Such an oval can be written in the form

2(f) ={(L, 1.1 (1)) : 1€ GF(g)} U{(0,1,0)}

where f is a (permutation) polynomial of degree at most ¢ —2 satisfying
f(0) =0, f(1) =1 and such that for each s € GF(g) the function f; where f;(0) =0
and fi(x) = (f(x+s) +f(s))/x, x # 0 is a permutation (see [11], but note that this
and other references use the 2 notation to represent a hyperoval). Conversely, any
polynomial f satisfying the above conditions gives rise to an oval Z(f)) with nucleus
(0,0, 1). Such a polynomial is called an o-polynomial for PG(2, q).

Let # (%)) ={2(f): s € GF(q) U{c0}} and #(€') ={2(f)) : t e GF(q) U{0}}
be herds. We say that #(%) and #(%’) are isomorphic if there exists y € PT'L(2, q)
such that for all s € GF(¢q)U {c0} we have yif; € {f/)> under the magic action, and
where the induced map s — ¢ is a permutation of GF(q) U {c0}. (Where, for f € 7,
we use {f) to denote the 1-dimensional subspace of & containing f.) An automor-
phism of a herd # (%) is an isomorphism from #(%) to itself and the automor-
phism group Aut # (%) of # (%) is the group of all automorphisms of #(%). In other
words, the automorphism group of a herd # (%) = {Z2(f;) : s € GF(q) U {o0}} is the
stabiliser of {{f;> : s € GF(q¢)U{c0}} in PT'L(2, ¢), under the magic action.

We recall the following theorem:

Theorem 4.2 ([20]). Let q = p°. The automorphism group of a classical herd and of
an FTWKB herd is PUL(2, q). The automorphism group of a Payne herd for q = 32 is
D41y > Ce. The automorphism group of a Subiaco herd for ¢ = 16 is Cyy 1 X Ca,.

The main result of this section is:

Theorem 4.3. The automorphism group of an Adelaide herd for g = 2¢ with e = 6 even
and f of order q + 1 is Cyi1 X Co, of order 2e(q + 1).

Proof. The structure of the proof is similar to that of the last part of the proof of
Theorem 4.2 in [20]. Let ¢ = 2¢ where ¢ > 6 and let # (%) = {2(f;) : s € GF(¢) U
{o0}} be the Adelaide herd, defined as in Section 2.3 with fy = f, f.,, = g and @ as in

2
Theorem 3.1. Let ¢, e PGL(2,¢) be ; : x — Ax where 4 = (T(’lb)) (1)> Then
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i f (1) = tf( +1f (T(B)?)

T(B)*t + 1)
t
= £() + T(B")ag(t) + T(B™)1' € (fy (1.
Similarly,
Ynag(t) = £(1) + (T(B™)* + Dag(t) + (T(B™) + 1)/
= f(0)+ (T(B") + Dag(t) + (T(B™) + D)1 € Sfipgmyz ) (0

and , 11(f) = (Y.f(¢) + Yyag(t) + t'/?)/a = g(t). Finally, for s e GF(q)\{0, 1}, we
have

Y f(1) + syag(t) + 512412
- 1 +as+s'/?

e (10 (1077 ot + (107 ) )

Y /(1)

T ltas+s?

which is in {f,(r)> where u = T(™)* +s/(s + 1).
Consider the characteristic polynomial x>+ T'(f8)*x+ 1 of 4 over GF(g). Since
the roots in GF(g?) are B? and %, and A4 is a root, it follows that the order of 4

is the order of % in GF(¢?), which is the order of £ in GF(¢?), and is ¢+ 1 by

hypothesis. 1 0
Now let , e PT'L(2, ¢) be ¢ :xn—>Ax2whereA:( _ _ >.Then
2 (2,9) 2 T(B) 2 T(B) 2

(1) = ﬁ AT+ 1) + ﬁ = T(8")aglr) € <g(1)>

and

a2
baa(t) = 5 (T 4 1) 4
@) + (T(B™)? + Dag(1) + (T(B") + 1)t/
T(p™)
a(T(p"™)’ + 1)+ T(B"))

= T(") fT(/;'ﬂ)ZH(Z) € <fT(/;m)2+1(Z)>'

Finally, for s € GF(q)\{0}, we have
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1
(1 +as+s1/2)°

s*(T(B™) + 1) $) 12 as + s1/2)2
+(T(/)””) +)t )/(1+ +577)

which is in (f; (1) for u = T(f™)* + 1+ T(p™)*/s.

Thus the element y, € Aut #(%), and has order 2e (see [20]). Now i, normalises
P> and > N <y, ) is the identity, and we have therefore shown that the Adelaide
herd admits Cy41 X Cy, as automorphism group. It is straightforward to verify that

T(A™? 0
0 1
by the maximality of C,1; X Cs, in PI'L(2, g). O

Yo fi(t) = (o f (1) + s%Yag(t) + st'/?)

the map x — Ax, where 4 = does not fix # (%), and the result follows

We note that, with the exception of those in the last sentence, all the calculations
in the proof of Theorem 4.3 are independent of the value of m. This proof is therefore
a unified treatment of the groups of the Subiaco and Adelaide herds.

Corollary 4.4. Let q = 2¢ where e > 6 is even and let § € GF(q?) be of order q + 1.
The automorphism group of the Adelaide generalized quadrangle over GF(q) arising
from this f is the semidirect product of 9 (in the notation of Section 2.2) with the semi-
direct product of a cyclic group of order q*> — 1 and a cyclic group of order 2e. Since
|%| = ¢°, this group has order 2¢°(q — 1)(q — 1)e.

Proof. See Corollary 4.1 of [20]. O

Corollary 4.5. Let g = 2¢ where e > 6 is even and let § € GF(q?) be of order q + 1.
The automorphism group of the Adelaide generalized quadrangle over GF(q) arising
from this [ is transitive on the lines through (o0). Hence there is, up to isomorphism,
one associated flock and one associated translation plane.

Corollary 4.6. Let g = 2¢ where e > 6 is even and let € GF(q?) be of order g+ 1.
The automorphism group of the Adelaide herd over GF(q) arising from this [3 is tran-
sitive on the ovals of the herd. Hence an Adelaide oval in PG(2,q) is stabilised by a
cyclic group of order 2e.

Let ¢ = 2¢ where e > 6 is even and let € GF(¢?) be of order ¢ + 1. Suppose that
e/2 is odd. Then the Adelaide generalized quadrangle is new, as follows. By com-
paring the orders of the respective automorphism groups, it is immediate that if the
Adelaide generalized quadrangle is not new then it is a Subiaco generalized quad-
rangle. The automorphism group of the Subiaco generalized quadrangle for this ¢ is
also transitive on the lines through (o) (see [30]), however, in this case the automor-



A unified construction of finite geometries 19

phism group of the Subiaco generalized quadrangle is not transitive on the ovals of
the herd (see [22]) and this suffices to show that the groups are different. We remark
that since in PG(2,4%) the Adelaide oval is known not to be a Subiaco oval [37], the
Adelaide generalized quadrangle in PG(2,44) is new.

In a sequel to this paper, we will show that for m # +1 (mod g + 1), #(%,, p) is
isomorphic to (%, ) if and only if m = +m’ (mod ¢ + 1) and hence the Adelaide
generalized quadrangles are new, for e > 6 even. It is then immediate that the Ade-
laide flocks and Adelaide planes are also new.

Let ¢ = 2¢ where e > 6 is even and let f € GF(¢?) be of order ¢ + 1. We remark
that in PG(2,¢) an Adelaide oval over GF(q) arising from this f is either new or
is a Subiaco oval, as follows. First, every previously known hyperoval in PG(2, g)
where ¢ > 6 is even is either a translation hyperoval or a Subiaco hyperoval. The
main theorem of [19] shows that an Adelaide oval is not a translation hyperoval, for
otherwise an Adelaide herd would be either classical or an FTWKB herd; contrary to
the calculation of the respective groups. Since a non-translation oval contained in a
translation hyperoval has a group of order (¢ — 1)e, its homography group has odd
order ¢ — 1. Since an Adelaide oval has an induced homography group of order 2,
these two ovals are different.

5 Open problems

There are several open questions and problems arising immediately from this work,
as follows.

1. Is the group described in Corollary 4.6 the full stabiliser of an Adelaide oval?
The answer is known to be in the affirmative for e = 6 and 8 [37].

2. Are the Adelaide ovals new for all ¢, that is, do not belong to any previously
known family? The answer is known to be in the affirmative for e = 6 and 8 [37].

3. For a given ¢ = 2¢ with e > 6 even, are all Adelaide generalized quadrangles iso-
morphic (that is, those for different 5)?

4. Do the Adeclaide class of geometries and the regular cyclic class of geometries
discovered by Penttila [34] form a single family?

5. Classify cyclic generalized quadrangles in characteristic 2, that is, classify herds
which are stabilised by a cyclic group of order g + 1. The known examples are the
classical, FTWKB, Subiaco and Adelaide generalized quadrangles.
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