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Right nuclear decomposition of generalized André systems

Dean E. Draayer

(Communicated by W. Kantor)

Abstract. The structure of generalized André systems is described in terms of their right nuclei.
Necessary and sufficient numerical conditions for the existence of generalized André planes
with a homology group of specified index are determined, providing also a numerical charac-
terization of the sharply transitive subsets of I'L(1, p’). Finally, a multiple net replacement
procedure in Dickson nearfield planes is developed, yielding generalized André planes pos-
sessing an affine homology group of prescribed index.

1 Introduction

In a translation plane of order ¢, the order of a homology group is (¢ — 1)/d for
some d. We call d the index of the homology group. It is well-known that finite trans-
lation planes admitting an index 1 homology group are nearfield planes, of which all
but seven are also generalized André planes (the so-called Dickson nearfield planes).
The structure of Dickson nearfield spreads was determined by Ellers and Karzel [1].

In [3], Hiramine and Johnson undertook a study of generalized André planes that
admit an index 2 homology group. They were able to effect a classification (but see
below) and describe the corresponding spreads. They also showed that nearly all such
planes could be constructed from Dickson nearfield planes via net replacement.

This article was motivated by a desire to generalize the results in the index 1 and
2 cases to arbitrary finite generalized André planes. There is an enormous variety of
generalized André planes; the results presented here fall under the theme of classify-
ing these planes with regard to groups of homologies that they support.

In this article, we consider finite generalized André planes that admit an affine
homology group of arbitrary index d. We obtain a general decomposition and also
a determination of necessary and sufficient numerical conditions for the existence of
such a plane (Section 4). The proofs are almost entirely number-theoretic, relying pri-
marily on the factorization of numbers of the form ¢” — 1 (Theorem 2.4). We remark
that these results also give a characterization and structural decomposition of sharply
transitive subsets of TL(1, p’) via their identification with spread map sets of gener-
alized André systems.

The index 1 and 2 results mentioned above follow directly from the main results
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presented here. In the index 2 case, our results make it apparent that the classification
in [3] overlooked an infinite class of planes (Section 5).

Finally, we present a generalization of the “Type 2" replacements in [3] which
applies to a far greater range of indexes. This construction is a “nub preserving”
multiple net replacement on a (g, n)-Dickson nearfield plane which yields a general-
ized André plane admitting a homology group of index d for choices of d dividing 7.

2 Number-theoretic preliminaries

All variables are understood to be integer-valued. For integers m and n, we write m | n
to signify that m divides n. The greatest common divisor of m and n is denoted by
(m,n). For a prime u, we define the u-part |n], of n by: |n], = u® where u®|n but
ut! ¥y n. We extend this notation to sets of primes U: [n], =],y 7], and
|n] . =n/|n|y. For a single prime u, we also write |n], =n/|n],.

Our arguments depend heavily on divisibility results concerning numbers of the
form ¢” — 1. Among the more elementary of these results is the following. Parts (a)
and (b) are well-known, and part (c) follows from (b) and Euler’s theorem.

Lemma 2.1. Let ¢, m, and n be positive integers with g > 1. Then:

@) (g7 —1)|(g" = 1) if and only if m|n.

(b) (¢" = 1,¢" = 1) =g¢"" 1.

(c) Let u be a prime. Then u | (q" — 1) if and only if u| (¢"*" " @) — 1. In par-
ticular, u| (¢" — 1) if and only if u| (g"*=V —1).

For any epimorphism G — H between finite cyclic groups, the image of each gen-
erator of G is also a generator of H. It is also true that every generator of H is the
image of some generator of G, the proof of which hinges on the following fact.

Lemma 2.2. Let m, n, and a be integers such that m|n and (a,m) = 1. Then there
exists an integer k such that (a + km,n) = 1.

Proof. Let U be the set of all prime factors of n that divide a. Let

k= (1+[nly)-[nly-

Let w be any prime factor of n. If we U, then w|a (so wtm) and wfk, so
w ¥ (a+ km). Otherwise w ¢ U, in which case w .t a and w|k, so that wt (a + km).
Thus, no prime factor of n divides a + km. O

Lemma 2.3. Let ¢ > 1 and n > 0.

(@) If m|(q—1), then (¢" —1)/(q — 1) = nmodm. In particular, if n|(q— 1) then
nl(¢"=1)/(g=1).
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(b) Let u be a prime factor of ¢ — 1. Then |q" — 1|, = |q"v — 1],. In particular, if
whn then 1" — 1], = g — 1],

Proof. In (a), suppose ¢ = 1 modm. Then
q"—1

p— =14g4+¢*+ - +¢"'=14+14+1+---+1=nmodm.

For (b), let m = |n],. By (a), (g« —1)/(¢"}« — 1) = m # 0mod u. Thus,

as claimed. [

The following factorization theorem is of critical importance to the arguments
presented in later sections. A proof appears in [5, Theorem 6.3].

Theorem 2.4. Let g > 1 and n > 0, and let u be any prime factor of ¢ — 1. Then:
(a) LnJqui lJu < an - lju
(b) If u # 2, or if u =2 but either ¢ # —1 mod 4 or n is odd, then
an - lJu = LnJqui lJu
(c) If ¢ = —1mod4 and n is even, then
lg" = 1], = |nl,lg + 1],.

Corollary 2.5. Let g, n, and i be positive integers with ¢ > 1 and such that every prime
factor of n divides q — 1.

(a) Ifn|i, thenn|(q'—1)/(g - 1).

(b) Conversely, suppose n|(q' —1)/(q—1). If ¢ # —1mod 4 or i is odd, then n|i. If
q = —1mod4 and i is even, then |n|,, |i and |n], < |i],|q+1],.

Corollary 2.6. Let g > 1 and n > 0, and let u # 2 be a prime factor of ¢" — 1. Then

lg" = 1], > |,

Proof. Put ¢ =¢"*V and 7 =n/(n,u— 1). By Lemma 2.1(c), we have u| (7 — 1).
Applying Lemma 2.3(b) and Theorem 2.4(b) and the fact that |7i], = |n],, we obtain

lg" = 1], = 1g" = 1], = g™~ 1],
=g =1, = [n),lg - 1],

from which the result follows. O
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3 Spread maps and generalized André systems

We assume the reader is familiar with the representation of translation planes via
(right) quasifields X (+, o) and spread map sets ¥ = GL(X) (e.g., see [5] or [4]). The
correspondence between these representations is as follows: For each ¢ € X*, define
,: X = Xbyx% =xoa. ThenZ(X*(o)) = {0, :a€ X*} = GL(X) is a spread map
set of X with 1 € £(X™*(0)). Conversely, spread map sets X of X with 1 € £ determine
quasifields X' (+, o).

Let X be a finite-dimensional vector space. Spread map sets of X coincide with
sharply transitive subsets £ = GL(X) acting on X*. More generally, a partial spread
map set of X coincides with a subset £ = GL(X) acting sharply on X *. (By acting
sharply, we mean that x? # x7 for all x € X* whenever 0,7 € £ with ¢ # 7.)

For a quasifield X (+,0), the right and middle nuclei are defined by N,(o) =
{aeX*:(xo0y)oa=xo(yoa)forall x,ye X*} and N,(c) ={ae X*:(xo0a)o
y=uxo(aoy)forall x,ye X*}. These nuclei correspond in the spread map set
Y =2%(X"(0)) to the right-absorbed and left-absorbed maps Z, ={peX :¥p=3} =
{o04:aeN,(0)} and X, ={peX:pX =X} ={0,:a€e Ny(o)}. In the translation
plane .o/(X(+,0)) = ./(X), these notions correspond to homology groups # o) =
{(x,y) = (x,y0a):aeN ()} ={1@p:pek}and #(,) ={(x,y) = (xoa,y):
aeN,()}={p®1:pe}.

Recall that a generalized André system is a (right) quasifield F(+,0) for which
there exists a skewfield structure F(+,-) on Fand a map A: F* — Aut F(+,-) such
that x o a = x*@ . 4 for all x,a € F*. Equivalently, a generalized André system is a
quasifield F(+, o) such that £(F*(c)) = I'L(1, F(+,)) for some underlying skewfield
F(+,-). We call 1 the companion automorphism map.

Definition 3.1. Let F(+,) = GF(¢") and let 4: F* — Autgg(,) F(+,-) be any map.
Define £(4) = TL,(1,¢") by £(A) = {x — x*9 .a:ae F*}. Let F(+,0) be F(+)
endowed with the operation o : F x F — F defined by: xo0 =0and xoa = x*9 .4
for all x e F and « € F*. Fix a primitive element w of F(+,-), and let h; € Z, (for
i € Zyi 1) be such that A(w’) = (x — x4").

The following generalization of [2, Lemma 2.1] (or see [5, Lemma 10.1]), which
occurs here with M = 1, is crucial for the arguments in Section 4.

Theorem 3.2. In Definition 3.1, suppose A is constant on the cosets of a subgroup
M < F*(-) of order (q" —1)/m (i.e., suppose m is a divisor of q" — 1 such that h; = h;ymod n
whenever i = jmod m). Then X(A) is sharply transitive on F* if and only if:

i # jmod(m,q" — ¢'") whenever i # jmodm. (3.1
Proof. Note that F* = {J),_, ®'M since M = »"*. Thus, £(1) = | J,., Zi where

Y, = Z(w'M). Since A is constant on the cosets of M, this represents £(4) as a union
of certain cosets X; of some subgroup Xy of I'L,(1, ¢"). Clearly each X, acts sharply
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on F*, so X(4) will be sharply transitive on F* if and only if £; UX; acts sharply on
F*foralli,jeZ,. Take X; # %, i.e., i # jmod m. Then:

%;UZ; acts sharply on F*
& Va,k, I () 1@ L goithm  (gyay /) gyt
& Va,k, I 09" - o £ " | gyt
& Va: a(q" — ") + (i —j) ¢ mZ
Si—jEmL+ (" —4¢")Z
& i # jmod(m, ¢" — ¢").
The result now follows. O

As a corollary, F(+,0) as in Definition 3.1 is a generalized André system if and
only if A(1) =1 and (3.1) holds. Every sharply transitive subset X = I'L,(1,¢") and
every generalized André system of order ¢” can be represented in the form indicated
in Definition 3.1.

Let us define the nub Z of a generalized André system F(+,0) by Z =
{aeN,NN,:a)=1}={aeF*: AMaox)=Ax)=A(xoa) forall xe F*}. Thus,
Z is the intersection of the kernels of the homomorphisms 4|y, ) and 4|y, ) (these
kernels coincide when F is finite). Note that A(Z) =1 and Z(o) = Z(-) < F*(-). The
nub is the largest subgroup Z of F*(-) such that 4 is constant on the cosets of Z.

Suppose F(+,0) in Definition 3.1 is in fact a generalized André system. Define
v=1Iem{g? —1:d|nand d < n}, with v =1 if n= 1. It can be shown that v is a
proper divisor of ¢” — 1 (except in the trivial case ¢" = 2). Taking M =1 (i.e., m =
¢" — 1) in Theorem 3.2, it is easy to show that i = jmod v implies i = jmod ¢" — 1.
Thus, / is constant on the cosets of Zy = w'Z < F*(-), so Zj is a subgroup of the nub
Z. This yields a lower bound (¢" — 1)/v for the order of Z and in particular shows
that the nub is never trivial (unless ¢” = 2). The corresponding plane <7 (F(+, o)) has
a collineation group {(x, y) — (xoa,yob):a,be Z} induced by Z as a subgroup
of both the right and middle nuclei.

4 Right nuclear decomposition of a generalized André system

In this section, we describe the structure of a generalized André system by decompos-
ing it in terms of a subgroup of the right nucleus (Theorem 4.1). We then determine
necessary and sufficient numerical conditions for a generalized André system to have
a right nuclear subgroup of a prescribed index (Theorem 4.2 and Theorem 4.3). In a
broad special case (Proposition 4.4 and Proposition 4.5), we determine suitable values
for the parameters appearing in the decomposition.

When discussing a generalized André system F(+,0), care must be taken to dis-
tinguish between the operation o and the multiplication - of the underlying field. The
notation a’ = a - a. ..a (i factors) will be used to indicate a power in F(+,-), whereas
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we write a* to denote a power in F*(o) with left-to-right association (i.e., @®® = 1 and
oi

a® = a°"Y o a for i > 0); the rule of association is critical since o is generally not
associative.

Theorem 4.1. Let F(+, 0) be a generalized André system of order p' (p prime and t > 1)
with underlying field F(+,-) = GF(p") and companion automorphism map A : F* —
Aut F(+,-). Let H(o) be any subgroup of the right nucleus, and put |H| = (p' —1)/d.
Let A= 2(H), n = |A|, Z(o) = ker(4|y ), let q be the order of the fixed field of A,
and let @ be a primitive element of F(+,-). Then:

(@) ¢"=p'andnd|(q" - 1).
(b) Z(o) = Z(-) = @™ is cyclic of order (¢" —1)/nd, and H(o)/Z is cyclic of
order n.

(c) Let w* € H such that A(w*) = (x — x9), and let s; = s(q" — 1)/(q — 1) for i = 0.
Then w* - Z generates H(0)/Z, (0° - Z)” = 0% - Z = o2 and

Ho)= |J) (-2 = | o' Z

0<i<n 0<i<n
Furthermore, (% - Z) = {x — x4}, so
VxeF*VaeH:xoa=x%-a whereaew  Z.
(d) F* admits a partition

F*(O) _ U a)r"’OH(O) _ U U wrkqurSerndZ

0<k<d 0<k<d 0<i<n

where R = {ry : 0 < k < d} is any set with ro = 0mod nd and such that {r.q' +
5i:0<k <dand 0 <i<n} constitutes a transversal of Zq. Furthermore, there
exists a set T ={t;, : 0 < k <d}, with t, = 0mod 1, such that i(c"d 5Ly —
{x — xP*4"}. Thus,

kgt i ds:
Vx,ae F*: xoa=x""" -a whereae ™™ .Z.

Proof. First, dimgg(,) F = |A| = n, so ¢" = p'. The map |y : H(o) — A is a group
homomorphism with kernel Z(o) and image A, so H(o)/Z = A < AutF(+,-) is
cyclic of order n and |Z| = |H|/|A| = (¢" — 1)/nd. Clearly xoa = x-a forall xe F
and a € Z, so Z(o) = Z(-) < F*(-). Thus, Z is cyclic and Z = »"Z. This proves (a)
and (b).

Now H(o)/Z is generated by w* - Z for any w* € H(o) such that A(0*) = (x — x1).
Thus, H(0) = (Jy<,, (@ - 2)” and A((0* - 2)*') = {x — x7'}.

Claim: ¢° = a9 ~1/4=1) for all a € w*- Z and i > 0. This is clear for i = 0. Pro-
ceeding by induction and using the fact that A(¢) = (x — x7), we obtain

ao(i+l) _ aoi og= (a(qz,l)/(q—l))q a4 = a1+q+..,+qz _ a(q:+171)/<q71)'
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It follows that (o - Z)*" = (wst"Z)°" = pstmdZ — gysi . 7 50 (c) holds. For (d), we
have F* = (] _,..ao H(o) since 1 € H(o). Further, since H(o) < N,(o), beao H(o)
if and only if bo H(o) =ao H(o). Thus, {ao H(o) : a € F*} constitutes a partition
of F*. Let {w" : 0 < k < d} be a transversal of this partition. Then

F*(O) _ U ' o H(O) — U U o o (CO‘Y . Z)oi

O<k<d 0<k<d 0<i<n
- . i
= U U @ow)z=1) | o o Z
0<k<d 0<i<n 0<k<d 0<i<n
The rest of (d) follows directly. O

We now investigate necessary numerical constraints on the quantities involved in
the structural decomposition given by Theorem 4.1. A pair of positive integers (g, )
is called a Dickson pair if: (i) g is a power of a prime; (ii) every prime factor of n also
divides ¢ — 1; and (iii) if ¢ = —1 mod 4, then 4 } n.

Theorem 4.2. In the context of Theorem 4.1:

(@) Let u be a prime factor of ¢ — 1. If u # 2, or if u = 2 but ¢ # —1 mod 4 or n is odd,
then |d, < (5,4 — 1)),

(b) Let u be a prime factor of n. Then u|(q — 1). Furthermore:
(1) Ifu+#2, orifu=2but q# —1mod4, then |s|,=|d|, < |q—1],

(i) Ifu=2and q = —1mod4, then s is odd and 2|d|, < |q + 1],. Furthermore,
if4|n, then2|d|, = g+ 1],.

(c) Either (q,n) is a Dickson pair or else ¢ = —1 mod 4 and n = 0 mod 4, in which case
sisoddand2|d], = g+ 1],.

(d) Let § = (s,d). There exists a primitive element & of F(+,-) such that A(@°) =
(x +— x7). (Thus, it is possible to select the primitive element w in Theorem 4.1 so
that s|d.)

(e) Fori>0:nd|s; e n|i< (nd,q" —1)]s.
(f) ForO0<i<nand0<k,l<d,

(nd,p"q" = p") ¥ ((rk = 11) + 1(q" = 1) + 5) (4.1)

unless k =1 and i = 0. In particular, {rrq"+s;:0 <k <d and 0 <i < n} con-
stitutes a transversal of Z,,.

Proof. Since @* - Z has o-order n, we have (w* - Z)” = Z if and only if n| i, i.e.,

nd|s; if and only if n]|i. (4.2)



88 Dean E. Draayer

Now /4 is constant on the cosets of Z. Further, by (4.2), 5; # 0 mod nd when n t i, and
M(w*-Z)") = (x+— x7), so by (3.1), s; £ 0mod(nd,q" — 1) unless n|i. That is,

(nd7qi —1)|s; if and only if n|i. (4.3)

Thus, (e) holds. From (4.2) and Theorem 4.1(a), we also get

nd|(q”—1,sn):(s,q—l)-qq_ll. (4.4)

Claim 1: If ¢ = —1 mod4 and n is even, then 2|d|, < (s,2) - |¢ + 1],. This follows
from (4.4) and Theorem 2.4(c): |nd|, < [(s,q—1)],-|g" —1],/lg—1], = (5,2)-
) lq + 1)/2.

Claim 2: Let u be a prime factor of ¢ — 1. If u # 2, orif u = 2 but ¢ # —1 mod 4 or
nis odd, then |d|, < |(s,9 — 1)],. To see this, (4.4) and Theorem 2.4(b) yield |nd |, <
|_(S7q - I)Ju i an - IJu/I_q - IJu = I_(S?q - I)Jul_nju’ and the claim follows.

Claim 3: For each prime factor u of n, [ (nd, ¢"/* — 1)}, > [$,/u],- For this, by (4.3)
there exists some prime v such that | (nd,¢"* —1)], > |s, Jul,- Suppose v # u. Note
that v| (¢"*—1), so Lemma 2.3(b) yields [¢"—1], = [(¢"*)"—1], = [(¢"*)"“}»—1], =
|g"/*—1],, and thus |s, |, = |Sn/ul,- But then we obtain | (nd, q""—1)], > |sn],, con-
trary to (4.3). Thus, v = u here, and the claim holds.

Claim 4: For each prime factor u of n, we have u | (¢ — 1) and |s|, < |¢ — 1],. This
follows from Claim 3: |¢"/* — 1], > [s],l¢"* —1],/lg —1],,s0 g — 1], > [s],-

Claim 5: If ¢ = —1mod4 and n is even, then s is odd and 2|d|, < |¢+ 1],;
further, if 4|n, then 2|d|, = |¢+ 1],. To see this, observe that Claim 4 yields
ls], < |g—1], =2, so sis odd. Claim 1 then gives 2|d|, < |¢+ 1],. Now suppose
that 4|n. Then n/2 is even, so from Claim 3 and Theorem 2.4(c) we obtain
(nd )y > [s]olq" = 10,/1g — 1, = [n/2)5lg + 11,/2, so 4ld], > [q+1],. Thus,
2ld], = g+ 1], as well.

Claim 6: Let u be any prime factor of n. If u # 2, or if u =2 but ¢ # —1 mod4,
then |d], = |s],. For this, first note that u|(¢ — 1) by Claim 4. So by Claim 2,
we have |d|, < |s],. From Claim 3 and Theorem 2.4(b), we obtain |nd|, >
(s, Lq"" 1], /lg = 1], = Is],n/ul,. so [d], > |s], as well.

Note that Claim 2 proves (a), Claims 4-6 prove (b), and (c) follows immediately
from (b). To prove (d), put s = §s’ and d = 5d’. For each prime factor u of n, we have
ls], < |d], by Claims 5 and 6, so u ts’. Therefore, (s',nd’) =1. By Lemma 2.2,
there exists some k such that (s’ + knd’,q" — 1) = 1. Then & = * %" is a primitive
element such that @° = 0% € w* - Z, so A(@°) = AM(w*) = (x — x9).

It remains to prove (f). Now 4 is constant on the cosets of Z, so Theorem 3.2 yields
the sequence of implications (taking i > j without loss of generality):

g +si £ riq’ + s; mod nd
= req' + s # rig’ + symod(nd, pq' — pq’)

= (nd,p"q"™ —p") ¥ (reg"™ — r1 + si),
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which is equivalent to (4.1). The final statement in (f) (which is just a restatement of
Theorem 4.1(d)) follows by taking / = 0 in (4.1). O

We now consider the converse of Theorem 4.1 and Theorem 4.2. The following
theorem shows that the necessary conditions in Theorem 4.2 are also sufficient for the
construction of a generalized André system of the form appearing in Theorem 4.1.

Theorem 4.3. Let p be prime and t = 1. Let q, n, d, and s be positive integers such that
q" = p', every prime factor of n divides q — 1, and nd | (¢" — 1). Suppose further that
for every prime factor u of q — 1:

(i) Ifufn, then |s|, > |d],;

(ii) If u|n and either u # 2 or g # —1mod4, then |s], = |d], < |g—1],;

(iii) If n is even and g = —1 mod 4, then s is odd and 2|d |, < |q + 1],, with equality
if 4| n.

(@) Let S = {s;:i >0} where s;=s(q' —1)/(q—1). Define ®: S xS — S by s; ®
8 = Sitj = siq’ + ;. The operation @ induces (via the canonical epimorphism
:Z — Z,) an operation on SSZy that makes S((—B) into a cyclic group of

order n. Furthermore, nd | s; < n|i < (nd,q" — 1) | s;.

(b) Extend the definition of @ : Zx S — Zbya®s; =aq' +s;. Then {a ® S :ac L}
is a partition of Z,g.

(c) Let R={r; : 0 <k < d}, withr, =0 andry = 0mod nd, be any set such that R is
a transversal of the partition in (b) (equivalently, such that {r, ®s;: 0 <k <d
and 0 < i < n} constitutes a transversal of Z,q). Suppose T = {t; : 0 < k < d},
with t;; = 0 and ty = 0mod ¢, is such that for all 0 <i<nand 0 <[l < k < d,

(nd,p"q" —p") ¥ ((rk = 11) + 1e(q" = 1) + 5,)- (4.5)

Let F = GF(q") with przmmve element ®, and define A:F* — AutF by
Moo ®stndZy — (o xP"4'\ " Then Definition 3.1 yields a generalized André
system F(+,0) having a right nuclear subgroup H(o) = U0<1<n @ L of order
(¢" — 1)/d. The system F(+,0) thus obtained is independent of the choice of R.

Proof. First, it follows readily from Lemma 2.1(a) that s; | s; whenever i | .

Claim: If i = jmodn, then s; = s;mod nd. For this, assume that i = jmodn with
i >j. Observe that s; —s; = sq’(¢"7 — 1)/(¢ — 1) = s;_;jq/ and that s, |s;,_;. Thus, it
suffices to show that nd | s,, or equivalently, that |nd |, < |s,], for every prime factor
u of nd. First assume that u 4 (¢ — 1). Then since nd | (¢" — 1), we have |nd], <
lg" — 1], < |s(¢" —1)/(g—1)], = |Su],- Assume then that u|(q — 1). Suppose first
that u # 2 or ¢ # —1 mod4 or n is odd. Then |s|, > |d], by hypothesis, and Theo-
rem 2.4(b) gives |s,|, = |s],l7],, sO |sn], = |nd],. Suppose finally that u =2, ¢ =
—1mod4, and 7 is even. Then by the hypothesis 2|d|, < |¢+ 1],, we obtain from
Theorem 2. 4( ) that |s,|, = |s],|nl,l¢ +1],/2 = |n],|d]|,. We've shown that
|nd], < |sx], in all cases, so the claim is justified.

The clalm ensures that the map Z, — S < Z,, defined by i+ §; is well-defined.
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This map is easily seen to be a group epimorphism Z,(+) — S(®). We claim that it
is in fact an isomorphism, i.e., that S((—B) has order n. To prove this, it suffices to
show that |nd|, f s,/ for every prime factor u of n. Note that u| (¢ — 1) by hypoth-
esis. If u #2 or ¢ # —1mod4, then |s|, = |d], by hypothesis, so Theorem 2.4(b)
gives [8,/.), = |s],[n/u], = |nd],/u, so that |nd], ) s,/ . Suppose then that u =2
and ¢ = —1 mod 4. Then s is odd by hypothesis. If n = 2 mod 4, then 1n/2 is odd, so by
Theorem 2.4(b), [s,/2], = Is],1¢"? = 1],/1g — 1], = |n/2], = 1; and if n = Omod 4,
then by Theorem 2.4(c) and the hypothesis that 2|d|, = [q+ 1], [$y2]s =
sl lg"? =115/ la—1]5 = [n/2]5la+1]5/2 < [n],|g+1],/2 = [nd],. In either case,
we obtain |nd |, ) s,/2. The claim has been verified.

It follows from the fact that S(@®) is cyclic of order n that nd|s; < n|i. We
now show that (nd,q' —1)|s; < n|i. First, if n|i, then nd|s;, so (nd,q' —1)]s;.
Suppose then that n t i, and let u be a prime such that ||, > |i],. It suffices to show
that |s;], < |nd], and |[s;], < |¢' —1],. The hypotheses ensure that u|(g— 1),
|s|, < |d],, and |s|, < |¢ — 1],. The latter yields |s;], = |s],[¢'—1],/lg—1], <
lg' —1],. To get |si], < |nd],, ifu # 2 or g # —1 mod4 or i is odd, Theorem 2.4(b)
yields |s;], = [s],li], < ld],|n],. Otherwise, we have u =2, ¢ = —1mod4, and i
even, so s is odd, 4|n, and 2|d|, = |¢ + 1],. By Theorem 2.4(c), |si], = |s],]i],"
lg+1],/2 < |n],|d],. In any case, we obtain [s;], < |nd],. This completes the
proof of (a).

Now, it is readily seen that (a@5) @S5 =a® (5;®s;) for all aeZ,; and
Si,8j € S. Tt follows immediately that if a e b @S then a® S = b @ S. This shows
that {a @® S : a € Z} constitutes a partition of Z,,, which proves (b).

To prove (c), first note that (b) ensures that 4 is well-defined. We use Theorem 3.2
to show that F(+,0) is a generalized André system. By (b), every integer can be
expressed in the form rp @ s; + ndj for some 0 <k <d, 0<i<n, and jeZ. Con-
dition (3.1) becomes: for all 0 < k,/ < d and 0 <i,j <n,

(nd,p"q" —p"g) ¥ (e ®s; —r1 ®s;) if k #1ori#j.

Since we may arrange it so that i > j, this is equivalent to: for all 0 < k,/ < d and
0<i<n,

(nd,p"q" —p") ¥ (rkq" —r1+s;) ifk#1lori#0. (4.6)

When / < k, this is merely the hypothesis (4.5) placed on 7, so it remains only to
prove that (4.6) holds for / > k.

First suppose / = k. Then (4.6) becomes (nd,q’' — 1) ¥ (rx(q¢" — 1) +s;) if i #0,
that is, (nd,q’ — 1) fs; if i # 0, which by (a) is indeed the case. Suppose then that
[ > k. Multiplying by ¢"~/, we obtain the following sequence of statements equivalent
to (4.6):

(nd,p™ — p"q" ) ¥ (req" — 1ig" "+ sig"") itk #lori#0.
(nd,p"q"" —p™) f (ng" " =) —r(q" = 1) — (s —8,)) ifk#lori#0
(nd,p"q"" = p") ¥ (ng" " —re) +sui) ifk#lori#0
The latter is essentially (4.5) with k& and / reversed, so it holds by hypothesis. O
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In Theorem 4.3, note for later reference that {r, @ s;: 0 <k <dand 0 <i < n}
constitutes a transversal of Z,; if and only if: for 0 </ <k <d and 0 <i < n, the
condition

nd | ((r =) +rilg' = 1) + ) (4.7)

implies that k =/and i = 0.

For the remainder of this section, we consider the case where every prime factor of
d divides ¢ — 1. By Theorem 4.2(a) and Theorem 4.3, this is equivalent to assuming
that d| (¢ — 1). By Theorem 4.2(d), it is then possible to arrange it so that

s—{d if ¢ # —1mod4 or nis odd 3)

|d], if g =—1mod4 and n is even.

In Proposition 4.4, we determine suitable choices for the ri’s when d| (¢ — 1).
(Here we do not assume that s satisfies (4.8).) Parts (a) and (b) cover all cases, but the
alternate choices in (c) and (d) are more convenient in certain circumstances (e.g., see
Theorem 5.2).

Proposition 4.4. In the context of Theorem 4.2 and Theorem 4.3, suppose d | (q —1).
Without loss of generality, one may choose ry. (for 0 < k < d) as follows:

(@) If ¢ £ —1mod4 or if n or d is odd, let ry, = k.

(b) If ¢ = —1mod4 and n and d are even, let ry = 2k.

(c) If (q,n) is a Dickson pair or d is odd, and if (n,s) = 1, let r;, = nk.

(d) If (q,n) is not a Dickson pair, d is even, and (n,s) = 1, let rj, = 2k|n|,,.

Proof. Our proof is phrased so that it holds whether one starts with the hypotheses of
Theorem 4.2 or of Theorem 4.3. It must be shown that the indicated choices for r
make {ryq' +s;:0<k<dand0<i<n} a transversal of Z,;. We do so by as-
suming that (4.7) holds and show that it follows that k =/ and i = 0. Note that
|d], | s in all cases since d | (¢ —1). In fact, we have d |s except in the case when
g = —1mod4 and n and d are even.

In (a), we have d | s. So (4.7) implies that d | (r, — r;) = (k —1). Thus, k =/, and it
then follows from (4.7) that (nd,q’ — 1) | s;, which requires i = 0.

In (b), s; is odd if 7 is odd, and for i even we have |s;|, = |i],|q + 1],/2 = |i|,|d J
In particular, (4.7) forces i to be even, so d|s;, and thus d |2(k — ). But (4.7) the
yields 2|d|, | (2(k — 1) + 2k(q' — 1) +s;). So |d|, | (k — I). Therefore, d | (k — 1), and

it follows as in the proof of (a) that i = 0.

In (c), (4.7) reduces to nd | (n(k —[) +s;). This implies that n|s;, and therefore
n|(q'—1)/(g —1) (since (n,s) = 1), yielding |n], |i (by Corollary 2.5(b)). Now, if
d|s, this yields nd | s; and d | (k — 1), s0 i=0and k = /. If d 5, then ¢ = —1 mod 4
and n = 2mod 4 (since (g, n) is a Dickson pair). But i must be even since 7 | s;. Thus,
n|i, yielding i =0 and d | (k — I).
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In (d), we have ¢ = —1mod4, 4|n, and 2|d|, = |¢+ 1],. Here (4.7) becomes
nd|(2n'(k — 1)+ 2n'k(q" — 1) +s;), where n’ = |n|,. This implies that i is even
and |d|, | (k—1) (since (n,s)=1). Now |[si|, = |i],|d], and |2n'k(¢"' —1)], =
2|kil,|q + 1], = 4|ki],|d],. So (4.7) gives 2|d |, |2n'(k — 1), and thus |d|, | (k —I).
Hence, d | (k — 1), so k = I; (4.7) then yields (nd,q" — 1) |s;, so i = 0. O

As for the #;’s when d | (¢ — 1), Proposition 4.5 indicates choices that suffice to con-
struct generalized André systems. (We do not claim that these choices are necessary.)

Proposition 4.5. Under the hypotheses of Theorem 4.3, suppose that d | (q — 1). Let s be
as in (4.8), and select v and t; (for 0 < k < d) as follows:

(@) If g # —1mod4 or if n or d is odd, let ry =k and choose t;. so that d|(p —1).

(b) If q=—1mod4 and n and d are even, let ry =2k and choose t; so that
2d | (p™ — 1). (Note that t; will then be even.)

These choices for r; and t; in Theorem 4.3 yield a generalized André system having a
right nuclear subgroup of order (¢" — 1)/d.

Proof. By Proposition 4.4 and the remarks preceeding it, we have appropriate choices
for s and the r¢’s. It remains to show that the choices for the #;’s satisty (4.5) in Theo-
rem 4.3(c). First, observe that d | (p (¢ — 1) + (p* — 1) — (p" — 1)) = (pq' — p"),
sod|(nd,p*q" —p"). Let 0 <i<nand 0 </ < k < d, and assume that

(nd, p"q" — p") | (re — 1) + re(q’ — 1) +57). (4.9)

In case (a), we have r, = k and s = d, so (4.9) yields d | (k — 1) + k(¢ — 1) + s,),
which implies d | (k — [), a contradiction. Thus, (4.5) is satisfied in this case.

Now consider case (b). Here we have ry =2k and s= |d]|,. From (4.9) we
obtain d | (2(k — I) + 2k(q" — 1) +s;). This requires that s; be even, and therefore i
is even as well. Then 2d|(q" — 1), so 2d|(nd, p'q’ — p"). By Theorem 2.4(c),
[sil, = [slalg" = 1)5/lg — 1), = lil,lg + 1],/2 > [g + 1], > 2|d],, so 2d | 5;. From
2d | (2(k — 1) +2k(q" — 1) +s;) we then obtain d|(k — /), a contradiction. So (4.5)
is satisfied here as well. O

5 Low-index cases

We now specialize the results in Section 4 to the index 1 and 2 cases. When d = 1, the
generalized André system in question is in fact a Dickson nearfield. In this case, we
immediately obtain the following theorem of Ellers and Karzel [1, §1] and its con-
verse from Theorem 4.1, Theorem 4.2, and Theorem 4.3. This result will be used in
Section 6.

Theorem 5.1. Let F(+,0) be a Dickson nearfield of order p' (p prime), and let
F(+,) = GF(p") be the underlying field with primitive element w. Put q" = p' where q
is the order of the kernel, and let Z = {a € F* : xoa = x-a ¥x € F} be the nub.
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Then (q,n) is a Dickson pair, Z = {w" : j € Z}, and there exists s such that (s,n) = 1
and

Furthermore, the nearfield multiplication o is described by

xo00=0

o (5.1)

x o @' =D/a=D+n — ya' | ys(q'=1)/(q=1)+ni

forallxe F,0<i<n,and0 <j < (¢" — 1)/n. Furthermore, @ can be chosen so that
s=1.

Conversely, for any Dickson pair (q,n) with ¢" = p' and any s such that (s,n) =1,
the operation o on F defined by (5.1) yields a Dickson nearfield F(+,0) of order p'.

The index d = 2 case was considered by Hiramine and Johnson in [3, (4.1), (4.3)],
where they classified the generalized André planes that possess an index 2 homology
group. However, their classification overlooked an infinite class of such planes,
namely, those corresponding to the case where (¢,n) is not a Dickson pair. These
occur in part (c) below.

Theorem 5.2. Let F(+,-) = GF(p'), where p is an odd prime. Let q" = p' such that
every prime factor of n divides ¢ — 1.

(@) If g% —1mod4 ornisodd, let s=2,r =1, and t; = 0.

(b) If g = —1mod4 and n =2mod4, let s=1, r; = n, and t; = 0 with t| even.

(¢) Ifg=3mod8 and n =0mod4, let s =1, r =2|n|,, and t; = 0 with t; even.
Let o be a primitive element of F(+, ). Then

F* — U U COkrlqi . ws(q‘?l)/(qfl) . wZnZ.

0<k<2 0<i<n
Define a multiplication o : F X F — F by
xo00=0
x o0 @@ =D/(a=0)+2 _ q" sg’=1)/(g=1)+2ni

X o @na 5@ =D/(a=D+2 _ \pg' | rig'+s(a’=1)/(g=1)+2ni

forallxe F,0<i<n,and 0 <j < (q¢"—1)/2n. Then F(+,0) is a generalized André
system of order p' having a right nuclear subgroup of order (p' —1)/2.
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Conversely, every generalized André system of order p' having a right nuclear sub-
group H (o) of order (p' — 1)/2 can ( for some choice of w) be represented in the above
form, where n is the order of the companion automorphism group of H (o).

Proof. Most of this follows directly from the results in Section 4. In particular, the
choices for s and r; are in accord with (4.8) and Proposition 4.4. The statements of
greatest interest concern the choices for 71; we justify that the indicated choices, and
only these choices, satisfy (4.5). For convenience, let o; = (2n, p'ig’ — 1) and B; =
11"+ s(q" —1)/(¢ — 1). Condition (4.5) then reads: o; ¥ 8; for all 0 < i < n.

In (a), (4.5) is satisfied for all choices of #; = 0 since «; is even and f; is odd for all
0<i<n.

Consider (b) and (c) together. Note that (4.5) automatically holds when i is odd
since then f; is also odd. Suppose first that #; is even. Then 4|o; but f; = 2mod 4
when i is even, so (4.5) holds for all i. Now suppose that #; is odd, and consider
i=n/2. We have [o,]|, =2, s0 |a2]y]f,/, Also, [n]y | (¢"*=1)/(g—1), so
[1)a [ Buja- But [ouy2]yr [, 80 042 ] B,5. Thus, (4.5) cannot be satisfied for i =n/2
when #; 1s odd. O

A few remarks are in order. First, there are no generalized André systems that
possess an index 2 right or middle nucleus when ¢ = —1 mod8 and » = O mod 4.
Second, the necessity that ¢; be even in (b) settles in the affirmative the conjecture
(3, (4.4)] of Hiramine and Johnson. Finally, in [3, (2.4)], Hiramine and Johnson
incorrectly state that in the above context (g, n) must be a Dickson pair. This resulted
in the omission in their classification [3, (4.3)] of the index 2 planes in the non-Dickson
pair case. As Theorem 5.2(c) above illustrates, there is in fact an infinite family of
index 2 generalized André systems where (g, #) is not a Dickson pair.

Example 5.3. In Theorem 5.2(c), takeg = 3,n =4, 5 = 1,r; = 2,and 1, = 0. Note that
(g,n) = (3,4) is not a Dickson pair. Let F = GF(3%) and F* = {w). The correspond-
ing companion automorphism map /4 : F* — AutF is given by A(o') = (x — x3h")
where

0 if i=0,2mod8

- 1 ifi=1,7mod8
" )2 ifi=4,6mod8
3 if i=5,3mod8.

The resulting generalized André system F(+,0) has kernel of order 3, nub Z = %%
of index 8, and nuclei N,(o) = 0!®143H48Z and N,,(0) = w34 7+8Z both of index
2. Since N, # N,,, the corresponding plane is neither a nearfield nor an André plane.

Example 5.3 provides a minimum order example of the non-Dickson pair case.
Perhaps of greater interest is the fact that N, # N,,, even though both nuclei have
index 2. This provides a counterexample to the claim made in [3, (5.1)] (the proof
there errs in the assumption that g%, is contained in £*).
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6 Replacements in Dickson nearfield planes

In this section we develop a replacement procedure in Dickson nearfield planes that
generalizes the “Type 2 replacements of Hiramine and Johnson [3, Section 3.2]. The
resulting planes are generalized André planes that admit a homology group of pre-
scribed size. The procedure is nub preserving in the sense that the nub of the resulting
generalized André system contains the nub of the original nearfield. We determine
necessary and sufficient numerical conditions under which this procedure actually
succeeds. Furthermore, we determine decomposition parameters for the resulting
generalized André systems when represented as in Theorem 4.1.

Let F(+4,0) be a (g,n)-Dickson nearfield, and represent it as in Theorem 5.1 with
s=1. Let d be any divisor of n. As F*(o)/Z is cyclic of order n with a generator
- Z, there is a unique subgroup H(o)/Z < F*(0)/Z of index d with generator
®°? - Z. Thus, there is a unique subgroup H(o) < F*(o) of order (¢" —1)/d con-
taining Z. Furthermore, Z <1 H(o) <2 F*(0) and

H(O) = U COOdi L= U w(qd‘i—l)/(q—l)ﬂzl

0<i<n/d 0<i<n/d
F*(O) _ U Hk _ U U wo(k+di) . Z,
0<k<d 0<k<d 0<i<n/d

where H;, = w* o H(o) = 0@ ~D/(4=D+1Z (for 0 < k < d) are the cosets of H(o) in
F* (o).

Let Xy =X(Hy) ={x— xoh:he H} = TL(l, F(+,-)). These X;’s partition the
spread map set of the nearfield plane .o/ (F(+,0)) along the cosets of H(o) in F*(o).
Our aim is to find replacements for the partial spreads determined by the Z;’s so as to
obtain a generalized André plane admitting a homology group (induced by H(o)) of
order (¢" — 1)/d. (Note: two partial spreads are replacements for each other if their
components cover exactly the same points.)

To this end, let p : x — x?° be any automorphism of F(+,-), let 0 < k < d, and
define

ikszkZ{XprOh:hEHk}

e

’qk+di .

={x+— xf NN 0 < i< nfd and 0 < < (¢" — 1)/n}.

Since X = I'L(1, F(+,-)), it is clear that ¥; = T'L(1, F(+,-)) as well.

Claim 6.1. X, is a partial spread map set of F (considered as a vector space over
GF(p)) such that o = %y for all 0 € X(H) and oZy =Xy for all 6 € 2(Z).

Proof. First, pe GL(F, p) and X, = GL(F, p), so £ < GL(F, p). Since X, acts
sharply on F*, so does pZi. Thus, % is a partial spread map set of F. For
o(h) e X(H), we have Zia(h) = pZ(Hy)o(h) = pX(Hy o h) = pZ(Hy) = pZi = Zi.
Finally, let o(z) € £(Z). Then z” € Z since Z is a characteristic subgroup of F*(-).
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Also x7G0P = (x.z)/ =xP-z*, ie., a(z)p = pa(z”). Thus, o(2)Zk = o(2)pZ(Hy) =
po(z)L(Hi) = pX(z” o Hy) = pE(Hj) = Zi. O

Claim 6.2. 3 is a replacement for ¥ if and only ifd|(p¢—1).

Proof. First we elucidate what it means for 3, to replace X:

¥, replaces X
@VXEF*:XPOH/C:XOH/(
e VxeF Vidix' oo ). Z = xo*t) . 7

SYaVi =i P a0 ¢ yaa L @D/ L 7z

eVaVid =i w9 ra’—a") . e @D/ ¢ 7

ketdi i qd(j*i) _1
sVaVid=iq't ’(a(peq‘“’) -1 +T) = Omodn
a1
S Va3=0: (aplg—1)+1) -qq — +a(p* — 1) = Omodn. (6.1)

Suppose X is a replacement for X, so that (6.1) holds. Now d|n, so d divides
the left-hand side of (6.1). Furthermore, every prime factor of d divides ¢ — 1, so
d|(q¥ —1)/(g—1) by Corollary 2.5(a), and therefore d|a(p®—1). As this must
hold in particular when a = 1, we obtain d | (p¢ — 1).

Conversely, suppose d | (p¢—1). In (6.1), let . = ap®(¢— 1)+ 1 and f = —a(p®—1).
Now every prime factor of n divides ¢ — 1, so (a,n) = 1. Thus, the congruence
ax = fmod n has a unique solution for x modulo n. But {(¢' — 1)/(¢g — 1) : 1 <i < n}
is a complete set of remainders modulo #, so there is a unique solution to ox = fmodn
of the form (¢/ —1)/(¢ — 1) with 1 <f < n.

To show that (6.1) holds, it suffices to show that d|f (for then we can take
j=f/d). To this end, first note that d|f by hypothesis. Further, (d,o) =1 since
every prime factor of d divides ¢ — 1, so d | (¢/ —1)/(q — 1). By Corollary 2.5(b), we
get d| f except possibly in the case where ¢ = —1 mod4 and f is even. In the latter
case, we have |d|, | f; furthermore, |d], < 2 in this situation since (g,7) is a Dick-
son pair, so |d], | f. In all cases, we obtain d | f, as required. ]

Theorem 6.3. Let F(+,0) be a (q,n)-Dickson nearfield, with ¢ =p" and p prime.
Represent F(+,0) as in Theorem 5.1 with s = 1. Let d be any divisor of n.

(a) There exists a unique subgroup H(o) < F*(o) of order (¢" —1)/d such that
Z < H (o). Furthermore, Z <0 H(o) 2 F*(0), and the cosets of H(o) in F*(o) are
(for 0 <k < d):

H,=w"*oH= {w(qkﬂh’l)/(q’l)”/ 0<i<n/dand 0 <j < (q"—1)/n}.
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(b) For each 0 < k < d, select an automorphism py : x — xP* of F(+,-) with py = 1,
let Xy = {xv+> xoh:he H} andEk fpkoZk ={x—xPoh: her} andput

L= U0<k<d Ek and X = U0<k<d

Y and Iy are partial spread map sets of F (as a vector space over GF(p)) of the
form:

5, = {x e 6 @) g <i< E and 0 <j < q" — 1}
n

L= {x s xPRa L @D g < 3 and 0 <j < q" — 1}.
n

() X is a spread map set of F if and only ifd|(p%—1) forall 0 <k <d.

(d) Suppose X is a spread map set of F, and let o/ (X >) denote the corresponding trans-
lation plane with point set F @ F. Then o/ (X ) is a generalized André plane of order
q" obtained from the nearfield plane </ (X) by multiple net replacement. </ (X) admits
a group of homologies A ) = {(x, y) = (x,yoh) : he H} of order (¢" — 1)/d and
a group of homologies Q‘ ={(x,y)— (xoz,y):z€Z} of order (¢" —1)/n.
The kernel of </ (X) has order p? where g = gcd{ te+rk:1<k<d} (where
tq = 0). In particular, the kernel is a subfield of GF(q?).

Proof. Parts (a) and (b) are clear from considerations made above; part (c) follows
from Claim 6.2. For part (d), «/(Z) is a generalized André plane since X <
I'L(1, F(+,-)). The statement concerning the homology groups follows from Claim
6.1. The rest follows from the fact that the kernel is the fixed field of the set of
companion automorphisms A(Z) = {x — x?*""“ .0 <k <dand 0 <i<n/d} ([5,

Theorem 10.7]).

Example 6.4. The case d = 2. (This case was considered in [3, (3.4)], but the claim
that the kernel must be a subfield of GF(g) is in error.) Since 2 |n and n|(¢" — 1), p
must be odd. So 2| (p" — 1) for all ¢;. Thus, any choice for # leads to a spread. By
appropriate choice of ¢, one can obtain planes with any subfield of GF(¢?) as kernel.
In particular, by taking ¢ to be an odd multiple of r, we see that the kernel can in fact
grow to GF(¢?).

Example 6.5. The case d = 3. Here we have 3|n,s03|(¢—1). If 3| (p — 1) (in par-
ticular, when r is odd), then any choices for #; and ¢, yield a spread. If 3| (p + 1),
then any choices with #; and #, even will yield a spread.

The generalized André systems resulting from Theorem 6.3 can be subjected to the
decomposition in Theorem 4.1. Here we determine appropriate values for the pa-
rameters in this decomposition. Quantities appearing in Theorem 4.1 will be adorned
with overbars to distinguish them from those that occur in Theorem 6.3. The groups
H and Z correspond directly in both theorems. Thus, d = d and 7id = n, from which
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we obtain " = p' = ¢" = ¢", so g = q“. Further, p" = §=¢* = p™, so i =rd. To
Mo

determine §, observe that A(w) = (x — x7) = (x — x?") = A(w™) = i( (¢'=D/(g=1)),
so we can take § = (¢ — 1)/(qg — 1). To determine choices for the 7;’s, we compare
the exponents on w for arbitrary elements of F* under both representations:

k+di k di
gt -1 s q -1 ¢"-1
-1 +nj=q° = 1+q_1+n]
-1 qi_l _
= 7l § ndi
q—lq Sq_lJr”],

so we can take fk (¢* —1)/(qg — 1). Finally, to determine the %’s, the automor-
phlSl’nS l( g +5(q" 1)/(‘]71)) — (x — xp[kql) and )v(w(qkﬂjl*l)/(q*l)) — (x — x]”,‘qk+dl)
must coincide. Hence, we can take #; = 1, + rkmod .

Acknowledgment. The author would like to thank the referee for uncovering an error
in the original version of this article.

References

[1] E. Ellers, H. Karzel, Endliche Inzidenzgruppen. Abh. Math. Sem. Univ. Hamburg 27 (1964),
250-264. MR 29 #3934 Zbl 123.37901

[2] D. A. Foulser, A generalization of André’s systems. Math. Z. 100 (1967), 380-395.
MR 37 #3436 Zbl 152.18903

[3] Y. Hiramine, N. L. Johnson, Generalized André planes of order p’ that admit a homology
group of order (p' — 1)/2. Geom. Dedicata 41 (1992), 175-190.
MR 92m:51016 Zbl 753.51002

[4] N. Knarr, Translation planes. Springer 1995. MR 98e:51019 Zbl 843.51004

[5] H. Luneburg, Translation planes. Springer 1980. MR 83h:51008 Zbl 446.51003

Received 17 January, 2001; revised 7 June, 2001

Dean E. Draayer, 20 Brookwood Drive, South Burlington, VT 05403-6202, USA
Email: draayer@surfglobal.net


http://www.ams.org/mathscinet-getitem?mr=29:3934
http://www.ams.org/mathscinet-getitem?mr=29:3934
http://www.emis.de/MATH-item?123.37901
http://www.ams.org/mathscinet-getitem?mr=37:3436
http://www.ams.org/mathscinet-getitem?mr=37:3436
http://www.emis.de/MATH-item?152.18903
http://www.ams.org/mathscinet-getitem?mr=92m:51016
http://www.emis.de/MATH-item?753.51002
http://www.ams.org/mathscinet-getitem?mr=98e:51019
http://www.emis.de/MATH-item?843.51004
http://www.ams.org/mathscinet-getitem?mr=83h:51008
http://www.emis.de/MATH-item?446.51003

