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Abstract. In this work we introduce generalized projective geometries which are a natural
generalization of projective geometries over a field or ring K but also of other important geo-
metries such as Grassmannian, Lagrangian or conformal geometry (see [3]). We also introduce
the corresponding generalized polar geometries and associate to such a geometry a symmetric
space over K. In the finite-dimensional case over K ¼ R, all classical and many exceptional
symmetric spaces are obtained in this way. We prove that generalized projective and polar
geometries are essentially equivalent to Jordan algebraic structures, namely to Jordan pairs,
respectively to Jordan triple systems over K which are obtained as a linearized tangent version
of the geometries in a similar way as a Lie group is linearized by its Lie algebra. In contrast to
the case of Lie theory, the construction of the ‘‘Jordan functor’’ works equally well over gen-
eral base rings and in arbitrary dimension.
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0 Introduction

0.1 Geometry and algebra. The aim of this work is to bring together two topics,
a geometric one, namely projective geometry, and an algebraic one, namely Jordan
algebraic structures. On the one hand, projective spaces and projective geometry are
not only central topics in mathematics but also play a foundational rôle in modern
physics, see for example [22]; on the other hand, Jordan algebras have been invented
as a concept in the foundation of quantum mechanics, see [13]. Thus it seems not to
be without interest to find a geometric concept unifying these two theories; such a
concept, called generalized projective geometries, is proposed in the present work. In
fact, many authors have already remarked that there are important relations between
the two topics mentioned (see point 0.6. below); however, most of the literature con-
cerns special cases, and it seems that the problem to establish a general equivalence
between the two categories in question has not been raised. As for any equivalence,



the problem has two aspects: coming from geometry, we want to find a ‘‘linear tan-
gent object’’ (similar to the Lie algebra of a Lie group) allowing to transform geo-
metric problems into linear algebra. This is achieved in Chapter 9 (Theorems 9.5 and
9.8) in a very general context. In the special case of projective geometry, the tangent
object is a trilinear composition of the kind

V � V � � V ! V ; ðx; f; yÞ 7! fðxÞyþ fðyÞx

which is well-known to play an important rôle in projective di¤erential geometry.
Conversely, coming from algebra, we want to ‘‘integrate’’ our algebraic structure to
a global geometric object; in other words, we are looking for a Jordan analogue of
Lie’s third theorem (this is achieved in Chapter 10, see Theorem 10.1). In the fol-
lowing, we describe our approach in some more detail.

0.2 Generalized projective geometries. The essential di¤erence between our
approach to projective geometry and the more traditional ones is that we do not try
to base our theory on ‘‘incidence axioms’’ or other combinatorial structures but on
algebraic laws. Our guiding model here is the theory of Lie groups (which is based on
the group laws) and Loos’ theory of symmetric spaces [16], which is based on a set of
‘‘non-associative’’ algebraic identities. Let us briefly describe the main features of the
algebraic identities we have in mind: it is convenient to consider a projective space
X ¼PðWÞ over a field or ring K together with its dual space X 0 ¼PðW �Þ and to view
elements a A X 0 as ‘‘a‰nizations’’ of X and vice versa. In general, a pair of spaces
ðX ;X 0Þ, each of them parametrizing a family of a‰nizations on the other, is called
an a‰ne pair geometry over the base ring K (Chapter 1). If such a structure is given,
then for any fixed scalar r A K there is a natural ternary ‘‘multiplication map’’

mr : X � X 0 � XID! X ; ðo; a; xÞ 7! mrðo; a; xÞ

associating to an a‰nization a with a‰ne part VaHX and two points o; x A Va
the product rx ¼: mrðo; a; xÞ in the K-module Va with zero vector o. Exchanging the
rôles of X and X 0, a dual multiplication map m 0

r is defined. In [3] we give an explicit
formula for the multiplication map for the case of projective and Grassmannian ge-
ometries and derive its most important properties by elementary linear algebra. As
usual, one defines left, right and middle multiplications associated to the ternary map
m ¼ mr by

mðx; a; yÞ ¼ Lx;aðyÞ ¼Mx;yðaÞ ¼ Ra;yðxÞ:

Generalized projective geometries are now defined by requiring the following funda-
mental identities of projective geometry (Chapter 2):

ðLx;aÞ t ¼ La;x; ðRa;xÞ t ¼ Rx;a ðPG1Þ

ðMx;yÞ t ¼My;x; ðMa;bÞ t ¼Mb;a; ðPG2Þ
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complemented by a property (T) assuring the existence of translation groups. Here an
identity of the type gt ¼ h means that the pair ðg; hÞ behaves essentially like a projec-
tive map g and its transposed gt in projective geometry, i.e. that the condition

gðmsðx; hðaÞ; yÞÞ ¼ msðgðxÞ; a; gðyÞÞ

holds for all s A K. In [3] we have shown that (PG1) and (PG2) hold for the ‘‘classical
geometries’’: projective, Grassmannian, Lagrangian and conformal geometry. For
several reasons we believe that these identities are indeed a good starting point for an
axiomatic theory: they are simple, highly symmetric and ‘‘complete’’ in the sense that
all partial operators obtained by fixing two elements have a good functorial relation
with the whole structure—in this sense our equations are the best one could expect
and behave nicer than group laws (where left and right translations are not auto-
morphisms) or symmetric space laws (where left translations are automorphisms but
right translations are not).

0.3 Tangent objects and ‘‘di¤erential calculus’’. Yet in another sense the iden-
tities (PG1) and (PG2) behave nicer than group or symmetric space laws: they imply
a strong regularity of the multiplication maps even in the infinite-dimensional case
in the sense that generically everything can be expressed by (quadratic) polynomials
combined with inversions in some general linear group—in the finite-dimensional case
over a field everything is thus rational over K. The only assumption we need here is
that (PG1) and (PG2) hold in all scalar extensions of K; we show that the scalar ex-
tension of a generalized projective geometry ðX ;X 0Þ over K by dual numbers over K
plays naturally the role of the tangent bundle ðTX ;TX 0Þ (Chapter 7; the use of dual
numbers in related contexts appears already in [6, Chapter 4], [19] and [20]). Thus we
have a sort of di¤erential calculus on ðX ;X 0Þ, and in a way similar to the way that one
associates a Lie algebra to a Lie group or a Lie triple system to a symmetric space,
derivations of the ternary maps mr, m

0
r at a base point ðo; o 0Þ give rise to a pair of ternary

maps of tangent spaces,

T : V � V 0 � V ! V ; T 0 : V 0 � V � V 0 ! V 0;

VGToX , V 0 GTo 0X 0, satisfying the algebraic laws of a (linear) Jordan pair over K
(Theorem 9.5). Conversely, to any Jordan pair over K we can construct a generalized
projective geometry ðX ;X 0Þ over K; these constructions are essentially inverse to each
other and are functorial (Theorem 10.1). An important rôle in both constructions is
played by the Lie algebra of derivations of ðX ;X 0Þ, known in Jordan theory as the
associated Kantor–Koecher–Tits algebra (Chapter 9).

0.4 Polar and null geometries. Besides Jordan pairs, there are two other important
algebraic categories in Jordan theory, namely Jordan triple systems and Jordan alge-
bras. The former are the same as Jordan pairs with involution, see [17, I.1]. Geometri-
cally, they correspond to generalized polar geometries. Polarities can be defined in our
general situation in the same way as in ordinary projective geometry: they are anti-
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automorphisms ðp : X ! X 0; p 0 : X 0 ! XÞ of order 2 which are not a null-system,
i.e., not all x A X are isotropic with respect to p (Chapter 3). The quadric of a polarity
p is the set of isotropic points of p; it can be described by an algebraic condition in
terms of the associated Jordan triple system (see Section 11.1).
The geometric object corresponding to unital Jordan algebras is closely related to

null systems and to inner polarities; we will come back to this point in subsequent
work (cf. Section 11.3).

0.5 Symmetric spaces and Jordan–Lie functor. It is well-known that any Jordan
triple system T gives rise to a Lie triple system R ¼ RT defined by

RðX ;Y ÞZ ¼ 
ðTðX ;Y ;ZÞ 
 TðY ;X ;ZÞÞ; ð0:1Þ

the correspondence T 7! RT is called the Jordan–Lie functor (see [5]). In Chapter 4
we construct the corresponding functor on a geometric level: for any polar geometry
ðX ;X 0; pÞ the complement M ðpÞ of the associated quadric is a symmetric space over
K in an appropriate sense (Theorem 4.1). In the finite-dimensional case over K ¼ R
we get a new and more conceptual construction of the geometric Jordan–Lie functor
from [5], and for a general field K we obtain a class of symmetric spaces which is
algebraic overK (cf. Section 11.2). In the real case, it is known by classification (work
of E. Neher; cf. [5]) that all classical and about half of the exceptional simple sym-
metric spaces are obtained by our construction; therefore one may conjecture that also
in the general case our construction yields an important part of the finite- and even
infinite-dimensional symmetric spaces over a general base field or ring. The Jordan
algebraic description is a very e¤ective and powerful tool in the study of such spaces.
It seems to be a rather deep problem to understand the Jordan–Lie functor in a con-
ceptual way: which intrinsic property of a symmetric space makes it associated to one
or several generalized polar geometries? We hope that the approach presented here
will help to solve this problem.

0.6 Related work. As already mentioned, the relation between geometry and Jordan
structures has attracted the attention of many authors. A quite extensive bibliography
on the geometry of exceptional Jordan structures, going back to the work of Freuden-
thal, Springer and others, can be found in [12]. Very closely related to our approach
are the papers [18], [19] and [21] by O. Loos and the papers [6] and [8] by J. Faulkner.
Although the latter papers are placed in an incidence geometric context, our formal-
ism is surprisingly close to the one developed there. Our presentation of the Kantor–
Koecher–Tits algebra (Section 9) is motivated by Section 4 of [6]. Comparing with
the above mentioned papers by O. Loos, the reader will find that our identity (PG1)
for invertible scalars is in fact implicitly contained in [19] (and also in our approach
[5] to the real case), whereas the identity (PG2) seems to be completely new—in fact,
the discovery of the identity (PG2) was a big surprise to us; since right multiplications
in symmetric spaces have no known functorial interpretation, we did not expect the
situation in Jordan theory to be that much better. Correspondingly, the central part
in the proof of the existence theorem for generalized projective geometries (Theorem
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10.1) is the verification of (PG2). It is precisely the identity (PG2) that allows one to
get rid of regularity assumptions and thus to develop the theory in full generality, in-
cluding the infinite-dimensional case.

Organization of the paper. The contents is as follows:

1. A‰ne pair geometries

2. Generalized projective geometries

3. Generalized polar geometries

4. Associated symmetric spaces

5. Associated group actions

6. Bergman operator and quadratic map

7. The tangent bundle

8. Infinitesimal automorphisms

9. Kantor–Koecher–Tits algebra and the Jordan functor

10. Existence theorem

11. Problems and further topics

The main results can be found in Chapters 9 and 10. In Chapter 11 we mention
some further topics and problems which we hope to investigate in subsequent work.
Examples and motivation for the axiomatic approach presented here are given in our
paper [3]. I am grateful to John R. Faulkner and to Ottmar Loos for helpful com-
ments during the 2000 Oberwolfach conference on Jordan algebras which lead to the
general approach, including the case of base rings, which is presented here.

Notation. K denotes a commutative ring with unit 1 and 1þ 1 A K�.

1 A‰ne pair geometries

1.1. A pair geometry is given by two sets X, X 0 and a subset MHX � X 0; if
ðx; aÞ AM we say that x and a are remote or in general position. If ðx; aÞ BM, we
say that ðx; aÞ are neighboring. For o 0 A X 0, respectively o A X , we denote by

Vo 0 :¼ fx A X j ðx; o 0Þ AMg; V 0
o :¼ fx 0 A X 0 j ðo; x 0Þ AMg ð1:1Þ

the sets of objects remote from o 0, respectively from o. We assume that the sets Vo 0 ,
o 0 A X 0 (resp. V 0

o , o A X ) cover X (resp. X 0) or, equivalently, that all Vo 0 and all V
0
o are

non-empty. The case that X is covered already by one of the Vo 0 ’s is not excluded.

1.2. Homomorphisms of pair geometries are remoteness-preserving pairs of maps,
that is, pairs g : X ! Y , g 0 : X 0 ! Y 0 such that gðVo 0 ÞHVg 0ðo 0Þ and g 0ðV 0

o ÞHV 0
gðoÞ

Generalized projective geometries 333



for all o A X , o 0 A X 0. Local homomorphisms are defined by the same property; they
are required to be defined at least on one pair of sets ðVa;V 0

xÞ with ðx; aÞ AM.

1.3. If ðX ;X 0;MÞ is a pair geometry, then so is ðX 0;X ;MdÞ with Md ¼
fðq; pÞ j ðp; qÞ AMg; we call it the dual pair geometry. All axioms we are going to
add will appear together with their dual version, thus assuring the existence of dual
objects.

1.4. An a‰ne pair geometry (over K) is a pair geometry ðX ;X 0;MÞ such that for
every element o 0 A X 0 (resp. o A X ) a structure of an a‰ne space over K is defined
on Vo 0 (resp. on V

0
o ). In other words, for each pair ðo; o 0Þ AM there is a structure of

a K-module with zero vector o on Vo 0 and a K-module structure with zero vector o 0

on V 0
o . The a‰ne parts Vo 0 HX , resp. V 0

o HX
0 are called a‰ne cells of X, resp. of X 0,

and we say that X 0 (resp. M ) is the space of a‰nizations (resp. space of vectorializa-
tions) of X, and vice versa.

1.5 The multiplication maps. Given an a‰ne pair geometry, we denote for any
ðo; o 0Þ AM and r A K by ro;o 0 : Vo 0 ! Vo 0 the multiplication by the scalar r in the K-
module Vo 0 with zero vector o, and define dually ro 0;o : V

0
o ! V 0

o as multiplication by
r in the K-module V 0

o with zero vector o 0. Putting for a fixed r A K all these together,
we define the multiplication maps associated to an a‰ne pair geometry by

mr : X � X 0 � XID! X ; ðo; o 0; xÞ 7! mrðo; o 0; xÞ :¼ ro;o 0 ðxÞ ð1:2Þ

and dually

m 0
r : X

0 � X � X 0 ID 0 ! X 0; ðo 0; o; x 0Þ 7! m 0
rðo 0; o; x 0Þ :¼ ro 0;oðx 0Þ ð1:3Þ

where

D ¼ fðo; o 0; xÞ A X � X 0 � X j ðo; o 0Þ AM; ðx; o 0Þ AMg; ð1:4Þ

and dually for D 0. Thus, if we fix the middle element o 0, the partial maps

mrð� ; o 0; �Þ : Vo 0 � Vo 0 ! Vo 0 ; m 0
rð� ; o; �Þ : V 0

o � V 0
o ! V 0

o ð1:5Þ

define on Vo 0 (resp. V
0
o ) the structure of an a‰ne space over K in the sense of Chapter

1 of [3], and the concept of an a‰ne pair geometry can be expressed by several iden-
tities for the multiplication maps which are denoted by (Af1)–(Af5) in [3] and from
which one can recover the whole of a‰ne geometry over K ([3, Theorem 1.1]). For
instance, the identity (Af3) reads in the notation used here

mrðp; a; qÞ ¼ m1
rðq; a; pÞ; m 0
rða; p; bÞ ¼ m 0

1
rðb; p; aÞ: ð1:6Þ

We will not need the explicit form of the other identities in the sequel; it su‰ces here
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to remark that a‰ne maps are precisely the algebraic homomorphisms of the multi-
plication maps and that translations can be recovered from the multiplication maps
via Formula (2.4) given below.

1.6. Homomorphisms of a‰ne pair geometries ðX ;X 0Þ, ðY ;Y 0Þ are remoteness-
preserving pairs ðg; g 0Þ of maps g : X ! Y , g 0 : X 0 ! Y 0 such that the multiplication
maps are respected:

gðmrðo; o 0; pÞÞ ¼ mrðgðoÞ; g 0ðo 0Þ; gðoÞÞ;

g 0ðm 0
rðo 0; o; p 0ÞÞ ¼ m 0

rðg 0ðo 0Þ; gðoÞ; g 0ðp 0ÞÞ:
ð1:7Þ

Equivalently, for all o 0 A X 0 the restrictions

g : XIVo 0 ! Vg 0ðo 0Þ HY ; g 0 : X 0 IV 0
o ! V 0

gðoÞ HY
0

are a‰ne maps. Local homomorphisms are local homomorphisms of pair geometries
(in the sense of 1.2) respecting the multiplication maps. (Note that we do not require g 0

to be determined uniquely by g or vice versa; however, in the ‘‘non-degenerate case’’
this property holds, see 2.8.) Isomorphisms are homomorphisms ðg; g 0Þ for which g
and g 0 are bijections. The composition of homomorphisms is again a homomorphism
(with ðghÞ0 ¼ g 0h 0); thus a‰ne pair geometries form a category. In particular, we may
speak of the automorphism group AutðX ;X 0Þ of ðX ;X 0Þ.

1.7. A base point in ðX ;X 0Þ is a fixed element ðo; o 0Þ AM; a homomorphism of
a‰ne pair geometries with base point is a base point preserving homomorphism. The
corresponding automorphism group AutðX ;X 0; o; o 0Þ ¼ AutðX ;X 0Þo;o 0 is called the
structure group of ðX ;X 0; o; o 0Þ; by definition of a homomorphism it acts linearly on
Vo 0 � V 0

o .

1.8. An adjoint pair of morphisms of a‰ne pair geometries ðX ;X 0Þ, ðY ;Y 0Þ is a pair
of maps g : XIU ! Y , h : Y 0 IU 0 ! X 0 preserving remoteness in the sense that

gðVhðpÞ VUÞHVp; hðV 0
gðqÞ VU

0ÞHV 0
q

(where the subsets UHX , U 0 HX 0 shall contain at least one a‰ne cell) and satisfy-
ing the relations

gðmrðo; hðo 0Þ; pÞ ¼ mrðgðoÞ; o 0; gðpÞÞ;

hðm 0
rðo 0; gðoÞ; p 0ÞÞ ¼ mrðhðo 0Þ; o; hðp 0ÞÞ:

ð1:8Þ

These relations can be rephrased by saying that gjVhðo 0Þ VU has an extension by an

a‰ne map Vhðo 0Þ ! Vo 0 , and dually. We write h ¼ gt if ðg; hÞ is an adjoint pair; this
means just that ðg; hÞ ¼ ðg; gtÞ satisfies the relations (1.8) and shall not be interpreted
in the sense that gt be uniquely determined by g (although in the non-degenerate case
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it actually is, see 2.8 and 2.9). The conditions h ¼ gt for ðX ;X 0Þ, ðY ;Y 0Þ and gt ¼ h
for the dual pairs ðY 0;Y Þ, ðX 0X Þ are equivalent. Clearly, if ðg; gtÞ and ð f ; f tÞ are ad-
joint pairs such that g, f and f t, gt are composable, then ðg � f ; f t � gtÞ is an adjoint
pair (this may be expressed by writing ðgf Þ t ¼ f tgt). In particular, the a‰ne pair ge-
ometries with base point form a category with respect to base-point preserving ad-
joint pairs of morphisms.

1.9. The preceding discussion shows that a‰ne pair geometries can be turned into
a category in two essentially di¤erent ways—in general, homomorphisms do not give
rise to adjoint pairs of morphisms or vice versa. (This is very well known from pro-
jective geometry: some authors require homomorphisms of projective spaces to be in-
duced by injective linear maps, whereas others allow morphisms to be possibly de-
fined only on some a‰ne part, see e.g. [1]; algebraically, this corresponds exactly to
the distinction of two categories made here. Since the Jordan pair of ordinary projec-
tive geometry is simple, homomorphisms have to be injective or trivial.) However,
if ðg; g 0Þ is an isomorphism, then clearly ðg; gtÞ with gt ¼ ðg 0Þ
1 is an adjoint pair. In
general, categorial notions will refer to the category defined in 1.6 and not to the
category defined in 1.8.

1.10 Scalar extensions. By a scalar extension of K we mean a unital commutative
and associative K-algebra R. Let us denote by f : K ! R, r 7! r1R the natural ho-
momorphism (it need not be injective). A corresponding scalar extension of the a‰ne
pair geometry ðX ;X 0Þ over K is an a‰ne pair geometry ðX ;X 0ÞR :¼ ðXR;X 0

RÞ over R
together with a homomorphism of a‰ne pair geometries over K

ðF;F 0Þ : ðX ;X 0Þ ! ðX ;X 0ÞR

such that, for all ðx; aÞ AM, the R-module ðVF 0ðaÞ;FðxÞÞ (zero vector FðxÞ) is the
usual scalar extension of the K-module ðVa; xÞ, i.e.

ðVF 0ðaÞ;FðxÞÞG ðVa; xÞnK R

as an R-module; more precisely, the following diagram shall commute:

ðVa; xÞ ðVa; xÞ???y
???y

ðVa; xÞnK R G ðVF 0ðaÞ;FðxÞÞ;

ð1:9Þ

where the first column is the natural map v 7! vnK 1R and the second column is
given by restriction of F. Dually, for ðV 0

x ; aÞ a similar condition is required to hold.
Moreover, we require ðX ;X 0ÞR to be minimal in the following sense: for every ho-
momorphism ðg; g 0Þ of ðX ;X 0Þ into a geometry ðY ;Y 0Þ defined over R, considered
as a geometry over K, there exists a unique extension ðg; g 0ÞR :¼ ðgR; g 0RÞ to a homo-
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morphism ðX ;X 0ÞR!ðY ;Y 0Þ defined over R. It is clear that this property determines
ðX ;X 0ÞR up to isomorphisms. (One might be tempted to define scalar extensions only
by this universal property; however, it seems not to be possible to deduce from it the
isomorphism (1.9). Note that we do not make here any claims of existence of scalar
extensions for general a‰ne pair geometries.)

2 Generalized projective geometries

2.1. Assume ðX ;X 0Þ is an a‰ne pair geometry over K with multiplication maps mr,
m 0
r. As for any ternary map, we define right, left and middle multiplication associated

to the ternary maps mr and m 0
r by

Lx;aðyÞ :¼ Ra;yðxÞ :¼Mx;yðaÞ :¼ mrðx; a; yÞ

La;xðbÞ :¼ Rx;bðaÞ :¼Ma;bðxÞ :¼ m 0
rða; x; bÞ

ð2:1Þ

(where we add the superscript ðrÞ if the dependence on r shall be indicated). Then (1.6)
says that R

ðrÞ
a;y ¼ Lð1
rÞy;a , and thus we can transform left multiplications into right mul-

tiplications and vice versa. However, they cannot be transformed into middle multi-
plications since the latter exchange the partners X and X 0 whereas the former preserve
them. We call operators of the type of left, right or middle multiplications altogether
interior operators of the geometry.

2.2 The fundamental identities. We say that an a‰ne pair geometry satisfies the
fundamental identities if, for all r A K, the following holds:

ðLx;aÞ t ¼ La;x; ðRa;xÞ t ¼ Rx;a; ðPG1Þ

ðMx;yÞ t ¼My;x; ðMa;bÞ t ¼Mb;a; ðPG2Þ

where ðx; aÞ AM, and ðx; yÞ A X � X , ða; bÞ A X 0 � X 0 are such that the middle
multiplications are defined at at least one point. Since L

ðrÞ
x;a ¼ Rð1
rÞ

a;x , the first and the
second condition in (PG1) are equivalent. Since gt ¼ h and ht ¼ g are equivalent, an-
other equivalent formulation is ðLa;xÞ t ¼ Lx;a. However, the two conditions in (PG2)
are not equivalent: the first one says that ðMx;y;My;xÞ is an adjoint pair for ðX 0;XÞ,
ðX ;X 0Þ and the second that ðMa;b;Mb;aÞ is an adjoint pair for ðX ;X 0Þ, ðX 0;X Þ; both
are self-dual. Using (1.8), the conditions (PG1) and (PG2) can be written more ex-
plicitly

Lx;aðmsðy;La;xðbÞ; zÞÞ ¼ msðLx;aðyÞ; b;Lx;aðzÞÞ;

La;xðm 0
sðb;Lx;aðyÞ; cÞÞ ¼ m 0

sðLa;xðbÞ; y;La;xðcÞÞ;

Mx;yðm 0
sða;My;x b; cÞÞ ¼ msðMx;yðaÞ; b;Mx;yðcÞÞ;

Ma;bðm 0
sðx;Mb;a y; zÞÞ ¼ msðMa;bðxÞ; y;Ma;bðzÞÞ:
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for all r; s A K and x; y; z A X , a; b; c A X 0 where the expressions are defined. With all
variables included, the preceding formulas read

mrðx; a; msðy; m 0
rða; x; bÞ; zÞÞ ¼ msðmrðx; a; yÞ; b; mrðx; a; zÞÞ;

m 0
rða; x; m 0

sðb; mrðx; a; yÞ; cÞÞ ¼ m 0
sðm 0
rða; x; bÞ; y; m 0

rða; x; cÞÞ;

mrðx; m 0
sða; mrðy; bxÞ; cÞ; yÞ ¼ msðmrðx; a; yÞ; b; mrðx; c; yÞÞ;

m 0
rða; m 0

sðx; mrðb; y; aÞ; zÞ; bÞ ¼ msðmrða; x; bÞ; y; mrða; z; bÞÞ:

We also require that for all r A K� the left multiplications L
ðrÞ
x;y ¼ rx;y extend to bi-

jections X ! X such that all identities introduced so far still hold whenever all ex-
pressions are defined. This implies that, if both r and 1
 r belong to K�, the multi-
plication map mr is defined on the extended domain

De :¼ fðx; a; yÞ A X � X 0 � X j ðx; aÞ AM or ðy; aÞ AMg: ð2:2Þ

By elementary properties of a‰ne geometry we have (cf. the identity (Af1) from [3]),

rx;a � sx;a ¼ ðrsÞx;a; 1x;a ¼ idVa :

Thus for r A K� the condition (PG1) can be rephrased by saying that

ðrx;a; r
1a;xÞ A AutðX ;X 0Þ: ð2:3Þ

The automorphisms ðrx;a; r
1a;xÞ ððx; aÞ AM; r A K�Þ will also be called inner automor-
phisms or major dilatations, and the subgroup IntðX ;X 0Þ of AutðX ;X 0Þ generated by
them is called the inner automorphism group.

2.3 Translations. Since by assumption 2 is invertible in K, we can express trans-
lations via major dilatations: for ðo; o 0Þ AM,

tv :¼ tðo;o
0Þ

v :¼ 2o;o 02

1
v;o 0 ð2:4Þ

is the translation by v in the K-module ðVo 0 ; oÞ. If the fundamental identity (PG1) in
its version (2.3) holds, then the pair

ðtv; ~ttvÞ :¼ ð2o;o 02
1v;o 0 ; 2
1o 0;o2o 0; vÞ ð2:5Þ

belongs to AutðX ;X 0Þ; this can also be written

ð~ttvÞ t ¼ t
v: ð2:6Þ

The identities of a‰ne geometry imply that tvtw ¼ tvþw (sum in ðVo 0 ; oÞ). If the trans-
pose is unique (as in ordinary projective geometry), then we obtain by transposing:

~ttv~ttw ¼ ~ttvþw ðTÞ
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which means that

tVo 0 :¼ fðtv; ~ttvÞ j v A Vo 0 g ð2:7Þ

is a group, called the translation group with respect to the a‰nization o 0; as a group, it
is isomorphic to ðVo 0 ; o;þÞ. We say that our geometry satisfies the translation prop-
erty if (T) holds together with its dual, for all ðo; o 0Þ AM. The dual of (T) implies
that

~ttV 0
o
:¼ fð~ttw; twÞ jw A V 0

o g ð2:8Þ

with

~ttw :¼ ~ttðo;o
0Þ

w :¼ 2
1o;o 02o;w ð2:9Þ

is an abelian group, isomorphic to ðV 0
o ; o

0;þÞ. The maps ~ttw : X ! X are called dual
translations. Our notational convention is such that groups denoted by tVa ða A X 0Þ
act by usual translations on the first factor of the geometry ðX ;X 0Þ and groups de-
noted by ~ttV 0

x
ðx A XÞ act by usual translations on the second factor. Thus, for in-

stance, the group denoted by tV 0
x
ðx A XÞ acts by usual translations on the first factor

of the dual geometry ðX 0;XÞ; as a group, it is of course isomorphic to ~ttV 0
x
. (Note that

(T) is a consequence of the preceding identities if the transpose is unique; we do not
know whether this is true also in the general case. It may be conjectured that this is
indeed so since for Jordan pairs a duality principle holds, see [17, Proposition 2.9],
which is used in the proof of the addition formula [17, Theorem 3.7] that corresponds
to our formula (T).)

2.4. A generalized projective geometry over K is an a‰ne pair geometry ðX ;X 0Þ
over K in which the fundamental identities (PG1), (PG2) and the translation prop-
erty (T) hold in all scalar extensions of K—this means that, if f : K ! R is any scalar
extension, then there exists a scalar extension ðX ;X 0ÞR of ðX ;X 0Þ in the sense of 1.10
satisfying (PG1) (also in its extended version, if the scalar is invertible), (PG2) and (T)
(together with its dual) over R.

2.5. Homomorphisms and adjoint pairs of morphisms of generalized projective geo-
metries are those of the underlying a‰ne pair geometry. Therefore, generalized pro-
jective geometries can be turned into a category in two essentially di¤erent ways.

2.6. For a definition of generalized projective geometries if 2 B K�, it will be
necessary to add axiomatically the structure given by the following maps of four
arguments:

X � X 0 � X � X 0 IW ! X ; ðo; o 0; v;wÞ 7! ~ttðo;o
0Þ

w ðvÞ;

X � X 0 � X � XIW 0 ! X ; ðo; o 0; v;wÞ 7! tðo;o
0Þ

w ðvÞ
ð2:10Þ

where W ;W 0 are defined by conditions similar to (2.2). This idea will be taken up in
subsequent work.

Generalized projective geometries 339



2.7 Categorial constructions. Since the category of generalized projective geometries
is essentially defined by algebraic laws, it behaves fairly well with respect to some
standard categorial constructions:

(1) (Duality.) The rôle played by the spaces X and X 0 in our axioms is completely
symmetric; thus ðX 0;X Þ with the spaceMd ¼ fða; xÞ j ðx; aÞ AMg of vectorializa-
tions is again a generalized projective geometry, called the dual pair or dual ge-
ometry of ðX ;X 0Þ.

(2) (Direct products.) The direct product of ðX ;X 0Þ, ðY ;Y 0Þ is ðX � Y ;X 0 � Y 0Þ with
remoteness given by Vðo 0;p 0Þ ¼ Vo 0 � Vp 0 , and dually, which we require to carry
the direct product structure Vo 0 � Vp 0 of a‰ne spaces. It is then easily verified that
ðX � Y ;X 0 � Y 0Þ is again a generalized projective geometry; the multiplication
map is just the direct product of the ones of ðX ;X 0Þ and ðY ;Y 0Þ. In particular,
we can define the direct product ðX ;X 0Þ � ðX 0;XÞ ¼ ðX �X 0;X 0 �XÞ which will
play an important role later on.

(3) (Subspaces.) These are subsets YHX , Y 0 HX 0 such that ðY ;Y 0Þ is closed under
all multiplications maps. Thus in the a‰nizations y 0 A Y 0, Y is an a‰ne subspace,
and vice versa.

(4) (Inner ideals.) An inner ideal of X as a subset YHX which is linear w.r.t. all
possible a‰nizations, i.e. satisfying mrðY ; a;Y ÞHY for all a A X 0; inner ideals of
X 0 are defined dually.

(5) (Congruences and quotient spaces.) A congruence is a subspace ðR;R 0ÞH
ðX � X ;X 0 � X 0Þ which is an equivalence relation—similar to the case of sym-
metric spaces ([16, Chapter III]) one shows that ðX ;X 0Þ=ðR;R 0Þ is again a gener-
alized projective geometry.

(6) (Tangent bundle.) One can construct a tangent bundle ðTX ;TX 0Þ of ðX ;X 0Þ
which is essentially scalar extension by dual numbers over K—see Chapter 7.

(7) (Flat geometries.) The category of pairs of a‰ne spaces over K is imbedded in
the category of generalized projective geometries as follows: let V ;W be a‰ne
spaces in the usual sense; let X :¼ V , X 0 :¼W , M ¼ V �W and let ro;o 0 ¼ ro
(i.e. all a‰ne charts of X yield the same structure of a‰ne space on V ), and
dually ro 0;o ¼ ro 0 . The axioms are easily verified.

2.8 Faithful and non-degenerate geometries.

(i) We say that the generalized projective geometry is non-degenerate if the map
assigning to a A X 0 the set VaHX is injective, and dually.

(ii) We say that the generalized projective geometry is faithful if the map assigning to
a A X 0 the a‰ne structure ðVa;Aa :¼ m�ð� ; a; �ÞÞ is injective, and dually.

It is clear that a non-degenerate geometry is faithful; the converse is not true. If
ðg; g 0Þ is an automorphism of a faithful geometry, then g determines g 0 uniquely by
the condition Ag 0ðaÞ ¼ g�ðAaÞ, where g� is the push-forward of the a‰ne structure Aa
by g, and conversely g is determined by g 0.
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2.9 Conformal group. The projective or conformal group of X is the group

CoðXÞ :¼ fg : X ! X j bg 0 : X 0 ! X 0 : ðg; g 0Þ A AutðX ;X 0Þg: ð2:11Þ

The inner conformal group is the subgroup of CoðX Þ generated by the dilatations
rx;a, r A K�, ðx; aÞ AM, and dually we define CoðX 0Þ and its inner conformal group.
If ðX ;X 0Þ is faithful, then the surjective homomorphisms

AutðX ;X 0Þ ! CoðXÞ; ðg; g 0Þ 7! g; AutðX ;X 0Þ ! CoðX 0Þ; ðg; g 0Þ 7! g 0

are injective, hence CoðXÞ and CoðX 0Þ are isomorphic to AutðX ;X 0Þ, and we have
an isomorphism

CoðXÞ ! CoðX 0Þ; g 7! g 0

and a canonical anti-isomorphism

CoðXÞ ! CoðX 0Þ; g 7! gt ¼ ðg 0Þ
1:

For instance, this is the case in ordinary projective geometry (which is non-
degenerate).

3 Generalized polar geometries

3.1. An antiautomorphism of a generalized projective geometry ðX ;X 0Þ is an iso-
morphism

ðp; p 0Þ : ðX ;X 0Þ ! ðX 0;XÞ

onto the dual pair. A correlation of ðX ;X 0Þ is an antiautomorphism ðp; p 0Þ such that
p 0 ¼ p
1, or, equivalently, such that pt ¼ p. This in turn means that the identity

pðmrðx; pðyÞ; zÞÞ ¼ m 0
rðpðxÞ; y; pðzÞÞ ð3:1Þ

and its dual hold.

3.2. With respect to a fixed correlation p, a point x A X is called non-isotropic if x
and pðxÞ are remote (i.e. ðx; pðxÞÞ AM) and isotropic if x and pðxÞ are neighboring.
A correlation is called a null-system if all points x A X are isotropic and a polarity if
there exist non-isotropic points. A generalized polar geometry is a generalized projec-
tive geometry ðX ;X 0Þ together with a polarity p; homomorphisms of generalized polar
geometries are homomorphisms ðg; g 0Þ of generalized projective geometries commut-
ing with the respective polarities; in particular, the automorphism group AutðX ;X 0; pÞ
is the group of all elements ðg; g 0Þ A AutðX ;X 0Þ such that g 0 � p ¼ p � g.
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3.3. For a fixed polarity p, the set

QðpÞ :¼ fx A X j ðx; pðxÞÞ BMg ð3:2Þ

of isotropic points is called the associated quadric, and its complement is denoted by

M ðpÞ ¼ fx A X j ðx; pðxÞÞ AMg: ð3:3Þ

By the very definition of a polarity the set M ðpÞ is not empty. A polarity is called
elliptic if the quadric is empty.

3.4. If a correlation p : X ! X 0 is fixed we will use it frequently to identify X with
X 0. Thus the product maps mr and m 0

r are both represented by a ternary map

~mmr : X � X � XID! X ; ðx; y; zÞ 7! mrðx; pðyÞ; zÞ

satisfying identities which are obtained from (PG1) and (PG2) by simply forgetting
the distinction between mr and m 0

r. Polar geometries are then characterized by the fact
that some element of the diagonal in X �X belongs toM, whereas for null geometries
this is not the case. One may use these properties for an axiomatic definition of a
generalized polar geometry (which is thus a set X together with a subset of X � X
containing some element of the diagonal and a family of ternary maps mr defined on
a subset of X � X � X and satisfying certain identities). Homomorphisms are then
precisely the maps which are compatible with the multiplication maps ~mmr.

3.5. Not every generalized projective geometry does admit a polarity—take e.g. the
flat case given a by a pair of non-isomorphic vector spaces. It is all the more impor-
tant that one can associate to any generalized projective geometry a polar geometry
in a canonical way:

Proposition 3.6. For any generalized projective geometry ðX ;X 0Þ, the generalized pro-
jective geometry ðX � X 0;X 0 � XÞ admits a canonical polarity, given by the exchange
map pðx; x 0Þ ¼ ðx 0; xÞ. The corresponding space M ðpÞ HX � X 0 is equal to the space
M of vectorializations of X.

Proof. It is clear that ðx; x 0Þ and pðx; x 0Þ ¼ ðx 0; xÞ are remote if and only if x and x 0

are remote, whence the last claim. The first claim is proved by the following calcula-
tion:

pmrððx; x 0Þ; pðy; y 0Þ; ðz; z 0Þ ¼ pmrððx; x 0Þ; ðy 0; yÞ; ðz; z 0ÞÞ ¼ pðmrðx; y 0; zÞ; m 0
rðx 0; y; z 0ÞÞ

¼ ðm 0
rðx 0; y; z 0Þ; mrðx; y 0; zÞÞ ¼ m 0

rððx 0; xÞ; ðy; y 0Þ; ðz 0; zÞÞ

¼ mrðpðx; x 0Þ; ðy; y 0Þ; pðz; z 0ÞÞ: r

3.7. The preceding proposition yields an imbedding of the category of generalized
projective geometries into the category of generalized polar geometries (if to a ho-
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momorphism ðg; g 0Þ we associate the pair ðg� g 0; g 0 � gÞ). In Jordan theory the cor-
responding construction is given by imbedding the category of Jordan pairs into the
category of Jordan triple systems by constructing the associated polarized Jordan tri-
ple system ([17, p. 10]). In a somewhat related context, similar constructions have
already been used by Rozenfeld, see [9, p. 172].

4 Associated symmetric spaces over K

4.1. A symmetric space (in the sense of O. Loos [16]) is a real smooth manifold M
with a smooth binary map m :M �M !M, ðx; yÞ 7! mðx; yÞ ¼ sxðyÞ satisfying
(M1) sxðxÞ ¼ x
(M2) sx � sx ¼ idM

(M3) sx A AutðmÞ, i.e. sxðmðy; zÞÞ ¼ mðsxðyÞ; sxðzÞÞ
(M4) the fixed point x of sx is isolated.

The automorphism sx is called the symmetry w.r.t. x, and the transvection group
GðMÞ of a symmetric space is the group generated by all sxsy with x; y AM. A con-
nected symmetric space is homogeneous under the group GðMÞ and is of the form
G=H where G ¼ GðMÞ is a Lie group and H an open subgroup of the group of fixed
points of a non-trivial involution of G; such spaces will be called homogeneous sym-
metric spaces. There exists a theory of symmetric k-varieties (see [11]) over general
base fields, but not of general symmetric spaces in the sense of Loos (possibly infinite-
dimensional and defined over rings)—one reason for this is certainly that symmetric
spaces (in the sense of Loos) over a general base field or ring will be ‘‘less homoge-
neous’’ than the real or complex ones (see examples in Chapter 4 of [3]). We do not
try to define here formally what a ‘‘symmetric space over K’’ should be, but the fol-
lowing theorem shows that any generalized polar geometry over K defines a structure
which certainly is one:

Theorem 4.2. Assume ðX ;X 0; pÞ is a generalized polar geometry over K. Then the
complement M ðpÞ of the associated quadric is stable under the binary map

mðx; yÞ :¼ m
1ðx; pðxÞ; yÞ

which satisfies the properties (M1)–(M3), and the symmetry with respect to a base
point o AM ðpÞ is so ¼ ð
1Þo;pðoÞ (the negative of the identity of the K-module VpðoÞ).

Proof. If ðg; g 0Þ is an automorphism of the polar geometry ðX ;X 0; pÞ, then g pre-
serves the set M ðpÞ and is compatible with m; in fact,

gmðx; yÞ ¼ gm
1ðx; pðxÞ; yÞ
¼ m
1ðgx; g 0pðxÞ; gyÞ
¼ m
1ðgx; pðgxÞ; gyÞ
¼ mðgx; gyÞ:
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Applying this to ðg; g 0Þ ¼ ðð
1Þo;pðoÞ; ð
1ÞpðoÞ;oÞ, we get the identity (M3). (Note

that in general ðg; g 0Þ ¼ ðrx;pðxÞ; r
1pðxÞ;xÞ is an automorphism of the polar geometry if
and only if r ¼ r
1; thus the construction works precisely for the scalars r such that
r2 ¼ 1.) The properties (M1) and (M2) are clear, and the last statement holds by the
very definition of m. r

It is indeed reasonable to say that the fixed point o of so ¼ ð
1Þo;pðoÞ is isolated:
since 2 is invertible in K, we have, in every K-module, 
x ¼ x i¤ x ¼ 0.

4.3 The Jordan–Lie functor. We say that ðM ð pÞ; mÞ is the symmetric space as-
sociated to the generalized polar geometry ðX ;X 0; pÞ. Homomorphisms of symmetric
spaces are maps f :M ! N commuting with multiplication maps m ofM and N. The
arguments given in the preceding proof show that then homomorphisms of polar geo-
metries induce homomorphisms of the associated symmetric spaces. Thus we have
defined a covariant functor from generalized polar geometries over K into spaces
having the properties from Theorem 4.2. This functor is called the geometric Jordan–
Lie functor; as mentioned in the introduction, it generalizes the geometric Jordan–Lie
functor from the real finite-dimensional case considered in [5].

Corollary 4.4. If ðX ;X 0Þ is a generalized projective geometry, then the space MH
X � X 0 with the multiplication map

mððo; o 0Þ; ðx; x 0ÞÞ ¼ ðm
1ðo; o 0; xÞ; m
1ðo 0; o; x 0ÞÞ

is a symmetric space over K in the sense of Theorem 4.2.

Proof. Apply Theorem 4.2 to the polarity of ðX � X 0;X 0 � XÞ from Proposition
3.6. r

4.5. The symmetric space M from the preceding corollary has as additional struc-
ture a double fibration over X and over X 0 such that the fibers are a‰ne spaces:

M ¼ 6
o AX

fog � V 0
o ¼ 6

o 0 AX 0
fo 0g � Vo 0 : ð4:1Þ

This can be seen as a sort of ‘‘polarization’’ on M; in fact these spaces generalize the
para-Hermitian symmetric spaces introduced by Kozai and Kaneyuki ([14]). If ðg; g 0Þ
is an automorphism of ðX ;X 0Þ, then, by the proof of Theorem 4.2, g�g 0 preservesM
and induces an automorphism of the symmetric space M which preserves the double
fibration (4.1). Similarly, it can be verified that, if ðg; g 0Þ is an antiautomorphism of
the generalized projective geometry ðX ;X 0Þ, then

~gg : X � X 0 ! X � X 0; ðx; aÞ 7! ðg 0ðaÞ; gðxÞÞ

preserves M and induces an automorphism of the symmetric space M which ex-
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changes the fibers of the double fibration (4.1). Automorphisms of the first type can
be considered as ‘‘para-holomorphic’’ whereas the ones of the second type are sort of
‘‘anti para-holomorphic’’. The automorphism ~gg is involutive i¤ g 0 ¼ g
1, that is, i¤
ðg; g 0Þ is a correlation, and it has a fixed point in M i¤ it is a polarity. Thus the po-
larities correspond precisely to the anti-paraholomorphic involutions having a fixed
point in M. The whole fixed point set of a correlation p is

ðX � X Þ ~pp ¼ fðx; pðxÞÞ j x A XgHX � X 0;

if we identify X and X 0 via p then this is just the diagonal in X � X . The intersection
of this set with M is the fixed point set of ~pp in M; it is non-empty i¤ p is a polarity,
and then

M ðpÞ !M ~pp; x 7! ðx; pðxÞÞ

is an isomorphism of symmetric spaces. Thus M ðpÞ is imbedded in M as a sort of
‘‘para-real form’’.

5 Associated group actions

5.1. We have already defined the groups AutðX ;X 0Þ and IntðX ;X 0Þ associated to a
generalized projective geometry ðX ;X 0Þ (Sections 1.6 and 2.2). If ðo; o 0Þ AM is a base
point, we write V :¼ Vo 0 , V 0 :¼ V 0

o and consider the following stabilizer groups:

P :¼ fðg; g 0Þ A AutðX ;X 0Þ j g:o ¼ og;

P 0 :¼ fðg; g 0Þ A AutðX ;X 0Þ j g 0:o 0 ¼ o 0g;

StrðV ;V 0Þ :¼ PVP 0 ¼ fðg; g 0Þ A AutðX ;X 0Þ j g:o ¼ o; g 0:o 0 ¼ o 0g:

ð5:1Þ

The group StrðV ;V 0Þ is called the structure group of ðV ;V 0Þ; by the very definition
of an automorphism, it acts as a subgroup of GlðVÞ �GlðV 0Þ. Note that, with ~ttw
defined by (2.9),

~ttwðoÞ ¼ 2
1o;o 02o;wðoÞ ¼ o; ð5:2Þ

and thus ~ttV 0 HP and, dually, tVHP 0.

Lemma 5.2. (i) P ¼ StrðV ;V 0Þ � ~ttV 0 (semidirect product)
(ii) P 0 ¼ StrðV ;V 0Þ � tV (semidirect product)

Proof. (i) Since automorphisms are remoteness preserving we have g:o A V i¤
ðg:o; o 0Þ AM i¤ ðg 0Þ
1:o 0 A V 0. Therefore, if g:o ¼ o, then w :¼ ðg 0Þ
1:o 0 A V 0, and we
let

ðh; h 0Þ :¼ ðg; g 0Þ � ð~ttw; twÞ ¼ ðg � ~ttw; g 0 � twÞ:
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It follows that

h:o ¼ gð~ttw:oÞ ¼ g:o ¼ o; h 0:o 0 ¼ g 0tw:o 0 ¼ g 0ðwÞ ¼ o 0;

and therefore ðh; h 0Þ A StrðV ;V 0Þ. This proves existence of the decomposition. Let
us prove uniqueness: if ðg; g 0Þ ¼ ðh; h 0Þ � ð~ttv; tvÞ A P, then ðg 0Þ
1:o 0 ¼ ðtvÞ
1:o 0 ¼ 
v;
thus v and hence also ðh; h 0Þ are uniquely determined. Part (ii) is the dual version of
(i). r

For a fixed base point ðo; o 0Þ AM, let WHAutðX ;X 0Þ be the subset

W :¼ fðg; g 0Þ A AutðX ;X 0Þ j g:o A Vg: ð5:3Þ

Then, as remarked in the preceding proof,

W
1 ¼ fðg; g 0Þ A AutðX ;X 0Þ j g 0:o 0 A V 0g: ð5:4Þ

It is clear that PHW and P 0 HW
1.

Lemma 5.3. W ¼ tV � P ¼ tV � StrðV ;V 0Þ � ~ttV 0 (unique decomposition)

Proof. Let ðg; g 0Þ A W and put v :¼ g:o. Then ðt
v; ~tt
vÞ � ðg; g 0Þ A P, and we can apply
the preceding lemma. Conversely, if ðg; g 0Þ ¼ ðtw; ~ttwÞ � ðp; p 0Þ with w A V , ðp; p 0Þ A P,
then g:o ¼ w A V , and moreover w and thus ðp; p 0Þ is uniquely determined. r

5.4. The preceding decompositions do not extend to the whole group AutðX ;X 0Þ.
However, in certain special cases we get the Harish–Chandra decomposition known
from the theory of Hermitian symmetric spaces: let us say that a generalized projec-
tive geometry ðX ;X 0Þ is stable if the intersection Va VVb is non-empty for all a; b A X 0,
and dually (cf. [21, Proposition 3.2] for this terminology). As a consequence, X is then
already covered by the Va with a A V 0, and dually:

X ¼ 6
a AV 0
Va; X 0 ¼ 6

x AV

V 0
x :

Proposition 5.5 (‘‘Harish–Chandra decomposition’’). If ðX ;X 0Þ is stable, then

AutðX ;X 0Þ ¼ W � tV ¼ tV � StrðV ;V 0Þ � ~ttV 0 � tV

(non-unique decomposition).

Proof. Let ðg; g 0Þ AAutðX ;X 0Þ; pick x A g
1ðVÞVV ¼ Vgt:o 0 VVo 0 ; then v :¼ gðxÞ A V .
Thus ðg; g 0Þ � ðtx; ~ttxÞ A W, and we can apply the preceding lemma. r

It can be shown that the stability condition is fulfilled for instance in the finite-
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dimensional case over a field (cf. [19], [21]) and for some infinite-dimensional geo-
metries modelled on complex or real Banach spaces.

5.6 Connectedness. We say that ðx; aÞ and ðy; bÞ AM are connected if there is a se-
quence ðp1; q1Þ; . . . ; ðpn; qnÞ AM such that ðp1; q1Þ ¼ ðx; aÞ, ðpn; qnÞ ¼ ðy; bÞ and

ðpjþ1; qjþ1Þ A ðVqj ;V 0
pj
Þ; j ¼ 1; . . . ; n
 1:

It is clear that connectedness is an equivalence relation; thus we get a partition of
M ¼6

i A I Mi into connected components, and it is easily verified that all ðXi;X 0
i ;MiÞ

with Xi :¼ pr1ðMiÞ, X 0
i ¼ pr2ðMiÞ are subspaces of ðX ;X 0;MÞ, called connected com-

ponents of ðX ;X 0Þ. (A natural example of a non-connected geometry is the Grass-
mannian ðX ;XÞ of all subspaces of a given K-module, cf. Chapter 2 of [3].) It is an
easy exercise to show that a stable geometry is connected (but the converse is not
true).

Theorem 5.7. Assume ðX ;X 0Þ is connected and fix a base point ðo; o 0Þ AM. Then the
subgroup

G :¼ htV U ~ttV 0i

of IntðX ;X 0Þ generated by the translation group and the dual translation group, acts
transitively on X, on X 0 and on M, i.e.

XGG=ðPVGÞ; X 0 GG=ðP 0 VGÞ; MGG=ðStrðV ;V 0ÞVGÞ:

In particular, X, X 0 and M are homogeneous under the action of AutðX ;X 0Þ, and M
is a homogeneous symmetric space in the sense that it is homogeneous under its auto-

morphism group.

Proof. It is enough to show that, if ðx; aÞ AM V ðV � V 0Þ is an arbitrary point,
then there exists ðg; g 0Þ A G such that ðx; aÞ ¼ ðg:o; g 0:o 0Þ; the claim then follows by a
straightforward induction using connectedness. We can write ðx; aÞ ¼ ð f :o; h 0:o 0Þ with
ð f ; f 0Þ ¼ ðtx; ~ttxÞ, ðh; h 0Þ ¼ ð~tta; taÞ A G. Since ðx; aÞ AM, we have

ðx; aÞ ¼ ð~tta; taÞ:ð~tt
aðxÞ; o 0Þ

¼ ð~tta; taÞ � ðt~tt
aðxÞ; ~tt~tt
aðxÞÞ:ðo; o 0Þ;

thus we have ðx; aÞ ¼ ðg; g 0Þ:ðo; o 0Þ with the element

ðg; g 0Þ ¼ ð~tta; taÞ � ðt~tt
aðxÞ; ~tt~tt
aðxÞÞ ð5:5Þ

of G. We have proved that G, and hence also AutðX ;X 0Þ, act transitively on M, X
and X 0. Since AutðX ;X 0Þ acts by automorphisms of the symmetric spaceM (cf. Sec-
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tion 3.7, the proof of Theorem 4.2 and Corollary 4.4), M is homogeneous under its
automorphism group. r

In [21], the group G is called the projective elementary group of ðV ;V 0Þ. Transi-
tivity of AutðX ;X 0Þ onM means that up to isomorphism there is only one K-module
on which a connected geometry ðX ;X 0Þ is modelled, namely the equivalence class of
all vectorializations under the automorphism group. For non-connected geometries
this is in general no longer true. Note that in the preceding proof we could also have
written

ðx; aÞ ¼ ðtx; ~ttxÞ:ðo; ~tt
xta:o 0Þ

¼ ðtx; ~ttxÞ � ð~tt~tt
xðaÞ; t~tt
xðaÞÞ:ðo; o 0Þ;

and thus we could also have taken the element

ðe; e 0Þ :¼ ðtx; ~ttxÞ � ð~tt~tt
xðaÞ; t~tt
xðaÞÞ ð5:6Þ

of G. These two possibilities correspond to two di¤erent ways of joining ðo; o 0Þ and
ðx; aÞ by using the double fibration of M mentioned in 4.5.

Corollary 5.8. With respect to a base point ðo; o 0Þ AM, we have the following expres-
sion for the multiplication map mr: for all ða; xÞ AM V ðV � V 0Þ and r A K,

rx;a ¼ tx~tt~tt
xðaÞro;o 0 ðtx~tt~tt
xðaÞÞ

1;

and dually.

Proof. Just write ðx; aÞ ¼ ðe:o; e 0:o 0Þ with ðe; e 0Þ given by (5.6) and use that re:o; e 0:o 0 ¼
e � ro;o 0 � e
1 since ðe; e 0Þ is an automorphism. r

5.9 Non-homogeneous symmetric spaces. If ðX ;X 0; pÞ is a generalized polar geome-
try, then the associated symmetric space M ðpÞ is general not homogeneous under its
automorphism group, even if ðX ;X 0Þ is connected. The orbit structure ofM ðpÞ under
AutðX ;X 0; pÞ is in general as complicated as the classification of non-degenerate
quadratic forms over K (which is a special case of our general set-up, see Section 5.3
of [3]). However, there may exist polarities ‘‘of symplectic type’’; for those, the orbit
structure is as simple as the classification of symplectic forms (which also is a special
case of our general set-up). Theorem 5.7 shows that the ‘‘exchange polarity’’ from
Proposition 3.6 is of the latter type.

6 Bergman operator and quadratic map

6.1. In this section we fix a base point ðo; o 0Þ AM and let V :¼ Vo 0 , V 0 :¼ V 0
o . Fol-

lowing a standard terminology in Jordan theory, the set of remote elements in V � V 0,

M V ðV � V 0Þ ¼ fðx; aÞ AM j ðx; o 0Þ AM; ðo; aÞ AMg ð6:1Þ
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is called the set of quasi-invertible pairs. From the definition it is clear that ðx; aÞ
is quasi-invertible in ðX ;X 0; o; o 0Þ i¤ so is ða; xÞ in ðX 0;X ; o 0; oÞ. If ðx; aÞ is quasi-
invertible, then we can write ðx; aÞ ¼ ðg; g 0Þ:ðo; o 0Þ ¼ ðe; e 0Þ:ðo:o 0Þ according to Equa-

tions (5.5) and (5.6). The element ðg; g 0Þ
1 � ðe; e 0Þ A StrðV ;V 0Þ defines the Bergman
operator: for ðx; aÞ quasi-invertible we define

Bðx; aÞ
1 :¼ t
~tt
aðxÞ~tt
atx~tt~tt
xðaÞ;

Bða; xÞ
1 :¼ t
~tt
xðaÞ~tt
xta~tt~tt
aðxÞ:
ð6:2Þ

Then ðBðx; aÞ;Bða; xÞ
1Þ is an automorphism of ðX ;X 0Þ fixing ðo; o 0Þ and hence be-
longs to StrðV ;V 0Þ.

6.2. From the definition it is easily deduced that the Bergman operator depends
functorially on the geometry with base point: if ðh; h 0Þ is a base point preserving ho-
momorphism, then

Bðhx; h 0aÞ � h ¼ h � Bðx; aÞ; ð6:3Þ

and similarly for base point preserving adjoint pairs.

6.3 The quadratic maps. If ðx; aÞ or ð
x; aÞ belongs to M, then the following ex-
pressions are defined:

QðxÞa :¼ 
Mð1=2Þ
x;
x ðaÞ ¼ 
m1=2ðx; a;
xÞ;

QðaÞx :¼ 
Mð1=2Þ
a;
a ðxÞ ¼ 
m 0

1=2ða; x;
aÞ:
ð6:4Þ

The first expression depends linearly on a in the K-module V 0 (wherever the ex-

pression is defined); in fact, (PG2) and (1.6) together imply that ðM ð1=2Þ
x;
x Þ t ¼M ð1=2Þ

x;
x ,
whence QðxÞ t ¼ QðxÞ, which means that ðg; hÞ ¼ ðQðxÞ;QðxÞÞ is an adjoint pair, and
thusQðxÞ : V 0

QðxÞo 0 ! Vo 0 is a‰ne. SinceQðxÞo 0 ¼ 
m1=2ðx; o 0;
xÞ ¼ o, it follows that
QðxÞ : V 0

o ! Vo 0 is linear with respect to the zero vectors o and o 0. Next we show that
QðxÞa is homogeneous quadratic in x: from the fact that ðrx;a; ra;xÞ for r A K is an
adjoint pair it follows that if ðrx; aÞ is quasi-invertible, then so is ðx; raÞ. Then we
have by (PG1) and by linearity in a:

QðrxÞa ¼ 
m1=2ðrx; a;
rxÞ ¼ 
rm1=2ðx; ra;
xÞ

¼ 
r2m1=2ðx; a;
xÞ ¼ r2QðxÞa:

It will be shown in 8.6 that Q actually extends to a quadratic polynomial on V.

6.4 The symmetry principle. The expressions ~ttaðxÞ and ~ttxðaÞ cannot be directly
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compared since they belong to di¤erent spaces. However, we have for all a A V 0 and
x A V the following equality, called the symmetry principle:

txQðxÞ~ttxðaÞ ¼ ~ttaðxÞ: ð6:5Þ

In fact, using (PG1) and Equation (1.6) we have

~ttaðxÞ ¼ ~tt
1
aðxÞ ¼ ð2
1o;o 02o;
aÞ

1ðxÞ ¼ 2
1o;
a2o;o 0 ðxÞ

¼ m1=2ðo;
a; 2o;o 0 ðxÞÞ ¼ m1=2ðo;
a; txðxÞÞ

¼ txm1=2ð
x; ~tt
xð
aÞ; xÞ ¼ txð
QðxÞ~tt
xð
aÞÞ

¼ txQðxÞ~ttxðaÞ:

(We have used here that ~tt
xð
aÞ ¼ 
~ttxðaÞ which follows from the fact that
ð
idV ;
idV 0 Þ ¼ ðð
1Þo;o 0 ; ð
1Þo 0;oÞ belongs to the structure group.)

7 The tangent bundle

7.1. The tangent bundle of a generalized projective geometry ðX ;X 0Þ defined over K
is the scalar extension

ðF;F 0Þ : ðX ;X 0Þ ! ðTX ;TX 0Þ :¼ ðXKðeÞ;X
0
KðeÞÞ ð7:1Þ

by the ring KðeÞ of dual numbers over K : KðeÞ ¼ K½x�=ðx2Þ; a model of KðeÞ is
R ¼ KlK with elements denoted by rþ es, r; s A K and multiplied by the rule
ðrþ esÞðr 0 þ es 0Þ ¼ rr 0 þ eðr 0sþ s 0rÞ. The scalar extension f : K ! R is thus always
injective, and so is, for any K-module V, the natural map

V ! VKðeÞ :¼ VnK RGVl eV

given by restriction of F. If a base point ðo; o 0Þ is fixed, we will identify V with FðVÞ
and V 0 with F 0ðV 0Þ. Next we are going to show that ðTX ;TX 0Þ is a fibered space with
fibers carrying a natural K-module structure:

Proposition 7.2. Assume ðY ;Y 0Þ is a generalized projective geometry over KðeÞ, and
let ðo; aÞ AM. Then the set

Fo :¼ eo;aðVaÞHY

as well as its a‰ne structure over K induced from Va are independent of the point
a A V 0

o .

Proof. Let o 0 A V 0
o be another a‰nization. We have to prove that

eo;aðVaÞ ¼ eo;o 0 ðVo 0 Þ (7.2)
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as sets and as K-modules. Write a ¼ t
ðo 0;oÞ
a ðo 0Þ ¼: taðo 0Þ and note that, since ð~tta; taÞ is

an automorphism, ~tta : Vo 0 ! Va is a K-module isomorphism and eo;a ¼ e~ttaðoÞ; taðo 0Þ ¼
~tta � eo;o 0 � ~tt
a. It follows that

~tta : eo;o 0Vo 0 ! eo;aVa

is a K-module isomorphism. Thus (7.2) is proved if we can show that

~ttaðeo;o 0zÞ ¼ eo;o 0z ð7:3Þ

for all z A Vo 0 . In order to prove (7.3), we apply first the symmetry principle 6.4 with
x ¼ eo;o 0z and then use that QðxÞ is quadratic in x along with e2o;o 0 ¼ 0o;o 0 :

~ttaðeo;o 0zÞ ¼ ~ttaðxÞ ¼ txQðxÞ~ttxðaÞ

¼ txe
2
o;o 0QðzÞtxðaÞ

¼ txðoÞ ¼ x ¼ eo;o 0z

which had to be shown. r

7.3. Equation (7.3) shows also that all pairs ðeo;o 0v; aÞ with v A V , a A V 0, are quasi-
invertible, and therefore also all pairs ðv; eo 0;oaÞ are quasi-invertible.

Corollary 7.4. Assume ðY ;Y 0Þ and ðZ;Z 0Þ are generalized projective geometries over
KðeÞ.

(i) If ðg; g 0Þ : ðY ;Y 0Þ ! ðZ;Z 0Þ is a homomorphism, then, for all o A Y , gðFoÞHFgðoÞ,
and g : Fo ! FgðoÞ is K-a‰ne.

(ii) If g : Y ! Z, gt : Z 0 ! Y 0 is an adjoint pair of morphisms, then gðFoÞHFgðoÞ
for all o such that ðo; gtðbÞÞ AM for some b in the domain of definition of gt, and
g : Fo ! FgðoÞ is K-a‰ne.

In particular, the relation

mrðFx;F 0
a;FyÞHFmrðx;a;yÞ ð7:4Þ

holds for all ðx; a; yÞ A D, and dually.

Proof. The first claim is proved by the following calculation:

gðFoÞ ¼ gðeo;aVaÞH egðoÞ;g 0ðaÞVg 0ðaÞ ¼ FgðoÞ;

and since g : Va ! Vg 0ðaÞ is a‰ne, so is is the map g : Fo ! FgðoÞ obtained by restric-
tion to the a‰ne subspace eo;o 0VaHVa. For adjoint pairs, the calculation is similar,
replacing a by gtðbÞ. Applying (ii) to the adjoint pairs given by right, left and middle
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multiplications, we get (7.4). (The assumption of (ii) is fulfilled since we assume
mrðx; a; yÞ to be defined.) r

7.5. Since Fx ¼ txðFoÞ, the sets Fo with o A Vo 0 define a partition of Vo 0 , and since
they do not depend on the a‰nization, the sets Fo with o A Y define a partition of Y,
and dually for Y 0. Denote by ðY ;Y 0Þ=@ the corresponding sets of equivalence classes;
then relation (7.4) implies that there is a well-defined structure of generalized projec-
tive geometry over K on ðY ;Y 0Þ=@, and the projection

ðp; p 0Þ : ðY ;Y 0Þ ! ðY ;Y 0Þ=@ ð7:5Þ

is a homomorphism. (This is a special case of the construction mentioned in Section
2.7 (5).)

7.6. We apply the preceding results to the tangent bundle ðTX ;TX 0Þ. The compo-
sition

ðp; p 0Þ � ðF;F 0Þ : ðX ;X 0Þ ! ðTX ;TX 0Þ=@; ðx; aÞ 7! ðFðxÞ;F 0ðaÞÞ=@ ð7:6Þ

is a homomorphism which, in every a‰nization, is naturally identified with the iden-
tity map; one may say that it is a sort of ‘‘covering’’. Using the minimality required
in the definition of a scalar extension (see 1.10), one can show that (7.6) actually is a
bijection; we omit the technicalities since in the sequel we will actually only need that
(7.6) is a bijection when restricted to a‰ne parts. For simplicity of notation we will
consider ðF;F 0Þ to be an inclusion of ðX ;X 0Þ in ðTX ;TX 0Þ and ðp; p 0Þ to be a ho-
momorphism onto ðX ;X 0Þ.
Using these conventions, we define the tangent space ToX of X at o to be the

K-module eo;o 0Vo 0 , that is,

ToX ¼ p
1ðoÞHTX ;

and dually, we define the tangent space of X 0 at o 0. Thus the tangent bundle is a fibred
space over the basis ðX ;X 0Þ:

TX ¼ 6
p AX

TpX ; TX 0 ¼ 6
a AX 0
TaX

0;

and we can write any element of TX as dp A TpX with a unique p A X , and dually. If
ðg; g 0Þ : ðX ;X 0Þ ! ðY ;Y 0Þ is a homomorphism, then we define its tangent map at o
by

Tog : ToX ! Tg:oY ; eo;o 0v 7! eg:o;g 0:o 0gv;

one easily verifies that this is well-defined and linear; the map ðTg;Tg 0Þ :
ðTX ;TX 0Þ ! ðTX ;TX 0Þ thus obtained coincides with the extension ðg; g 0ÞKðeÞ over
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KðeÞ of ðg; g 0Þ whose existence is required by 1.10. Similarly, for an adjoint pair
ðg; gtÞ we let

Tog : ToX ! TgoY ; eo;g to 0v 7! eg:o;o 0gv

provided there exists o 0 in the domain of gt with ðo; gtðo 0ÞÞ AM.

8 Infinitesimal automorphisms

8.1. An infinitesimal automorphism of ðTX ;TX 0Þ is an automorphism ðg; g 0Þ of
ðTX ;TX 0Þ preserving all tangent spaces, that is, we have p � g ¼ p, and dually. Since
any automorphism of ðTX ;TX 0Þ permutes the tangent spaces (Corollary 7.4), it is
actually enough to require that gð0pÞ A TpX , g 0ð0p 0 Þ A Tp 0X 0 for all p A X , p 0 A X 0

(where 0x denotes the zero vector in a tangent space at x). The composition of ðg; g 0Þ
with the zero section,

ðx; x 0Þ : ðX ;X 0Þ ! ðTX ;TX 0Þ; ðp 7! gð0pÞ; p 0 7! g 0ð0p 0 ÞÞ

is a homomorphism; we call it the associated vector field.

Lemma 8.2. If ðX ;X 0Þ is connected, then the following pairs ðg; g 0Þ, defined with re-
spect to a base point ðo; o 0Þ AM, are infinitesimal automorphisms of ðTX ;TX 0Þ:

(i) ðg; g 0Þ ¼ ðð1þ eÞo;o 0 ; ð1
 eÞo 0;oÞ,

(ii) ðg; g 0Þ ¼ ð~ttew; tewÞ with w A V 0,

(iii) ðg; g 0Þ ¼ ðtev; ~ttevÞ with v A V .

Proof. All three pairs are automorphisms of ðTX ;TX 0Þ: for the last two this follows
directly from the definition of ~tt, and for the first one, this follows from the fact that
ð1þ eÞð1
 eÞ ¼ 1
 e2 ¼ 1.
In order to prove that ðp; p 0Þ � ðg; g 0Þ ¼ ðp; p 0Þ, we verify this property first on the

trivialization of ðTX ;TX 0Þ given by ðV ;V 0Þ; then since ðTX ;TX 0Þ is algebraically
generated by ðTV ;TV 0Þ (Theorem 5.7), both sides, being homomorphisms, must co-
incide on all of ðTX ;TX 0Þ. For the following calculations, note that xþ ev A TxX ; in
fact

pðxþ evÞ ¼ pðð1
 eÞxþ eðxþ vÞÞ ¼ pðex;o 0 ðxþ vÞÞ ¼ x: ð8:1Þ

Thus for the pair from (i) we have

gðxÞ ¼ ð1þ eÞo;o 0 ðxÞ ¼ xþ ex A TxX ð8:2Þ

and dually. (The corresponding vector field is the Euler vector field corresponding to
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the trivialization ðV ;V 0Þ.) For the second pair we use the symmetry principle (6.5)
twice (which is possible since all pairs ðx; ewÞ are quasi-invertible, by 7.3).

gðxÞ ¼ ~ttewðxÞ ¼ xþQðxÞ~ttxðewÞ

¼ xþQðxÞew ¼ xþ eQðxÞw A TxX ð8:3Þ

and

g 0ðaÞ ¼ tewðaÞ ¼ aþ eo 0;ow A TaX
0: ð8:4Þ

For the third pair the same argument applies. r

Proposition 8.3. If ðg; g 0Þ is an infinitesimal automorphism of ðTX ;TX 0Þ, then g and g 0
act on all tangent spaces by translations, that is, with ðx; x 0Þ as in 8.1, we have

gðdpÞ ¼ dp þ xðpÞ; g 0ðdp 0 Þ ¼ dp 0 þ x 0ðp 0Þ

for all dp A TpX , dp 0 A Tp 0X 0. In particular, the infinitesimal automorphisms form an
abelian subgroup of AutðTX ;TX 0Þ.

Proof. Let o :¼ p and choose o 0 A V 0
o arbitrary; then since gðoÞ A ToX and ToXHVo 0

we can decompose, using Lemma 5.3,

ðg; g 0Þ ¼ ðtg:o; ~ttg:oÞ � ðh; h 0Þ � ð~ttw; twÞ ð8:5Þ

with w ¼ ðg 0Þ
1o 0 A To 0X 0. By Lemma 8.2, the first and the last and hence also the
middle factor are then infinitesimal automorphisms. Since the first factor clearly acts
by a translation on ToX and the last factor acts trivially on ToX (Equation (7.3)), it
only remains to be shown that h acts by a translation on ToX . Now, writing h¼

�
a b
c d

�
,

e¼
�
0 0
1 0

�
with respect to the decomposition TV ¼ Vl eV , the condition h � e¼ e � h

yields

h ¼ a 0

c a

� �
: ð8:6Þ

The condition p � h ¼ p implies x ¼ pðhðxÞÞ ¼ aðxÞ and thus a ¼ idV , and h acts by a
translation on ToX as had to be shown. r

8.4. We denote by InfAutðTX ;TX 0ÞHAutðX ;X 0Þ the subgroup of infinitesimal au-
tomorphisms; by the preceding proposition, its group law is simply given by addition
in tangent spaces and will therefore be written additively. We let further, with respect
to a base point ðo; o 0Þ,

InfStrðTV ;TV 0Þ :¼ StrðTV ;TV 0ÞV InfAutðTX ;TX 0Þ; ð8:7Þ
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this is the subgroup of elements of StrðTV ;TV 0Þ of the form (8.6) with a ¼ id. Then
the decomposition (8.5) reads, additively,

InfAutðTX ;TX 0ÞGVl InfStrðTV ;TV 0ÞlV 0: ð8:8Þ

The infinitesimal automorphisms form a normal subgroup of AutðTX ;TX 0Þ; in par-
ticular, for all ðh; h 0Þ A IntðTX ;TX 0Þ the conjugation

ðh; h 0Þ�ðg; g 0Þ :¼ ðhgh
1; h 0g 0ðh 0Þ
1Þ

is an automorphism of InfAutðTX ;TX 0Þ.

8.5. The following theorem is a main result of this chapter: we will prove that in-
finitesimal automorphisms are in an a‰nization represented by polynomial quadratic
maps. Recall that ðg; g 0Þ A InfAutðTX ;TX 0Þ is uniquely determined by its associated
vector field ðxðpÞ; x 0ðaÞÞ ¼ ðgð0pÞ; g 0ð0aÞÞ, and in ðTV ;TV 0Þ, identifying p with 0p and
a with 0a, we can write

gðpÞ ¼ pþ eGðpÞ; g 0ðqÞ ¼ qþ eG 0ðqÞ ð8:9Þ

with functions G : V ! V , G 0 : V 0 ! V 0.

Theorem 8.6. For all ðg; g 0Þ A InfAutðTX ;TX 0Þ, the maps G : V ! V , G 0 : V 0 ! V 0

are quadratic polynomial. More precisely, the map G is

(i) constant, if ðg; g 0Þ ¼ ðtev; ~ttevÞ belongs to the first term in the decomposition (8.8),

(ii) linear, if ðg; g 0Þ A InfStrðTV ;TV 0Þ,

(iii) homogeneous quadratic polynomial, if ðg; g 0Þ ¼ ð~ttew; tew) with w A V 0 is an element
of the third term in (8.8).

Proof. It is enough to show that G is quadratic polynomial; by duality the corre-
sponding statement for G 0 then follows. Part (i) is clear since tevðpÞ ¼ pþ ev and Part
(ii) follows from (8.6) since hðpÞ ¼ pþ ecðpÞ. Thus only Part (iii) remains to be proved.
Comparing with Equation (8.3), we see that (iii) is equivalent to saying that QðxÞew is
quadratic polynomial in x. We have already seen (see 6.3) that this expression is ho-
mogeneous quadratic in x. In order to prove that the term

Qðx; zÞ :¼ Qðxþ zÞ 
QðxÞ 
QðzÞ ð8:10Þ

is linear in x and in z, we use the Bergman operator of ðTX ;TX 0Þ associated to the
base point ðo; o 0Þ: we claim that ðBðx; eaÞ;Bðea; xÞ
1Þ is an infinitesimal automor-
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phism. In fact, replace a by ea in the definition of Bðx; aÞ (Section 6.1) and recall that
~tt
xðeaÞ ¼ ea (Equation (7.3)); thus

Bðx; eaÞ
1 ¼ t
~tt
eaðxÞ~tt
eatx~tt~tt
xðeaÞ

¼ t
xteQðxÞa~tt
eatx~ttea;

Bðea; xÞ
1 ¼ t
~tt
xðeaÞ~tt
xtea~tt~tt
eaðxÞ

¼ t
ea~tt
xtea~tteQðxÞa~ttx:

ð8:11Þ

These equations show that ðBðx; eaÞ;Bðea; xÞ
1Þ is a composition of two infinitesimal
automorphisms, where the first factor comes after a conjugation by ðtx; ~ttxÞ. More
explicitly, evaluating at a point z A V , we get for the first component (note that if G
is defined by (8.9), then ðt
xgtxÞðpÞ ¼ pþ eGðxþ pÞ)

Bðx; eaÞ
1z ¼ ðt
xteQðxÞatxÞðt
x~tt
eatxÞ~tteaðzÞ

¼ zþ eðQðxÞ þQðzÞ 
Qðzþ xÞÞðaÞ ¼ z
 eQðx; zÞa: ð8:12Þ

This expression is linear in z since Bðx; eaÞ is a linear operator, and since Qðx; zÞ is
symmetric in x and z, it is also linear in x. r

In the situation of the preceding proof, let

Tðx; ea; zÞ :¼ Tðx; eaÞz :¼ ðQðxþ zÞ 
QðxÞ 
QðzÞÞea

Tða; ex; bÞ :¼ Tða; exÞb :¼ ðQðaþ bÞ 
QðaÞ 
QðbÞÞex:
ð8:13Þ

Equation (8.12) and its dual can be written in matrix form

Bðx; eaÞ
1 ¼ id 0


Tðx; eaÞ id

� �
; Bða; exÞ
1 ¼

id 0


Tða; exÞ id

� �
:

8.7. In the preceding proof, we have seen that V ! HomðV 0;ToX Þ, x 7!
ða 7!QðxÞea¼ 
m1=2ðx; ea;
xÞÞ is a homogeneous quadratic polynomial. Although
this will not be used in the sequel, we remark here that one can deduce from (PG2)
that this polynomial satisfies the identity QðQðxÞyÞ ¼ QðxÞQðyÞQðxÞ known in Jor-
dan theory as the ‘‘fundamental formula’’.

8.8 Derivations. This section will not be needed in the sequel, but for the sake of
completeness, we explain the relation between infinitesimal automorphisms and deri-
vations: a derivation of ðX ;X 0Þ is a homomorphism ðx; x 0Þ : ðX ;X 0Þ ! ðTX ;TX 0Þ
such that ðp; p 0Þ � ðx; x 0Þ ¼ idðX ;X 0Þ. We have already seen that infinitesimal automor-
phisms are uniquely determined by the associated vector field which is a derivation.
Conversely, we have:
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Theorem 8.9. There is a canonical bijection between derivations and infinitesimal au-

tomorphisms, given by

xðxÞ :¼ gðxÞ; gðdxÞ :¼ dx þ xðxÞ;

and dually. The derivations form a K-module w.r.t. pointwise addition and multiplica-
tion by scalars.

Proof. Using the infinitesimal automorphisms from Lemma 8.2, one proves first that
for dp A TpX , dq A TqX , do 0 A To 0X 0,

mrðdp; do 0 ; dqÞ ¼ mrðdp; 0o 0 ; 0qÞ þ mrð0p; do 0 ; 0qÞ þ mrð0p; 0o 0 ; dqÞ

¼ TpðRo 0;qÞ � dp þ TqðLp;oÞ � dq þ To 0 ðMp;qÞ � do 0 : ð8:14Þ

Thus ðx; x 0Þ is a derivation i¤

xðmrðp; a; qÞÞ ¼ TpðRa;qÞ � xðpÞ þ TaðMp:qÞ � x 0ðaÞ þ TqðLp;aÞ � xðqÞ; ð8:15Þ

and dually. Since tangent maps are linear, this description shows that the deri-
vations of ðX ;X 0Þ form a K-module which we denote by DerðX ;X 0Þ. The zero
vector is the canonical imbedding ðX ;X 0Þ ! ðTX ;TX 0Þ. Moreover, a direct calcu-
lation now shows that if ðx; x 0Þ is a derivation, then the pair g :¼ xþ id : TX ! TX ,
dp 7! dp þ xðpÞ, g 0 :¼ x 0 þ id : TX 0 ! TX 0, da 7! da þ x 0ðaÞ is an automorphism of
ðTX ;TX 0Þ. r

The preceding results on infinitesimal automorphisms can now be rewritten in
terms of derivations; see [16] for similar formulas in the case of symmetric spaces.
In particular, an analog of [16, Theorem II.2.2] follows now from Theorem 8.6:
ðg; g 0Þ ¼ ð
idV ;
idV 0 Þ is an automorphism of ðX ;X 0Þ which induces an involution
of DerðX ;X 0Þ; if we denote by DerðX ;X 0Þ ¼ hl q the correspondingG1-eigenspace
decomposition, then the evaluation map at ðo; o 0Þ induces a bijection q ! VlV 0,
and h is its kernel.

9 Kantor–Koecher–Tits algebra and Jordan functor

9.1. As in Lie theory, we have to derive twice in order to linearize identities which
take account of non-commutativity—the reason is simply that the group of infini-
tesimal automorphisms of ðTX ;TX 0Þ is abelian, and thus we lose all information on
non-commutativity if we derive only once. Therefore we introduce the ‘‘double tan-
gent bundle’’ ðTTX ;TTX 0Þ :¼ ðTðTX Þ;TðTX 0ÞÞ. It is isomorphic to the scalar ex-
tension of ðX ;X 0Þ by

ðKðe1ÞÞðe2Þ ¼ Kl e1Kl e2Kl e3K ð9:1Þ
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with e3 ¼ e1e2 ¼ e2e1 and e21 ¼ e22 ¼ e23 ¼ 0. Fixing as usual a base point ðo; o 0Þ AM,
the corresponding linearization of ðTTX ;TTX 0Þ is denoted by

TTV ¼ Vl e1Vl e2Vl e3V ; TTV 0 ¼ V 0 l e1V
0 l e2V

0 l e3V
0: ð9:2Þ

The space ðTTX ;TTX 0Þ is fibered over ðX ;X 0Þ, and every fiber decomposes in the
way indicated by (9.2). Let p1, p2 be the projections with kernels e1ðVl e2VÞ, resp.
e2ðVl e1VÞ, and p3 ¼ p1 � p2 (kernel e1e2V ).

9.2. The group of infinitesimal automorphisms of ðTX ;TX 0Þ can be injected into
AutðTTX ;TTX 0Þ in three di¤erent ways such that fibers over ðX ;X 0Þ are preserved.
However, it is no longer true that these actions commute—in fact, their commutators
give rise to the Lie bracket, to be defined in the following theorem. Recall that, if the
integers are invertible in K, the space PolðV ;VÞ of polynomial mappings from V to
V is a Lie algebra over K with respect to the Lie bracket (see e.g. [15])

½X ;Y �ðxÞ ¼ DXðxÞ � YðxÞ 
DY ðxÞ � X ðxÞ; ð9:3Þ

where DF is the ordinary total di¤erential, defined in terms of dual numbers by the
condition

F ðxþ ehÞ ¼ F ðxÞ þ eDF ðxÞ � h: ð9:4Þ

If 2 and 3 are invertible in K (which we assume from now on), this formula still
serves to define a bracket defined on quadratic polynomials having values in poly-
nomials of degree at most 3.

Theorem 9.3. There is a unique structure of a Lie algebra over K on the space

InfAutðTX ;TX 0Þ such that, if elements are realized as quadratic polynomials accord-
ing to Theorem 8.6, then their bracket is given by Formula (9.3). The group AutðX ;X 0Þ
acts by automorphisms of this Lie algebra structure.

Proof. The following definition of the Lie bracket follows the one given by
Faulkner [6] in a di¤erent context: let ðg; g 0Þ; ðh; h 0Þ A InfAutðTX ;TX 0Þ. We realize
these elements on ðTTX ;TTX 0Þ in two di¤erent ways: we extend ðg; g 0Þ to an element
ðg1; g 01Þ A AutðTTX ;TTX 0Þ such that ðp1; p 0

1Þ � ðg1; g 01Þ ¼ ðp1; p 0
1Þ and ðh; h 0Þ to an

element ðh2; h 02Þ such that that ðp2; p 0
2Þ � ðh2; h 02Þ ¼ ðp2; p 0

2Þ. Consider now the element

ð f ; f 0Þ :¼ ðg1h2g
11 h
12 ; ðg1h2g
11 h
12 Þ0Þ ð9:5Þ

of AutðTTX ;TTX 0Þ. Since infinitesimal automorphisms with respect to e1 or with
respect to e2 form normal subgroups in AutðTTX ;TTX 0Þ, we see that ð f ; f 0Þ belongs
to both of them and hence satisfies ðp3; p 0

3Þ � ð f ; f 0Þ ¼ ðp3; p 0
3Þ. Therefore ð f ; f 0Þ

preserves fibers of the subbundle ðX ;X 0ÞKðe3Þ of ðTTX ;TTX
0Þ and can thus be iden-

tified with an infinitesimal automorphism of this subbundle which we denote by
ð½g; h�; ½g 0; h 0�Þ. It is clear that AutðX ;X 0Þ acts by automorphisms of this bracket.
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Next let us prove that with respect to an a‰nization the bracket is indeed described
by formula (9.3): we write g1ðxÞ ¼ xþ e1GðxÞ, h2ðxÞ ¼ xþ e2HðxÞ and apply (9.4) in
the following calculation to G with respect to e1 and to H with respect to e2:

g1h2g

1
1 h


1
2 ðxÞ ¼ e1GðxÞ þ h2g
11 ðx
 e2HðxÞÞ

¼ e1GðxÞ þ h2ðx
 e2HðxÞ 
 e1Gðx
 e2HðxÞÞÞ

¼ e1GðxÞ þ h2ðx
 e1GðxÞ 
 e2ðHðxÞ 
 e1DGðxÞ �HðxÞÞÞ

¼ e1GðxÞ þ ðx
 e1GðxÞÞ þ e2Hðx
 e1GðxÞÞ 
 e2ðx
 e1DGðxÞ �HðxÞÞ

¼ x
 e1e2ðDHðxÞ � GðxÞ 
DGðxÞ �HðxÞÞ;

and thus ½g; h� is described by the polynomial ½G;H � given by (9.3) (à priori, this
polynomial is of degree at most 3, but Theorem 8.6 tells us that it is actually of degree
at most 2). We conclude that InfAutðTX ;TX 0Þ is a Lie algebra: the defining identities
of a Lie algebra are satisfied over the a‰nization ðV ;V 0Þ; every point is contained in
some a‰nization; therefore they hold everywhere. r

9.4. The Lie algebra defined in the preceding theorem is called the Kantor–
Koecher–Tits algebra associated to ðX ;X 0Þ. This Lie algebra is 3-graded with grading
g ¼ g1l g0l g
1 given by Equation (8.8), corresponding to the homogeneous poly-
nomial components with respect to a fixed base point ðo; o 0Þ: since the bracket of two
homogeneous polynomials of degree r and s is of degree rþ s
 1 and g contains only
quadratic polynomials, we have ½g1; g1� ¼ 0 ¼ ½g
1; g
1� and ½g1; g
1�H g0. To any 3-
graded Lie algebra over K, one associates two K-trilinear maps

TG : gG1 � gH1 � gG1 ! gG1; ðx; a; zÞ 7! TGðx; aÞz :¼ ½½x; a�; z�: ð9:6Þ

It is easily verified that then the following identities are satisfied:

(LJP1) TGðx; a; zÞ ¼ TGðz; a; xÞ
(LJP2) ½TGðx; aÞ;TGðy; bÞ� ¼ TGðTGðx; a; yÞ; bÞ 
 TGðy;THða; x; bÞÞ
By definition, a linear Jordan pair over K is a pair ðVþ;V
Þ of K-modules to-

gether with K-trilinear maps TG such that the identities (LJP1) and (LJP2) hold (cf.
[17, Proposition 2.2. (b)]); equivalently, linear Jordan pairs can be defined as the po-
larized linear Jordan triple systems, see [17, 1.12], or as the twisted polarized Lie triple
systems, see [3, Ch. III.3] for the real case. Note that in the present case the maps TG
can be expressed by the quadratic maps Q: we write elements of g1, respectively of
g
1, as

tevðxÞ ¼ xþ ev ¼: xþ exv; ~tteaðxÞ ¼ xþ eQðxÞa ¼: xþ e~xxa;

then

½xv; ~xxa�ðxÞ ¼ 
eDðQð�ÞaÞðxÞv ¼ 
2Tðv; ea; xÞ;

½½xv; ~xxa�; xw� ¼ x
2Tðv; ea;wÞ:
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Thus the maps ðTþ;T
Þ are essentially given by ð
2Tðx; ea; yÞ;
2Tða; ex; bÞÞ. We
use the notation eTðx; a; yÞ :¼ Tðx; ea; yÞ (that is, we extend T to a KðeÞ-trilinear
map). Then we can summarize the preceding results:

Theorem 9.5. The pair of K-modules ðV ;V 0Þ with the trilinear maps ðx; a; yÞ 7!
Tðx; a; yÞ, ða; x; bÞ 7! Tða; x; bÞ is a linear Jordan pair over K.

9.6. The Jordan pair structure can be written in terms of the Bergman operator of
ðTTX ;TTX 0Þ: we rewrite (8.11) with e1 :¼ e and x replaced by e2x:

Bðe2x; e1aÞ
1 ¼ t
e2x~tt
e1ate2x~tte1a

Bðe1a; e2xÞ
1 ¼ t
e1a~tt
e2xte1a~tte2x:
ð9:7Þ

These equations show that ðBðe2x; e1aÞ;Bðe1a; e2xÞ
1Þ is a commutator in the group
AutðTTX ;TTX 0Þ corresponding to a Lie bracket in InfAutðTX ;TX 0Þ. From (8.12)
we get

Bðe2x; e1aÞ
1z ¼ z
 e1e2Qðx; zÞa ¼ z
 e1e2Tðx; a; zÞ;

Bðe1a; e2xÞ
1b ¼ b
 e2e1Qða; bÞx ¼ b
 e1e2Tða; x; bÞ:
ð9:8Þ

Theorem 9.7. The associated Jordan pair depends functorially on the generalized pro-

jective geometry ðX ;X 0Þ with base point ðo; o 0Þ.

Proof. The Jordan pair is induced by the Bergman operator, and by 6.2 the Bergman
operator depends functorially on the pointed space. r

Note that in general a homomorphism of geometries with base point induces only
a homomorphism of associated Jordan pairs, but not a homomorphism of the whole
Kantor–Koecher–Tits algebra—this corresponds to the fact that in general homo-
morphisms of Lie triple systems do not induce homomorphisms of their standard im-
beddings, cf. [5, Ch. V].

Theorem 9.8. The functor from Theorem 9.7 induces functors of the following kind:

(i) a functor associating to a generalized polar geometry over K with base point a
Jordan triple system over K,

(ii) a functor associating to a pointed symmetric space constructed from a polar ge-
ometry a Lie triple system over K.

Proof. (i) A polarity with pðoÞ ¼ o 0 defines an involution on the Jordan pair ðV ;V 0Þ
which is thus turned into a Jordan triple system.
(ii) Any Jordan triple system T defines by Formula (0.1) a Lie triple system RT

which by definition is the Lie triple system associated to the symmetric space M ð pÞ
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with base point o. (In the real finite-dimensional case this is the curvature tensor of
the symmetric space, see [5].) r

9.9 Isotopy. Recall (Section 5.9) that the automorphism group G of a gener-
alized polar geometry ðX ;X 0; pÞ does in general not act transitively on the set M ð pÞ

of non-isotropic points. Therefore, the Jordan triple systems associated to di¤erent
base points o1; o2 AM ðpÞ may be non-isomorphic. However, since ðo1; pðo1ÞÞ and
ðo2; pðo2ÞÞ are conjugate in M (Theorem 5.7), the underlying Jordan pairs of both
Jordan triple systems will be isomorphic, and the two Jordan triple systems will be
isotopic in the Jordan theoretic sense (cf. [17]; this corresponds to the conformal
equivalence from [5, Ch. XI.5]). If they are isomorphic, then Theorem 10.1 (see be-
low) implies, essentially, that there exists g A G with g:o1 ¼ o2. Thus the set of iso-
morphism classes of Jordan triple systems in a given isotopism class corresponds to
the set of G-orbits in M ðpÞ. (The classification of non-degenerate quadratic forms
over K is a special case of this, cf. 5.9.)

10 Existence theorem

Theorem 10.1. For every Jordan pair ðVþ;V
Þ over a ring K with 2 A K� there exists
a generalized projective geometry ðX ;X 0Þ with base point ðo; o 0Þ whose associated Jor-
dan pair is ðVþ;V
Þ and such that every Jordan pair homomorphism extends to a ho-
momorphism of the associated generalized projective geometries.

Proof. Given a Jordan pair ðVþ;V
Þ with trilinear maps TG and quadratic maps QG

over a ring K, let its Kantor–Koecher–Tits algebra

g :¼ Vþ l hlV


be defined as in [21, Section 1.1], with h generated by the brackets

½v;w� ¼ ð
Tþðv;wÞ;T
ðw; vÞÞ; v A Vþ;w A V
;

and by the Euler operator z :¼ ðidV þ ;
idV
Þ. We represent elements of EndKðgÞ by
3� 3-matrices in the obvious way. The following elements (for v A Vþ, w A V
) are
automorphisms of g (see [21, Lemma 1.2]):

expþðvÞ :¼ eadðvÞ ¼
1 adðvÞ QðvÞ

1 adðvÞ
1

0
@

1
A;

exp
ðwÞ :¼ eadðwÞ ¼
1

adðwÞ 1

QðwÞ adðwÞ 1

0
@

1
A;
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and expG : VG ! AutðgÞ are injective group homomorphisms onto groups called
Uþ and U
. An automorphism h ¼ ðhþ; h
Þ of ðVþ;V
Þ is identified with the
element

~hh :¼
hþ

h0

h


0
@

1
A

of AutðgÞ, with h0 given by conjugation with h. In particular, we have a homo-
morphism

K� ! AutðgÞ; r 7! r~iid ¼
r id

id

r
1 id

0
@

1
A:

Let GHAutðgÞ be the group generated by Uþ, U
 and the elements r~iid, r A K� (this
is a slightly extended version of the projective elementary group of ðVþ;V
Þ defined
in [21]). Set

H :¼ GVAutðVþ;V
Þ

Because of h expGðxÞh
1 ¼ expðhGðxÞÞ, H normalizes Uþ and U
. Define ‘parabolic
subgroups’ and the ‘big cell’ in G by

PG ¼ HUG ¼ UGH; W ¼ U
HUþ ¼ P
Pþ:

Now we are ready to define the generalized projective geometry ðX ;X 0Þ: let

X :¼ Xþ :¼ G=P
; X 0 :¼ X
 :¼ G=Pþ;

denote by g:x :¼ gþðxÞ, g 0:x :¼ g
ðxÞ the action of G on X, respectively on X 0; let
ðo; o 0Þ :¼ ðoþ; o
Þ be the base point in Xþ � X
 and define

M :¼ G:ðoþ; o
ÞGG=ðPþ VP
Þ ¼ G=H:

(Since ðg; g 0Þ fixes the Euler operator i¤ g and g 0 are linear, a geometric model of M
is the orbit of the Euler operator in g.) As usual we let Va ¼ fx A X j ðx; aÞ AMg,
V 0
x ¼ fa A X 0 j ðx; aÞ AMg. Then the sets Vo 0 and V

þ are naturally identified since

Vo
 ¼ fg:oþ j g A G; g:o
 ¼ o
g ¼ Pþ:oþ ¼ Uþ:oþ GVþ;

and dually. Therefore, by transport of structure, the spaces Vo 0 and V
0
o carry nat-

ural K-module structures. Since, by its definition, H acts linearly on Vþ � V
, these
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K-module structures are invariant under the stabilizer group H of the origin in M ¼
G=H, and thus we can transport them in a well-defined way to any point ðx; aÞ AM.
Summing up, we have defined the multiplication map mr : X � X 0 � XID! X and
its dual, with D given by Equation (1.4). Moreover, by construction G acts as a group
of automorphisms of ðmr; m 0

rÞ; in particular, all ðrx;a; r
1a;xÞ with r A K� are of the form
ðg; g 0Þ with g A G and thus define automorphisms. This means that the identity (PG1)
(in its extended version) holds for all r A K�.
Let us show that (PG1) holds in fact for all scalars r A K. We will need the no-

tion of the quasi-inverse in a Jordan pair: in [21, Theorem 1.4] it is shown that, for
ðx; yÞ A Vþ � V
, the condition ðx; yÞ AM is equivalent to the quasi-invertibility of
ðx; yÞ, and then

exp
ðyÞ expþðxÞ:oþ ¼ expþðxyÞ:oþ ¼ xy

is the usual quasi-inverse in a Jordan pair. This means that the operator ~tty defined by
Equation (2.9) is, in terms of the Jordan pair ðVþ;V
Þ, given by the formula

~ttyðxÞ ¼ xy:

Since ð~tty; tyÞ is an automorphism, we see that

~tty : Vo 0 ! Vy ð10:1Þ

is a K-module isomorphism. Before proving the general case of (PG1), note that
the identity (T) from 2.3 holds (see [17, Theorem 3.7]). Now let us show that, for
ðx; aÞ AM and r A K,

rx;a : Vra; xb ! Vb

is K-linear for all b A V 0
x . We may assume that ðx; aÞ ¼ ðo; o 0Þ. Now, it is easily veri-

fied that for all r A K the following relation holds:

ðrxÞy ¼ rðxryÞ ð10:2Þ

(see [20, Proposition 1.2]) which together with (10.1) implies that

ro;o 0 : Vrb ! Vb

is a K-module homomorphism. We have proved (PG1).
Next we verify (PG2). Let r A K and assume x; y A Vc, c A X 0. We choose notation

such that c ¼ o 0 and o ¼ mrðy; o 0; xÞ ¼My;xðo 0Þ, i.e.

ð1
 rÞyþ rx ¼ 0: ð10:3Þ
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Then we have to show that

Mx;y : V
0
o IU ! Vo 0 ; a 7!Mx;yðaÞ ¼ mrðx; a; yÞ; ð10:4Þ

where U ¼ fa A V 0
o j ðx; aÞ AMg ¼ V 0

o VV
0
x , has an extension to an a‰ne map

V 0
o ! Vo 0 . We need the following expression for mrðx; a; yÞ: for ða; xÞ AM V ðV �V 0Þ,

rx;a ¼ tx~tt~tt
xðaÞro;o 0 ðtx~tt~tt
xðaÞÞ

1: ð10:5Þ

In fact, this is proved in the same way as Corollary 5.8 (its proof uses only (PG1)
which has already been established.) We evaluate at y and mind Equation (10.2):

rx;aðyÞ ¼ xþ r~ttðr
1Þ~tt
xðaÞðy
 xÞ: ð10:6Þ

Next, using that ~ttuðvÞ ¼ Bðv; uÞ
1ðv
QðvÞuÞ,

rx;aðyÞ ¼ xþ rBðy
 x; ð1
 rÞ~tt
xðaÞÞ
1ðy
 x
Qðy
 xÞðr
 1Þ~tt
xðaÞÞ: ð10:7Þ

We transform the B-operator appearing in this expression using first the following

identity JP35 from [17]: Bðv; uÞ
1 ¼ Bð
v; ~ttvðuÞÞ, and then taking account of (10.3):

Bðy
 x; ð1
 rÞ~tt
xðaÞÞ
1 ¼ Bðy
 x; ~tty
xððr
 1Þ~tt
xðaÞÞÞ

¼ Bðy
 x; ðr
 1Þ~ttðr
1Þðy
xÞ
xðaÞÞ

¼ Bðy
 x; ðr
 1ÞaÞ

¼ Bððr
 1Þðy
 xÞ; aÞ ¼ Bð
x; aÞ:

Using this, (10.7) reads

rx;aðyÞ ¼ xþ rBð
x; aÞðy
 xÞ 
 rðr
 1ÞBð
x; aÞQðy
 xÞ~tt
xðaÞ: ð10:8Þ

The second term of the right hand side of (10.8) equals

ðid
 Tð
x; aÞ þQðxÞQðaÞÞðrðy
 xÞÞ ¼ yþ Tðx; aÞyþQðxÞQðaÞy;

where we use that rðy
 xÞ ¼ y. In order to calculate the third term we use that, by
the identity JP23 of [17],

Bð
x; aÞQðy
 xÞ ¼ Bðx
 y; ðr
 1ÞaÞQðy
 xÞ

¼ Qðy
 xÞBððr
 1Þa; x
 yÞ

¼ Qðy
 xÞBða;
xÞ;
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and we obtain for the third term in (10.8):

rðr
 1ÞBð
x; aÞQðy
 xÞ~tt
xðaÞ

¼ rðr
 1ÞQðy
 xÞBða;
xÞBða;
xÞ
1ða
QðaÞð
xÞÞ

¼ rðr
 1ÞQðy
 xÞaþ ðr
 1ÞQðy
 xÞQðaÞrx

¼ rðr
 1ÞQðy
 xÞaþ ðr
 1Þ2Qðy
 xÞQðaÞy

¼ rðr
 1ÞQðy
 xÞaþQðxÞQðaÞy:

Thus (10.8) finally gives

rx;aðyÞ ¼ xþ yþ Tðx; aÞy
 rðr
 1ÞQðy
 xÞa:

This is clearly a‰ne in a, as has to be shown. (In case r ¼ 1
2, this expression reduces

to 
QðxÞa; in this case the result can be proved more directly using the symmetry
principle [17, Proposition 3.3].)
Let us prove now that a Jordan pair homomorphism gG : VG !WG extends to

a homomorphism of the associated pointed generalized projective geometries. First
of all, ðgþ; g
Þ defines on the a‰ne parts belonging to the base points indeed a local
homomorphism of the generalized projective geometry: this follows by using the ex-
plicit formula (10.5) for the multiplication maps together with the relation

gþðxyÞ ¼ gþðxÞg

ðyÞ ð10:9Þ

(see [20, Equation I.1.(7)]). Since ðXþ;X
Þ is connected and thus algebraically gen-
erated by ðVþ;V
Þ, there is at most one extension to a global homomorphism. We
have to prove existence of such an extension. For simplicity, let us first assume that
ðVþ;V
Þ is stable in the sense of 5.4. This means that

V
 � Vþ ! Xþ; ða; yÞ 7! ~ttaty:o

is surjective, and dually. The fibers of this map define an equivalence relation on
V
 � Vþ, called projective equivalence, and Xþ ¼ X ðVÞ is called the projective space
of V (see [20]). From (10.9) it can be deduced that gþ � g
 passes to the quotient as
a well-defined map XðgÞ : X ðVÞ ! XðWÞ, see [20, Section 1.3], which is then a ho-
momorphism of generalized projective geometries. In the general non-stable case
essentially the same argument applies: since ðV ;V 0Þ is generating, there are surjective
maps

V 0 � V � � � � � V 0 � V ! Xn; ða; y; . . . ; b; zÞ 7! ~ttaty . . . ~ttbtzðoÞ;

(2n factors) such that 6
n
Xn ¼ X , and dually. The fibers of these maps define equiv-

alence relations which can be explicitly described in terms of the Jordan pair, see [7,
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Theorem 1]. The explicit formula is fairly complicated, but one can conclude as above
that �nðgþ � g
Þ passes to the quotient as a well-defined map XðgÞ : XðVÞ ! X ðWÞ
which then is a homomorphism of generalized projective geometries.
Finally, if V is a Jordan pair over K and f : K ! R is a scalar exension, then

VnK R is a Jordan pair over R, and the associated space ðXR;X 0
RÞ is a scalar ex-

tension of ðX ;X 0Þ in the sense of 1.10: in fact, it is clear on the level of Jordan pairs
that homomorphisms defined over K extend to homomorphisms defined over R, and
by the preceding arguments, this carries over to the level of spaces. By connectedness
the extension thus obtained is unique.
Summing up, ðX ;X 0Þ is a connected generalized projective geometry over K. Its

associated Jordan pair is nothing but the Jordan pair we started with; in fact, the
operators Bðx; yÞ and Tðx; yÞ we introduced in Chapters 6 and 8 are precisely the
operators associated to the given Jordan pair. r

10.2. If one wants to announce Theorem 10.1 in the form of an equivalence of cat-
egories, then one has to introduce a notion of ‘‘simply connectedness’’ for generalized
projective geometries. More precisely, if ðX ;X ; o; o 0Þ is a connected generalized pro-
jective geometry with base point, V ¼ ðVþ;V
Þ the associated Jordan pair and XðVÞ
the geometry associated to V, then the identity map of Vþ � V
 is a local homo-
morphism X ðVÞ ! ðX ;X 0Þ. By the preceding argument, it extends to a homomor-
phism X ðVÞ ! ðX ;X 0Þ which is surjective since ðX ;X 0Þ is connected. Thus it is a
covering in a sense extending the corresponding notion of [6, Chapter 3]; we do not
know whether it has to be always injective. (Rationality arguments show that this is
so in the finite-dimensional case over a field.)

10.3. An analogue of Theorem 10.1 in the category given by generalized projective
geometries and adjoint pairs of morphisms is true: an adjoint pair preserving base
points defines a so-called structural transformation of the associated Jordan pairs;
conversely, an analogue of (10.9) holds for structural transformations (see [21, Prop-
osition 1.2.(e)]), which implies that structural transformations are adjoint pairs of
morphisms of the associated geometry, defined on the a‰ne part ðV ;V 0Þ. They do in
general not extend to the whole of ðX ;X 0Þ, as shows already the example of ordinary
projective geometry over K where any non-zero linear map together with its trans-
posed defines an adjoint pair on the quotient.

10.4. Since Jordan triple systems are the same as Jordan pairs with involutions,
Theorem 10.1 implies that we can associate to every Jordan triple system a general-
ized polar geometry in a functorial way; taking the associated symmetric space, we
get a functor from Jordan triple systems over K into symmetric spaces over K.

11 Problems and further results

11.1 Algebraic equations of hyperplanes and quadrics. In ordinary projective geom-
etry over K, the hyperplanes Ha ¼ XnVa and the various quadrics are given by al-
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gebraic equations. The analogue of these equations in our setting is as follows: one
proves that the Bergman operator extends to a biquadratic map, given by the for-
mula

Bðx; aÞ ¼ id
 Tðx; aÞ þQðxÞQðaÞ ð11:1Þ

(cf. [17, I.2.11]). Then, with respect to a fixed base point ðo; o 0Þ, the complements of
hyperplanes and of quadrics are sets defined by a non-degeneracy condition on the
Bergman operator; more precisely, one can show (cf. [21, Theorem 1.4]):

(i) Va VVo 0 ¼ fx A V jBðx; aÞ A GlðVÞg,

(ii) M V ðV � V 0Þ ¼ fðx; aÞ A V � V 0 jBðx; aÞ A GlðVÞg,

(iii) for a given polarity, M ð pÞ VV ¼ fx A V jBðx; pðxÞÞ A GlðVÞg.

These conditions can be formulated more intrinsically in terms of sections of cer-
tain vector bundles over ðX ;X 0Þ; see [5] for the real finite-dimensional case. Note that
in the finite-dimensional case over a field the conditions from (i)–(iii) are polynomial
since they can be written in terms of detBðx; aÞ. More di‰cult is the task to find the
equations of hyperplanes and quadrics passing through the origin (‘‘parabolic real-
ization’’); it is closely related to determining the incidence structure of ðX ;X 0Þ, see
below. Here, in the finite-dimensional case, the rank of the quadratic operators QðaÞ
plays an important rôle.

11.2 ‘‘Jordan theoretic analog of the Campbell–Hausdor¤ formula’’. One can show
that the operators ~tta are given by the usual formula for the quasi-inverse in Jordan
theory (see [17, I.3]),

~ttaðxÞ ¼ xa ¼ Bðx; aÞ
1ðx
QðxÞaÞ; ð11:2Þ

more generally, all automorphisms g can be written as gðxÞ ¼ dgðxÞ
1ngðxÞ
ðx A V V g
1ðVÞÞ with a quadratic denominator dg and a quadratic numerator ngðxÞ
(see [5] for the finite-dimensional real case). Together with Corollary 5.8 this gives an
explicit formula for the maps mr in terms of the associated Jordan pair. In the finite-
dimensional case over a field the inverse in GlðVÞ is rational and thus also our for-
mulas are rational; thus also the associated symmetric spaces will be ‘‘algebraic over
K’’—see [5, Section X.3] for the real case. Since the explicit formula describes the
multiplication maps in a canonical chart, we may consider it as a Jordan analogue of
the Campbell–Hausdor¤ formula.

11.3 Jordan algebras. We have described the geometric objects associated to Jor-
dan pairs and Jordan triple systems, but not yet the geometric object corresponding
to (unital) Jordan algebras. It is known that unital Jordan algebras are the same
as Jordan pairs containing invertible elements (see [17, I.1.6]). This property can be
translated to our context by requiring the existence of inner polarities, but it is also
closely related to the existence of canonical null-systems which explains the somewhat
special rôle of the Jordan inverse in a Jordan algebra ([4]; see also Chapter 4 of [3]).
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11.4 Case of 2 BB K�. As mentioned in 2.6, if 2 B K�, the theory has to be based on
maps of four arguments. The main problem here is to find a good set of identities
satisfied by the maps defined by (2.10).

11.5 Case of non-commtative base fields or rings. We have used commutativity of the
base ring K in an essential way. Thus our theory applies to the quaternionic projec-
tive space X ¼ HPn, considered as a geometry over the center ZðHÞ ¼ R, but not
as a ‘‘geometry over K ¼ H’’. However, it should be interesting to have also a for-
malism of generalized projective geometries, over, say, K ¼ H, since it seems that the
quaternionic symmetric spaces are related to such geometries. From a Jordan theo-
retic point of view, the latter correspond to certain non-commutative Jordan struc-
tures, called balanced Freudenthal–Kantor pairs, cf. [2].

11.6 Incidence structure. There are two structures associated to a generalized pro-
jective geometry which are related to what one might call the associated incidence or
remoteness structure: on the one hand, we have the distribution of the ‘‘hyperplanes’’
Ha, a A X 0 (see 11.1); on the other hand, there exist subspaces which appear linearly
in every a‰nization (inner ideals, see 2.7 (4)). In ordinary projective geometry these
two structures are almost the same; in general, the situation is much more compli-
cated, and one would like to have a good Jordan theoretic description. In the finite-
dimensional and non-degenerate case over a field these structures seem to be related
to buildings in the sense of J. Tits; therefore a general theory of the correspondence
between algebra and incidence structure is an important topic for further investiga-
tions. In a final step one has to study the action of a polarity on these structures and
to describe the new structure on the associated symmetric spaces thus obtained—here
one will get a vast generalization of the concept of a generalized conformal structure
proposed by S. Gindikin, S. Kaneyuki and others (cf. [10]).
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