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Right nuclear decomposition of generalized André systems
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Abstract. The structure of generalized André systems is described in terms of their right nuclei.
Necessary and su‰cient numerical conditions for the existence of generalized André planes
with a homology group of specified index are determined, providing also a numerical charac-
terization of the sharply transitive subsets of GLð1; ptÞ. Finally, a multiple net replacement
procedure in Dickson nearfield planes is developed, yielding generalized André planes pos-
sessing an a‰ne homology group of prescribed index.

1 Introduction

In a translation plane of order q, the order of a homology group is ðq� 1Þ=d for
some d. We call d the index of the homology group. It is well-known that finite trans-
lation planes admitting an index 1 homology group are nearfield planes, of which all
but seven are also generalized André planes (the so-called Dickson nearfield planes).
The structure of Dickson nearfield spreads was determined by Ellers and Karzel [1].
In [3], Hiramine and Johnson undertook a study of generalized André planes that

admit an index 2 homology group. They were able to e¤ect a classification (but see
below) and describe the corresponding spreads. They also showed that nearly all such
planes could be constructed from Dickson nearfield planes via net replacement.
This article was motivated by a desire to generalize the results in the index 1 and

2 cases to arbitrary finite generalized André planes. There is an enormous variety of
generalized André planes; the results presented here fall under the theme of classify-
ing these planes with regard to groups of homologies that they support.
In this article, we consider finite generalized André planes that admit an a‰ne

homology group of arbitrary index d. We obtain a general decomposition and also
a determination of necessary and su‰cient numerical conditions for the existence of
such a plane (Section 4). The proofs are almost entirely number-theoretic, relying pri-
marily on the factorization of numbers of the form qn � 1 (Theorem 2.4). We remark
that these results also give a characterization and structural decomposition of sharply
transitive subsets of GLð1; ptÞ via their identification with spread map sets of gener-
alized André systems.
The index 1 and 2 results mentioned above follow directly from the main results



presented here. In the index 2 case, our results make it apparent that the classification
in [3] overlooked an infinite class of planes (Section 5).
Finally, we present a generalization of the ‘‘Type 2’’ replacements in [3] which

applies to a far greater range of indexes. This construction is a ‘‘nub preserving’’
multiple net replacement on a ðq; nÞ-Dickson nearfield plane which yields a general-
ized André plane admitting a homology group of index d for choices of d dividing n.

2 Number-theoretic preliminaries

All variables are understood to be integer-valued. For integers m and n, we write m j n
to signify that m divides n. The greatest common divisor of m and n is denoted by
ðm; nÞ. For a prime u, we define the u-part bncu of n by: bncu ¼ ue where ue j n but
ueþ1 a n. We extend this notation to sets of primes U: bncU ¼

Q
u AU bncu , and

bncU 0 ¼ n=bncU . For a single prime u, we also write bncu 0 ¼ n=bncu.
Our arguments depend heavily on divisibility results concerning numbers of the

form qn � 1. Among the more elementary of these results is the following. Parts (a)
and (b) are well-known, and part (c) follows from (b) and Euler’s theorem.

Lemma 2.1. Let q, m, and n be positive integers with q > 1. Then:

(a) ðqm � 1Þ j ðqn � 1Þ if and only if m j n.

(b) ðqm � 1; qn � 1Þ ¼ qðm;nÞ � 1.

(c) Let u be a prime. Then ud j ðqn � 1Þ if and only if ud j ðqðn;ud�1ðu�1ÞÞ � 1Þ. In par-
ticular, u j ðqn � 1Þ if and only if u j ðqðn;u�1Þ � 1Þ.

For any epimorphism G ! H between finite cyclic groups, the image of each gen-
erator of G is also a generator of H. It is also true that every generator of H is the
image of some generator of G, the proof of which hinges on the following fact.

Lemma 2.2. Let m, n, and a be integers such that m j n and ða;mÞ ¼ 1. Then there
exists an integer k such that ðaþ km; nÞ ¼ 1.

Proof. Let U be the set of all prime factors of n that divide a. Let

k ¼ ð1þ bncUÞ � bncU 0 :

Let w be any prime factor of n. If w A U , then w j a (so wam) and wa k, so
wa ðaþ kmÞ. Otherwise w B U , in which case wa a and w j k, so that wa ðaþ kmÞ.
Thus, no prime factor of n divides aþ km. r

Lemma 2.3. Let q > 1 and n > 0.

(a) If m j ðq� 1Þ, then ðqn � 1Þ=ðq� 1Þ1 nmodm. In particular, if n j ðq� 1Þ then
n j ðqn � 1Þ=ðq� 1Þ.
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(b) Let u be a prime factor of q� 1. Then bqn � 1cu ¼ bqbncu � 1cu. In particular, if
ua n then bqn � 1cu ¼ bq� 1cu.

Proof. In (a), suppose q1 1modm. Then

qn � 1

q� 1
¼ 1þ qþ q2 þ � � � þ qn�11 1þ 1þ 1þ � � � þ 11 nmodm:

For (b), let m ¼ bncu 0 . By (a), ðqbncum � 1Þ=ðqbncu � 1Þ1m2 0mod u. Thus,

bqn � 1cu ¼
qn � 1

qbncu � 1

� �
u

�bqbncu � 1cu ¼ bqbncu � 1cu;

as claimed. r

The following factorization theorem is of critical importance to the arguments
presented in later sections. A proof appears in [5, Theorem 6.3].

Theorem 2.4. Let q > 1 and n > 0, and let u be any prime factor of q� 1. Then:

(a) bncubq� 1cuc bqn � 1cu.

(b) If u0 2, or if u ¼ 2 but either q2�1mod 4 or n is odd, then

bqn � 1cu ¼ bncubq� 1cu:

(c) If q1�1mod 4 and n is even, then

bqn � 1c2 ¼ bnc2bqþ 1c2:

Corollary 2.5. Let q, n, and i be positive integers with q > 1 and such that every prime
factor of n divides q� 1.

(a) If n j i, then n j ðqi � 1Þ=ðq� 1Þ.

(b) Conversely, suppose n j ðqi � 1Þ=ðq� 1Þ. If q2�1mod 4 or i is odd, then n j i. If
q1�1mod 4 and i is even, then bnc2 0 j i and bnc2c bic2bqþ 1c2.

Corollary 2.6. Let q > 1 and n > 0, and let u0 2 be a prime factor of qn � 1. Then

bqn � 1cu > bncu:

Proof. Put q ¼ qðn;u�1Þ and n ¼ n=ðn; u� 1Þ. By Lemma 2.1(c), we have u j ðq� 1Þ.
Applying Lemma 2.3(b) and Theorem 2.4(b) and the fact that bncu ¼ bncu , we obtain

bqn � 1cu ¼ bqn � 1cu ¼ bqbncu � 1cu
¼ bqbncu � 1cu ¼ bncubq� 1cu;

from which the result follows. r
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3 Spread maps and generalized André systems

We assume the reader is familiar with the representation of translation planes via
(right) quasifields X ðþ; �Þ and spread map sets SJGLðXÞ (e.g., see [5] or [4]). The
correspondence between these representations is as follows: For each a A X 
, define
sa : X ! X by xsa ¼ x � a. Then SðX 
ð�ÞÞ ¼ fsa : a A X 
gJGLðXÞ is a spread map
set of X with 1 A SðX 
ð�ÞÞ. Conversely, spread map sets S of X with 1 A S determine
quasifields Xðþ; �Þ.
Let X be a finite-dimensional vector space. Spread map sets of X coincide with

sharply transitive subsets SJGLðXÞ acting on X 
. More generally, a partial spread
map set of X coincides with a subset SJGLðX Þ acting sharply on X 
. (By acting
sharply, we mean that xs 0 xt for all x A X 
 whenever s; t A S with s0 t.)
For a quasifield X ðþ; �Þ, the right and middle nuclei are defined by Nrð�Þ ¼

fa A X 
 : ðx � yÞ � a ¼ x � ðy � aÞ for all x; y A X 
g and Nmð�Þ ¼ fa A X 
 : ðx � aÞ �
y ¼ x � ða � yÞ for all x; y A X 
g. These nuclei correspond in the spread map set
S¼ SðX 
ð�ÞÞ to the right-absorbed and left-absorbed maps Sr¼fr AS : SrJSg ¼
fsa : a A Nrð�Þg and Sl ¼ fr A S : rSJSg ¼ fsa : a A Nmð�Þg. In the translation
plane AðX ðþ; �ÞÞ ¼ AðSÞ, these notions correspond to homology groups Hð0Þ ¼
fðx; yÞ 7! ðx; y � aÞ : a A Nrð�Þg ¼ f1l r : r A Srg and HðyÞ ¼ fðx; yÞ 7! ðx � a; yÞ :
a A Nmð�Þg ¼ frl 1 : r A Slg.
Recall that a generalized André system is a (right) quasifield F ðþ; �Þ for which

there exists a skewfield structure F ðþ; �Þ on F and a map l : F 
 ! AutF ðþ; �Þ such
that x � a ¼ xlðaÞ � a for all x; a A F 
. Equivalently, a generalized André system is a
quasifield F ðþ; �Þ such that SðF 
ð�ÞÞJGLð1;F ðþ; �ÞÞ for some underlying skewfield
F ðþ; �Þ. We call l the companion automorphism map.

Definition 3.1. Let Fðþ; �Þ ¼ GFðqnÞ and let l : F 
 ! AutGFðqÞ Fðþ; �Þ be any map.
Define SðlÞJGLqð1; qnÞ by SðlÞ ¼ fx 7! xlðaÞ � a : a A F 
g. Let F ðþ; �Þ be FðþÞ
endowed with the operation � : F � F ! F defined by: x � 0 ¼ 0 and x � a ¼ xlðaÞ � a
for all x A F and a A F 
. Fix a primitive element o of F ðþ; �Þ, and let hi A Zn (for
i A Zqn�1) be such that lðo iÞ ¼ ðx 7! xq

hi Þ.

The following generalization of [2, Lemma 2.1] (or see [5, Lemma 10.1]), which
occurs here with M ¼ 1, is crucial for the arguments in Section 4.

Theorem 3.2. In Definition 3.1, suppose l is constant on the cosets of a subgroup

McF 
ð�Þ of order ðqn�1Þ=m (i.e., suppose m is a divisor of qn�1 such that hi1hj mod n
whenever i1 jmodm). Then SðlÞ is sharply transitive on F 
 if and only if:

i2 jmodðm; qhi � qhj Þ whenever i2 jmodm: ð3:1Þ

Proof. Note that F 
 ¼ 6
i AZm

o iM since M ¼ omZ. Thus, SðlÞ ¼ 6
i AZm

Si where

Si ¼ Sðo iMÞ. Since l is constant on the cosets of M, this represents SðlÞ as a union
of certain cosets Si of some subgroup S0 of GLqð1; qnÞ. Clearly each Si acts sharply
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on F 
, so SðlÞ will be sharply transitive on F 
 if and only if Si USj acts sharply on
F 
 for all i; j A Zm. Take Si0Sj, i.e., i2 jmodm. Then:

Si USj acts sharply on F



, Ea; k; l: ðoaÞlðo iþkmÞ � o iþkm0 ðoaÞlðo jþlmÞ � o jþlm

, Ea; k; l: oaqhi � o iþkm0oaq
hj � o jþlm

, Ea: aðqhi � qhj Þ þ ði � jÞ B mZ

, i � j B mZ þ ðqhi � qhj ÞZ

, i2 jmodðm; qhi � qhj Þ:

The result now follows. r

As a corollary, Fðþ; �Þ as in Definition 3.1 is a generalized André system if and
only if lð1Þ ¼ 1 and (3.1) holds. Every sharply transitive subset SJGLqð1; qnÞ and
every generalized André system of order qn can be represented in the form indicated
in Definition 3.1.
Let us define the nub Z of a generalized André system Fðþ; �Þ by Z ¼

fa ANm VNr : lðaÞ ¼ 1g ¼ fa A F 
 : lða � xÞ ¼ lðxÞ ¼ lðx � aÞ for all x A F 
g. Thus,
Z is the intersection of the kernels of the homomorphisms ljNrð�Þ and ljNmð�Þ (these

kernels coincide when F is finite). Note that lðZÞ ¼ 1 and Zð�Þ ¼ Zð�ÞcF 
ð�Þ. The
nub is the largest subgroup Z of F 
ð�Þ such that l is constant on the cosets of Z.
Suppose F ðþ; �Þ in Definition 3.1 is in fact a generalized André system. Define

v ¼ lcmfqd � 1 : d j n and d < ng, with v ¼ 1 if n ¼ 1. It can be shown that v is a
proper divisor of qn � 1 (except in the trivial case qn ¼ 2). Taking M ¼ 1 (i.e., m ¼
qn � 1) in Theorem 3.2, it is easy to show that i1 jmod v implies i1 jmod qn � 1.
Thus, l is constant on the cosets of Z0 ¼ ovZ cF 
ð�Þ, so Z0 is a subgroup of the nub
Z. This yields a lower bound ðqn � 1Þ=v for the order of Z and in particular shows
that the nub is never trivial (unless qn ¼ 2). The corresponding planeAðF ðþ; �ÞÞ has
a collineation group fðx; yÞ 7! ðx � a; y � bÞ : a; b A Zg induced by Z as a subgroup
of both the right and middle nuclei.

4 Right nuclear decomposition of a generalized André system

In this section, we describe the structure of a generalized André system by decompos-
ing it in terms of a subgroup of the right nucleus (Theorem 4.1). We then determine
necessary and su‰cient numerical conditions for a generalized André system to have
a right nuclear subgroup of a prescribed index (Theorem 4.2 and Theorem 4.3). In a
broad special case (Proposition 4.4 and Proposition 4.5), we determine suitable values
for the parameters appearing in the decomposition.
When discussing a generalized André system F ðþ; �Þ, care must be taken to dis-

tinguish between the operation � and the multiplication � of the underlying field. The
notation ai ¼ a � a . . . a (i factors) will be used to indicate a power in Fðþ; �Þ, whereas
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we write a�i to denote a power in F 
ð�Þ with left-to-right association (i.e., a�0 ¼ 1 and
a�i ¼ a�ði�1Þ � a for i > 0); the rule of association is critical since � is generally not
associative.

Theorem 4.1. Let Fðþ; �Þ be a generalized André system of order pt (p prime and td 1)
with underlying field F ðþ; �Þ ¼ GFðptÞ and companion automorphism map l : F 
 !
AutF ðþ; �Þ. Let Hð�Þ be any subgroup of the right nucleus, and put jHj ¼ ðpt � 1Þ=d.
Let L ¼ lðHÞ, n ¼ jLj, Zð�Þ ¼ kerðljHð�ÞÞ, let q be the order of the fixed field of L,
and let o be a primitive element of F ðþ; �Þ. Then:

(a) qn ¼ pt and nd j ðqn � 1Þ.

(b) Zð�Þ ¼ Zð�Þ ¼ ondZ is cyclic of order ðqn � 1Þ=nd, and Hð�Þ=Z is cyclic of

order n.

(c) Let os A H such that lðosÞ ¼ ðx 7! xqÞ, and let si ¼ sðqi � 1Þ=ðq� 1Þ for id 0.
Then os � Z generates Hð�Þ=Z, ðos � ZÞ�i ¼ osi � Z ¼ osiþndZ, and

Hð�Þ ¼ 6
0ci<n

ðos � ZÞ�i ¼ 6
0ci<n

osi � Z:

Furthermore, lðosi � ZÞ ¼ fx 7! xq
ig, so

Ex A F 
 Ea A H: x � a ¼ xq
i � a where a A osi � Z:

(d) F 
 admits a partition

F 
ð�Þ ¼ 6
0ck<d

ork �Hð�Þ ¼ 6
0ck<d

6
0ci<n

orkq
iþsiþndZ

where R ¼ frk : 0c k < dg is any set with r01 0mod nd and such that frkqi þ
si : 0c k < d and 0c i < ng constitutes a transversal of Znd . Furthermore, there
exists a set T ¼ ftk : 0c k < dg, with t01 0mod t, such that lðorkq

iþsiþndZÞ ¼
fx 7! xp

tk q ig. Thus,

Ex; a A F 
: x � a ¼ xp
tk q i � a where a A orkq

iþsi � Z:

Proof. First, dimGFðqÞ F ¼ jLj ¼ n, so qn ¼ pt. The map ljH : Hð�Þ ! L is a group
homomorphism with kernel Zð�Þ and image L, so Hð�Þ=ZGLcAutF ðþ; �Þ is
cyclic of order n and jZj ¼ jHj=jLj ¼ ðqn � 1Þ=nd. Clearly x � a ¼ x � a for all x A F
and a A Z, so Zð�Þ ¼ Zð�ÞcF 
ð�Þ. Thus, Z is cyclic and Z ¼ ondZ. This proves (a)
and (b).
Now Hð�Þ=Z is generated by os �Z for any os AHð�Þ such that lðosÞ ¼ ðx 7! xqÞ.

Thus, Hð�Þ ¼ 6
0ci<n

ðos � ZÞ�i and lððos � ZÞ�iÞ ¼ fx 7! xq
ig.

Claim: a�i ¼ aðq
i�1Þ=ðq�1Þ for all a A o s � Z and id 0. This is clear for i ¼ 0. Pro-

ceeding by induction and using the fact that lðaÞ ¼ ðx 7! xqÞ, we obtain

a�ðiþ1Þ ¼ a�i � a ¼ ðaðqi�1Þ=ðq�1ÞÞq � a ¼ a1þqþ���þq i ¼ aðq
iþ1�1Þ=ðq�1Þ:
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It follows that ðos � ZÞ�i ¼ ðosþndZÞ�i ¼ osiþndZ ¼ osi � Z, so (c) holds. For (d), we
have F 
 ¼ 6

a AF 
 a �Hð�Þ since 1 A Hð�Þ. Further, since Hð�ÞcNrð�Þ, b A a �Hð�Þ
if and only if b �Hð�Þ ¼ a �Hð�Þ. Thus, fa �Hð�Þ : a A F 
g constitutes a partition
of F 
. Let fork : 0c k < dg be a transversal of this partition. Then

F 
ð�Þ ¼ 6
0ck<d

ork �Hð�Þ ¼ 6
0ck<d

6
0ci<n

ork � ðos � ZÞ�i

¼ 6
0ck<d

6
0ci<n

ðork � osiÞ � Z ¼ 6
0ck<d

6
0ci<n

orkq
i � osi � Z:

The rest of (d) follows directly. r

We now investigate necessary numerical constraints on the quantities involved in
the structural decomposition given by Theorem 4.1. A pair of positive integers ðq; nÞ
is called a Dickson pair if: (i) q is a power of a prime; (ii) every prime factor of n also
divides q� 1; and (iii) if q1�1mod 4, then 4a n.

Theorem 4.2. In the context of Theorem 4.1:

(a) Let u be a prime factor of q� 1. If u0 2, or if u ¼ 2 but q2�1mod 4 or n is odd,
then bdcuc bðs; q� 1Þcu.

(b) Let u be a prime factor of n. Then u j ðq� 1Þ. Furthermore:

(i) If u0 2, or if u ¼ 2 but q2�1mod 4, then bscu ¼ bdcu < bq� 1cu.

(ii) If u ¼ 2 and q1�1mod 4, then s is odd and 2bdc2c bqþ 1c2. Furthermore,
if 4 j n, then 2bdc2 ¼ bqþ 1c2.

(c) Either ðq; nÞ is a Dickson pair or else q1�1mod 4 and n1 0mod 4, in which case
s is odd and 2bdc2 ¼ bqþ 1c2.

(d) Let ~ss ¼ ðs; dÞ. There exists a primitive element ~oo of Fðþ; �Þ such that lð ~oo ~ssÞ ¼
ðx 7! xqÞ. (Thus, it is possible to select the primitive element o in Theorem 4.1 so
that s j d.)

(e) For id 0: nd j si , n j i , ðnd; qi � 1Þ j si.

(f ) For 0c i < n and 0c k; l < d,

ðnd; ptkqi � ptl Þa ððrk � rlÞ þ rkðqi � 1Þ þ siÞ ð4:1Þ

unless k ¼ l and i ¼ 0. In particular, frkqi þ si : 0c k < d and 0c i < ng con-
stitutes a transversal of Znd .

Proof. Since os � Z has �-order n, we have ðos � ZÞ�i ¼ Z if and only if n j i, i.e.,

nd j si if and only if n j i: ð4:2Þ
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Now l is constant on the cosets of Z. Further, by (4.2), si2 0mod nd when na i, and
lððos � ZÞ�iÞ ¼ ðx 7! xq

iÞ, so by (3.1), si2 0modðnd; qi � 1Þ unless n j i. That is,

ðnd; qi � 1Þ j si if and only if n j i: ð4:3Þ

Thus, (e) holds. From (4.2) and Theorem 4.1(a), we also get

nd j ðqn � 1; snÞ ¼ ðs; q� 1Þ � q
n � 1

q� 1
: ð4:4Þ

Claim 1: If q1�1mod 4 and n is even, then 2bdc2c ðs; 2Þ � bqþ 1c2. This follows
from (4.4) and Theorem 2.4(c): bndc2c bðs; q� 1Þc2 � bqn � 1c2=bq� 1c2 ¼ ðs; 2Þ �
bnc2bqþ 1c2=2.
Claim 2: Let u be a prime factor of q� 1. If u0 2, or if u ¼ 2 but q2�1mod 4 or

n is odd, then bdcucbðs; q� 1Þcu. To see this, (4.4) and Theorem 2.4(b) yield bndcuc
bðs; q� 1Þcu � bqn � 1cu=bq� 1cu ¼ bðs; q� 1Þcubncu , and the claim follows.
Claim 3: For each prime factor u of n, bðnd; qn=u � 1Þcu > bsn=ucu. For this, by (4.3)

there exists some prime v such that bðnd; qn=u � 1Þcv > bsn=ucv. Suppose v0 u. Note

that v j ðqn=u�1Þ, so Lemma 2.3(b) yields bqn�1cv¼bðqn=uÞu�1cv¼bðqn=uÞbucv�1cv¼
bqn=u�1cv, and thus bsncv ¼ bsn=ucv. But then we obtain bðnd; qn=u�1Þcv > bsncv, con-
trary to (4.3). Thus, v ¼ u here, and the claim holds.
Claim 4: For each prime factor u of n, we have u j ðq� 1Þ and bscu < bq� 1cu. This

follows from Claim 3: bqn=u � 1cu > bscubqn=u � 1cu=bq� 1cu , so bq� 1cu > bscu.
Claim 5: If q1�1mod 4 and n is even, then s is odd and 2bdc2c bqþ 1c2;

further, if 4 j n, then 2bdc2 ¼ bqþ 1c2. To see this, observe that Claim 4 yields
bsc2 < bq� 1c2 ¼ 2, so s is odd. Claim 1 then gives 2bdc2c bqþ 1c2. Now suppose
that 4 j n. Then n=2 is even, so from Claim 3 and Theorem 2.4(c) we obtain
bndc2 > bsc2bqn=2 � 1c2=bq� 1c2 ¼ bn=2c2bqþ 1c2=2, so 4bdc2 > bqþ 1c2. Thus,
2bdc2d bqþ 1c2 as well.
Claim 6: Let u be any prime factor of n. If u0 2, or if u ¼ 2 but q2�1mod 4,

then bdcu ¼ bscu. For this, first note that u j ðq� 1Þ by Claim 4. So by Claim 2,
we have bdcuc bscu. From Claim 3 and Theorem 2.4(b), we obtain bndcu >
bscubqn=u � 1cu=bq� 1cu ¼ bscubn=ucu , so bdcud bscu as well.
Note that Claim 2 proves (a), Claims 4–6 prove (b), and (c) follows immediately

from (b). To prove (d), put s ¼ ~sss 0 and d ¼ ~ssd 0. For each prime factor u of n, we have
bscuc bdcu by Claims 5 and 6, so ua s 0. Therefore, ðs 0; nd 0Þ ¼ 1. By Lemma 2.2,
there exists some k such that ðs 0 þ knd 0; qn � 1Þ ¼ 1. Then ~oo ¼ os 0þknd 0

is a primitive

element such that ~oo~ss ¼ osþndk A os � Z, so lð ~oo ~ssÞ ¼ lðosÞ ¼ ðx 7! xqÞ.
It remains to prove (f ). Now l is constant on the cosets of Z, so Theorem 3.2 yields

the sequence of implications (taking id j without loss of generality):

rkq
i þ si2 rlq

j þ sj mod nd

) rkq
i þ si2 rlq

j þ sj modðnd; ptkqi � ptl q jÞ

) ðnd; ptkqi�j � ptl Þa ðrkqi�j � rl þ si�jÞ;
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which is equivalent to (4.1). The final statement in (f ) (which is just a restatement of
Theorem 4.1(d)) follows by taking l ¼ 0 in (4.1). r

We now consider the converse of Theorem 4.1 and Theorem 4.2. The following
theorem shows that the necessary conditions in Theorem 4.2 are also su‰cient for the
construction of a generalized André system of the form appearing in Theorem 4.1.

Theorem 4.3. Let p be prime and td 1. Let q, n, d, and s be positive integers such that
qn ¼ pt, every prime factor of n divides q� 1, and nd j ðqn � 1Þ. Suppose further that
for every prime factor u of q� 1:
(i) If ua n, then bscud bdcu;
(ii) If u j n and either u0 2 or q2�1mod 4, then bscu ¼ bdcu < bq� 1cu;
(iii) If n is even and q1�1mod 4, then s is odd and 2bdc2c bqþ 1c2, with equality

if 4 j n.

(a) Let S ¼ fsi : id 0g where si ¼ sðqi � 1Þ=ðq� 1Þ. Define l : S � S ! S by sil
sj ¼ siþj ¼ siq

j þ sj. The operation l induces (via the canonical epimorphism

^ : Z ! Znd ) an operation on ŜSJZnd that makes ŜSðlÞ into a cyclic group of
order n. Furthermore, nd j si , n j i , ðnd; qi � 1Þ j si.

(b) Extend the definition of l : Z�S ! Z by al si ¼ aqi þ si. Then fâal ŜS : a A Zg
is a partition of Znd .

(c) Let R ¼ frk : 0c k < dg, with rkd 0 and r01 0mod nd, be any set such that R̂R is
a transversal of the partition in (b) (equivalently, such that frkl si : 0c k < d

and 0c i < ng constitutes a transversal of Znd ). Suppose T ¼ ftk : 0c k < dg,
with tkd 0 and t01 0mod t, is such that for all 0c i < n and 0c l < k < d,

ðnd; ptkqi � ptl Þa ððrk � rlÞ þ rkðqi � 1Þ þ siÞ: ð4:5Þ

Let F ¼ GFðqnÞ with primitive element o, and define l : F 
 ! AutF by

lðorklsiþndZÞ ¼ fx 7! xp
tk q ig. Then Definition 3.1 yields a generalized André

system F ðþ; �Þ having a right nuclear subgroup Hð�Þ ¼ 6
0ci<n

osiþndZ of order

ðqn � 1Þ=d. The system F ðþ; �Þ thus obtained is independent of the choice of R.

Proof. First, it follows readily from Lemma 2.1(a) that si j sj whenever i j j.
Claim: If i1 jmod n, then si1 sjmod nd. For this, assume that i1 jmod n with

id j. Observe that si � sj ¼ sq jðqi�j � 1Þ=ðq� 1Þ ¼ si�jq
j and that sn j si�j. Thus, it

su‰ces to show that nd j sn, or equivalently, that bndcuc bsncu for every prime factor
u of nd. First assume that ua ðq� 1Þ. Then since nd j ðqn � 1Þ, we have bndcuc
bqn � 1cuc bsðqn � 1Þ=ðq� 1Þcu ¼ bsncu. Assume then that u j ðq� 1Þ. Suppose first
that u0 2 or q2�1mod 4 or n is odd. Then bscud bdcu by hypothesis, and Theo-
rem 2.4(b) gives bsncu ¼ bscubncu , so bsncud bndcu. Suppose finally that u ¼ 2, q1
�1mod 4, and n is even. Then by the hypothesis 2bdc2c bqþ 1c2, we obtain from
Theorem 2.4(c) that bsnc2 ¼ bsc2bnc2bqþ 1c2=2d bnc2bdc2. We’ve shown that
bndcuc bsncu in all cases, so the claim is justified.
The claim ensures that the map Zn ! ŜSJZnd defined by i 7! ŝsi is well-defined.
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This map is easily seen to be a group epimorphism ZnðþÞ ! ŜSðlÞ. We claim that it
is in fact an isomorphism, i.e., that ŜSðlÞ has order n. To prove this, it su‰ces to
show that bndcu a sn=u for every prime factor u of n. Note that u j ðq� 1Þ by hypoth-
esis. If u0 2 or q2�1mod 4, then bscu ¼ bdcu by hypothesis, so Theorem 2.4(b)
gives bsn=ucu ¼ bscubn=ucu ¼ bndcu=u, so that bndcu a sn=u. Suppose then that u ¼ 2
and q1�1mod 4. Then s is odd by hypothesis. If n1 2mod 4, then n=2 is odd, so by
Theorem 2.4(b), bsn=2c2 ¼ bsc2bqn=2 � 1c2=bq� 1c2 ¼ bn=2c2 ¼ 1; and if n1 0mod 4,
then by Theorem 2.4(c) and the hypothesis that 2bdc2 ¼ bqþ 1c2, bsn=2c2 ¼
bsc2bqn=2�1c2=bq�1c2 ¼ bn=2c2bqþ1c2=2< bnc2bqþ1c2=2 ¼ bndc2. In either case,
we obtain bndc2 a sn=2. The claim has been verified.
It follows from the fact that ŜSðlÞ is cyclic of order n that nd j si , n j i. We

now show that ðnd; qi � 1Þ j si , n j i. First, if n j i, then nd j si, so ðnd; qi � 1Þ j si.
Suppose then that na i, and let u be a prime such that bncu > bicu. It su‰ces to show
that bsicu < bndcu and bsicu < bqi � 1cu. The hypotheses ensure that u j ðq� 1Þ,
bscuc bdcu , and bscu < bq� 1cu. The latter yields bsicu ¼ bscubqi � 1cu=bq� 1cu <
bqi � 1cu. To get bsicu < bndcu , if u0 2 or q2�1mod 4 or i is odd, Theorem 2.4(b)
yields bsicu ¼ bscubicu < bdcubncu. Otherwise, we have u ¼ 2, q1�1mod 4, and i

even, so s is odd, 4 j n, and 2bdc2 ¼ bqþ 1c2. By Theorem 2.4(c), bsic2 ¼ bsc2bic2 �
bqþ 1c2=2 < bnc2bdc2. In any case, we obtain bsicuc bndcu. This completes the
proof of (a).
Now, it is readily seen that ðâal ŝsiÞl ŝsj ¼ âal ðŝsil ŝsjÞ for all âa A Znd and

ŝsi; ŝsj A ŜS. It follows immediately that if âa A b̂bl ŜS then âal ŜS ¼ b̂bl ŜS. This shows
that fâal ŜS : a A Zg constitutes a partition of Znd , which proves (b).
To prove (c), first note that (b) ensures that l is well-defined. We use Theorem 3.2

to show that F ðþ; �Þ is a generalized André system. By (b), every integer can be
expressed in the form rkl si þ ndj for some 0c k < d, 0c i < n, and j A Z. Con-
dition (3.1) becomes: for all 0c k; l < d and 0c i; j < n,

ðnd; ptkqi � ptl q jÞa ðrkl si � rl l sjÞ if k0 l or i0 j:

Since we may arrange it so that id j, this is equivalent to: for all 0c k; l < d and
0c i < n,

ðnd; ptkqi � ptl Þa ðrkqi � rl þ siÞ if k0 l or i0 0: ð4:6Þ

When l < k, this is merely the hypothesis (4.5) placed on T, so it remains only to
prove that (4.6) holds for ld k.
First suppose l ¼ k. Then (4.6) becomes ðnd; qi � 1Þa ðrkðqi � 1Þ þ siÞ if i0 0,

that is, ðnd; qi � 1Þa si if i0 0, which by (a) is indeed the case. Suppose then that
l > k. Multiplying by qn�i, we obtain the following sequence of statements equivalent
to (4.6):

ðnd; ptk � ptl qn�iÞa ðrkqn � rlq
n�i þ siq

n�iÞ if k0 l or i0 0:

ðnd; ptl qn�i � ptk Þa ððrlqn�i � rkÞ � rkðqn � 1Þ � ðsn � sn�iÞÞ if k0 l or i0 0

ðnd; ptl qn�i � ptk Þa ððrlqn�i � rkÞ þ sn�iÞ if k0 l or i0 0

The latter is essentially (4.5) with k and l reversed, so it holds by hypothesis. r
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In Theorem 4.3, note for later reference that frkl si : 0c k < d and 0c i < ng
constitutes a transversal of Znd if and only if: for 0c lc k < d and 0c i < n, the
condition

nd j ððrk � rlÞ þ rkðqi � 1Þ þ siÞ ð4:7Þ

implies that k ¼ l and i ¼ 0.
For the remainder of this section, we consider the case where every prime factor of

d divides q� 1. By Theorem 4.2(a) and Theorem 4.3, this is equivalent to assuming
that d j ðq� 1Þ. By Theorem 4.2(d), it is then possible to arrange it so that

s ¼
d if q2�1mod 4 or n is odd
bdc2 0 if q1�1mod 4 and n is even:

�
ð4:8Þ

In Proposition 4.4, we determine suitable choices for the rk’s when d j ðq� 1Þ.
(Here we do not assume that s satisfies (4.8).) Parts (a) and (b) cover all cases, but the
alternate choices in (c) and (d) are more convenient in certain circumstances (e.g., see
Theorem 5.2).

Proposition 4.4. In the context of Theorem 4.2 and Theorem 4.3, suppose d j ðq� 1Þ.
Without loss of generality, one may choose rk ( for 0c k < d) as follows:

(a) If q2�1mod 4 or if n or d is odd, let rk ¼ k.

(b) If q1�1mod 4 and n and d are even, let rk ¼ 2k.

(c) If ðq; nÞ is a Dickson pair or d is odd, and if ðn; sÞ ¼ 1, let rk ¼ nk.

(d) If ðq; nÞ is not a Dickson pair, d is even, and ðn; sÞ ¼ 1, let rk ¼ 2kbnc2 0 .

Proof. Our proof is phrased so that it holds whether one starts with the hypotheses of
Theorem 4.2 or of Theorem 4.3. It must be shown that the indicated choices for rk
make frkqi þ si : 0c k < d and 0c i < ng a transversal of Znd . We do so by as-
suming that (4.7) holds and show that it follows that k ¼ l and i ¼ 0. Note that
bdc2 0 j s in all cases since d j ðq� 1Þ. In fact, we have d j s except in the case when
q1�1mod 4 and n and d are even.
In (a), we have d j s. So (4.7) implies that d j ðrk � rlÞ ¼ ðk � lÞ. Thus, k ¼ l, and it

then follows from (4.7) that ðnd; qi � 1Þ j si, which requires i ¼ 0.
In (b), si is odd if i is odd, and for i even we have bsic2 ¼ bic2bqþ 1c2=2d bic2bdc2.

In particular, (4.7) forces i to be even, so d j si, and thus d j 2ðk � lÞ. But (4.7) then
yields 2bdc2 j ð2ðk � lÞ þ 2kðqi � 1Þ þ siÞ. So bdc2 j ðk � lÞ. Therefore, d j ðk � lÞ, and
it follows as in the proof of (a) that i ¼ 0.
In (c), (4.7) reduces to nd j ðnðk � lÞ þ siÞ. This implies that n j si, and therefore

n j ðqi � 1Þ=ðq� 1Þ (since ðn; sÞ ¼ 1), yielding bnc2 0 j i (by Corollary 2.5(b)). Now, if
d j s, this yields nd j si and d j ðk � lÞ, so i ¼ 0 and k ¼ l. If d a s, then q1�1mod 4
and n1 2mod 4 (since ðq; nÞ is a Dickson pair). But i must be even since n j si. Thus,
n j i, yielding i ¼ 0 and d j ðk � lÞ.
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In (d), we have q1�1mod 4, 4 j n, and 2bdc2 ¼ bqþ 1c2. Here (4.7) becomes
nd j ð2n 0ðk � lÞ þ 2n 0kðqi � 1Þ þ siÞ, where n 0 ¼ bnc2 0 . This implies that i is even
and bdc2 0 j ðk � lÞ (since ðn; sÞ ¼ 1). Now bsic2 ¼ bic2bdc2 and b2n 0kðqi � 1Þc2 ¼
2bkic2bqþ 1c2 ¼ 4bkic2bdc2. So (4.7) gives 2bdc2 j 2n 0ðk � lÞ, and thus bdc2 j ðk � lÞ.
Hence, d j ðk � lÞ, so k ¼ l; (4.7) then yields ðnd; qi � 1Þ j si, so i ¼ 0. r

As for the tk’s when d j ðq� 1Þ, Proposition 4.5 indicates choices that su‰ce to con-
struct generalized André systems. (We do not claim that these choices are necessary.)

Proposition 4.5. Under the hypotheses of Theorem 4.3, suppose that d j ðq� 1Þ. Let s be
as in (4.8), and select rk and tk ( for 0c k < d) as follows:

(a) If q2�1mod 4 or if n or d is odd, let rk ¼ k and choose tk so that d j ðptk � 1Þ.

(b) If q1�1mod 4 and n and d are even, let rk ¼ 2k and choose tk so that

2d j ðptk � 1Þ. (Note that tk will then be even.)

These choices for rk and tk in Theorem 4.3 yield a generalized André system having a

right nuclear subgroup of order ðqn � 1Þ=d.

Proof. By Proposition 4.4 and the remarks preceeding it, we have appropriate choices
for s and the rk’s. It remains to show that the choices for the tk’s satisfy (4.5) in Theo-
rem 4.3(c). First, observe that d j ðptk ðqi � 1Þ þ ðptk � 1Þ � ðptl � 1ÞÞ ¼ ðptkqi � ptl Þ,
so d j ðnd; ptkqi � ptl Þ. Let 0c i < n and 0c l < k < d, and assume that

ðnd; ptkqi � ptl Þ j ððrk � rlÞ þ rkðqi � 1Þ þ siÞ: ð4:9Þ

In case (a), we have rk ¼ k and s ¼ d, so (4.9) yields d j ððk � lÞ þ kðqi � 1Þ þ siÞ,
which implies d j ðk � lÞ, a contradiction. Thus, (4.5) is satisfied in this case.
Now consider case (b). Here we have rk ¼ 2k and s ¼ bdc2 0 . From (4.9) we

obtain d j ð2ðk � lÞ þ 2kðqi � 1Þ þ siÞ. This requires that si be even, and therefore i
is even as well. Then 2d j ðqi � 1Þ, so 2d j ðnd; ptkqi � ptl Þ. By Theorem 2.4(c),
bsic2 ¼ bsc2bqi � 1c2=bq� 1c2 ¼ bic2bqþ 1c2=2d bqþ 1c2d 2bdc2, so 2d j si. From
2d j ð2ðk � lÞ þ 2kðqi � 1Þ þ siÞ we then obtain d j ðk � lÞ, a contradiction. So (4.5)
is satisfied here as well. r

5 Low-index cases

We now specialize the results in Section 4 to the index 1 and 2 cases. When d ¼ 1, the
generalized André system in question is in fact a Dickson nearfield. In this case, we
immediately obtain the following theorem of Ellers and Karzel [1, §1] and its con-
verse from Theorem 4.1, Theorem 4.2, and Theorem 4.3. This result will be used in
Section 6.

Theorem 5.1. Let Fðþ; �Þ be a Dickson nearfield of order pt (p prime), and let

F ðþ; �Þ ¼ GFðptÞ be the underlying field with primitive element o. Put qn ¼ pt where q

is the order of the kernel, and let Z ¼ fa A F 
 : x � a ¼ x � a Ex A Fg be the nub.
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Then ðq; nÞ is a Dickson pair,Z ¼ fonj : j A Zg, and there exists s such that ðs; nÞ ¼ 1
and

F 
 ¼ 6
0ci<n

osðq i�1Þ=ðq�1Þ � Z:

Furthermore, the nearfield multiplication � is described by

x � 0 ¼ 0

x � osðq i�1Þ=ðq�1Þþnj ¼ xq
i � osðq i�1Þ=ðq�1Þþnj

ð5:1Þ

for all x A F , 0c i < n, and 0c j < ðqn � 1Þ=n. Furthermore, o can be chosen so that

s ¼ 1.
Conversely, for any Dickson pair ðq; nÞ with qn ¼ pt and any s such that ðs; nÞ ¼ 1,

the operation � on F defined by (5.1) yields a Dickson nearfield F ðþ; �Þ of order pt.

The index d ¼ 2 case was considered by Hiramine and Johnson in [3, (4.1), (4.3)],
where they classified the generalized André planes that possess an index 2 homology
group. However, their classification overlooked an infinite class of such planes,
namely, those corresponding to the case where ðq; nÞ is not a Dickson pair. These
occur in part (c) below.

Theorem 5.2. Let Fðþ; �Þ ¼ GFðptÞ, where p is an odd prime. Let qn ¼ pt such that

every prime factor of n divides q� 1.

(a) If q2�1mod 4 or n is odd, let s ¼ 2, r1 ¼ 1, and t1d 0.

(b) If q1�1mod 4 and n1 2mod 4, let s ¼ 1, r1 ¼ n, and t1d 0 with t1 even.

(c) If q1 3mod 8 and n1 0mod 4, let s ¼ 1, r1 ¼ 2bnc2 0 , and t1d 0 with t1 even.

Let o be a primitive element of F ðþ; �Þ. Then

F 
 ¼ 6
0ck<2

6
0ci<n

okr1q
i � osðq i�1Þ=ðq�1Þ � o2nZ:

Define a multiplication � : F � F ! F by

x � 0 ¼ 0

x � osðq i�1Þ=ðq�1Þþ2nj ¼ xq
i � osðq i�1Þ=ðq�1Þþ2nj

x � or1q
iþsðq i�1Þ=ðq�1Þþ2nj ¼ xp

t1qi � or1q
iþsðq i�1Þ=ðq�1Þþ2nj

for all x A F , 0c i < n, and 0c j < ðqn � 1Þ=2n. Then F ðþ; �Þ is a generalized André
system of order pt having a right nuclear subgroup of order ðpt � 1Þ=2.
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Conversely, every generalized André system of order pt having a right nuclear sub-

group Hð�Þ of order ðpt � 1Þ=2 can ( for some choice of o) be represented in the above
form, where n is the order of the companion automorphism group of Hð�Þ.

Proof. Most of this follows directly from the results in Section 4. In particular, the
choices for s and r1 are in accord with (4.8) and Proposition 4.4. The statements of
greatest interest concern the choices for t1; we justify that the indicated choices, and
only these choices, satisfy (4.5). For convenience, let ai ¼ ð2n; pt1qi � 1Þ and bi ¼
r1q

i þ sðqi � 1Þ=ðq� 1Þ. Condition (4.5) then reads: ai a bi for all 0c i < n.
In (a), (4.5) is satisfied for all choices of t1d 0 since ai is even and bi is odd for all

0c i < n.
Consider (b) and (c) together. Note that (4.5) automatically holds when i is odd

since then bi is also odd. Suppose first that t1 is even. Then 4 j ai but bi1 2mod 4
when i is even, so (4.5) holds for all i. Now suppose that t1 is odd, and consider
i ¼ n=2. We have ban=2c2 ¼ 2, so ban=2c2 j bn=2. Also, bnc2 0 j ðqn=2 � 1Þ=ðq� 1Þ, so
bnc2 0 j bn=2. But ban=2c2 0 j n, so an=2 j bn=2. Thus, (4.5) cannot be satisfied for i ¼ n=2
when t1 is odd. r

A few remarks are in order. First, there are no generalized André systems that
possess an index 2 right or middle nucleus when q1�1mod 8 and n1 0mod 4.
Second, the necessity that t1 be even in (b) settles in the a‰rmative the conjecture
[3, (4.4)] of Hiramine and Johnson. Finally, in [3, (2.4)], Hiramine and Johnson
incorrectly state that in the above context ðq; nÞ must be a Dickson pair. This resulted
in the omission in their classification [3, (4.3)] of the index 2 planes in the non-Dickson
pair case. As Theorem 5.2(c) above illustrates, there is in fact an infinite family of
index 2 generalized André systems where ðq; nÞ is not a Dickson pair.

Example 5.3. In Theorem 5.2(c), take q ¼ 3, n ¼ 4, s ¼ 1, r1 ¼ 2, and t1 ¼ 0. Note that
ðq; nÞ ¼ ð3; 4Þ is not a Dickson pair. Let F ¼GFð34Þ and F 
 ¼ hoi. The correspond-
ing companion automorphism map l : F 
 ! AutF is given by lðo iÞ ¼ ðx 7! x3

hi Þ
where

hi ¼

0 if i1 0; 2mod 8

1 if i1 1; 7mod 8

2 if i1 4; 6mod 8

3 if i1 5; 3mod 8.

8>><
>>:

The resulting generalized André system F ðþ; �Þ has kernel of order 3, nub Z ¼ o8Z

of index 8, and nuclei Nrð�Þ ¼ of0;1;4;5gþ8Z and Nmð�Þ ¼ of0;3;4;7gþ8Z, both of index
2. Since Nr0Nm, the corresponding plane is neither a nearfield nor an André plane.

Example 5.3 provides a minimum order example of the non-Dickson pair case.
Perhaps of greater interest is the fact that Nr0Nm, even though both nuclei have
index 2. This provides a counterexample to the claim made in [3, (5.1)] (the proof
there errs in the assumption that gSl is contained in S
).
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6 Replacements in Dickson nearfield planes

In this section we develop a replacement procedure in Dickson nearfield planes that
generalizes the ‘‘Type 2’’ replacements of Hiramine and Johnson [3, Section 3.2]. The
resulting planes are generalized André planes that admit a homology group of pre-
scribed size. The procedure is nub preserving in the sense that the nub of the resulting
generalized André system contains the nub of the original nearfield. We determine
necessary and su‰cient numerical conditions under which this procedure actually
succeeds. Furthermore, we determine decomposition parameters for the resulting
generalized André systems when represented as in Theorem 4.1.
Let F ðþ; �Þ be a ðq; nÞ-Dickson nearfield, and represent it as in Theorem 5.1 with

s ¼ 1. Let d be any divisor of n. As F 
ð�Þ=Z is cyclic of order n with a generator
o � Z, there is a unique subgroup Hð�Þ=ZcF 
ð�Þ=Z of index d with generator
o�d � Z. Thus, there is a unique subgroup Hð�ÞcF 
ð�Þ of order ðqn � 1Þ=d con-
taining Z. Furthermore, ZtHð�ÞtF 
ð�Þ and

Hð�Þ ¼ 6
0ci<n=d

o�di � Z ¼ 6
0ci<n=d

oðqdi�1Þ=ðq�1ÞþnZ

F 
ð�Þ ¼ 6
0ck<d

Hk ¼ 6
0ck<d

6
0ci<n=d

o�ðkþdiÞ � Z;

where Hk ¼ ok �Hð�Þ ¼ oðqkþdi�1Þ=ðq�1ÞþnZ (for 0c k < d) are the cosets of Hð�Þ in
F 
ð�Þ.
Let Sk ¼ SðHkÞ ¼ fx 7! x � h : h A HkgJGLð1;F ðþ; �ÞÞ. These Sk’s partition the

spread map set of the nearfield plane AðF ðþ; �ÞÞ along the cosets of Hð�Þ in F 
ð�Þ.
Our aim is to find replacements for the partial spreads determined by the Sk’s so as to
obtain a generalized André plane admitting a homology group (induced by Hð�Þ) of
order ðqn � 1Þ=d. (Note: two partial spreads are replacements for each other if their
components cover exactly the same points.)
To this end, let r : x 7! xp

e

be any automorphism of Fðþ; �Þ, let 0c k < d, and
define

~SSk ¼ rSk ¼ fx 7! xr � h : h A Hkg

¼ fx 7! xp
eqkþdi � oðqkþdi�1Þ=ðq�1Þþnj : 0c i < n=d and 0c j < ðqn � 1Þ=ng:

Since SkJGLð1;Fðþ; �ÞÞ, it is clear that ~SSkJGLð1;F ðþ; �ÞÞ as well.

Claim 6.1. ~SSk is a partial spread map set of F (considered as a vector space over

GFðpÞ) such that ~SSks ¼ ~SSk for all s A SðHÞ and s~SSk ¼ ~SSk for all s A SðZÞ.

Proof. First, r A GLðF ; pÞ and SkJGLðF ; pÞ, so ~SSkJGLðF ; pÞ. Since Sk acts
sharply on F 
, so does rSk. Thus, ~SSk is a partial spread map set of F. For

sðhÞ A SðHÞ, we have ~SSksðhÞ ¼ rSðHkÞsðhÞ ¼ rSðHk � hÞ ¼ rSðHkÞ ¼ rSk ¼ ~SSk.
Finally, let sðzÞ A SðZÞ. Then zr A Z since Z is a characteristic subgroup of F 
ð�Þ.
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Also xsðzÞr ¼ ðx � zÞr ¼ xr � zr, i.e., sðzÞr ¼ rsðzrÞ. Thus, sðzÞ~SSk ¼ sðzÞrSðHkÞ ¼
rsðzrÞSðHkÞ ¼ rSðzr �HkÞ ¼ rSðHkÞ ¼ ~SSk. r

Claim 6.2. ~SSk is a replacement for Sk if and only if d j ðpe � 1Þ.

Proof. First we elucidate what it means for ~SSk to replace Sk:

~SSk replaces Sk

, Ex A F 
 : xr �Hk ¼ x �Hk

, Ex A F 
 Ei bj: xr � o�ðkþdjÞ � Z ¼ x � o�ðkþdiÞ � Z

, Ea Ei bjd i: oapeqkþdj � oðqkþdj�1Þ=ðq�1Þ A oaqkþdi � oðqkþdi�1Þ=ðq�1Þ � Z

, Ea Ei bjd i: oaqkðpeqdj�qdiÞ � oqkðqdj�qdiÞ=ðq�1Þ A Z

, Ea Ei bjd i: qkþdi aðpeqdð j�iÞ � 1Þ þ qdð j�iÞ � 1

q� 1

	 

1 0mod n

, Ea bjd 0: ðapeðq� 1Þ þ 1Þ � q
dj � 1

q� 1
þ aðpe � 1Þ1 0mod n: ð6:1Þ

Suppose ~SSk is a replacement for Sk, so that (6.1) holds. Now d j n, so d divides
the left-hand side of (6.1). Furthermore, every prime factor of d divides q� 1, so
d j ðqdj � 1Þ=ðq� 1Þ by Corollary 2.5(a), and therefore d j aðpe � 1Þ. As this must
hold in particular when a ¼ 1, we obtain d j ðpe � 1Þ.
Conversely, suppose d j ðpe�1Þ. In (6.1), let a ¼ apeðq�1Þþ1 and b ¼ �aðpe�1Þ.

Now every prime factor of n divides q� 1, so ða; nÞ ¼ 1. Thus, the congruence
ax1 bmod n has a unique solution for xmodulo n. But fðqi � 1Þ=ðq� 1Þ : 1c ic ng
is a complete set of remainders modulo n, so there is a unique solution to ax1bmod n
of the form ðq f � 1Þ=ðq� 1Þ with 1c f c n.
To show that (6.1) holds, it su‰ces to show that d j f (for then we can take

j ¼ f =d). To this end, first note that d j b by hypothesis. Further, ðd; aÞ ¼ 1 since
every prime factor of d divides q� 1, so d j ðq f � 1Þ=ðq� 1Þ. By Corollary 2.5(b), we
get d j f except possibly in the case where q1�1mod 4 and f is even. In the latter
case, we have bdc2 0 j f ; furthermore, bdc2c 2 in this situation since ðq; nÞ is a Dick-
son pair, so bdc2 j f . In all cases, we obtain d j f , as required. r

Theorem 6.3. Let Fðþ; �Þ be a ðq; nÞ-Dickson nearfield, with q ¼ pr and p prime.

Represent Fðþ; �Þ as in Theorem 5.1 with s ¼ 1. Let d be any divisor of n.

(a) There exists a unique subgroup Hð�ÞcF 
ð�Þ of order ðqn � 1Þ=d such that

ZcHð�Þ. Furthermore, ZtHð�ÞtF 
ð�Þ, and the cosets of Hð�Þ in F 
ð�Þ are
( for 0c k < d):

Hk ¼ o�k �H ¼ foðqkþdi�1Þ=ðq�1Þþnj : 0c i < n=d and 0c j < ðqn � 1Þ=ng:
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(b) For each 0c k < d, select an automorphism rk : x 7! xp
tk of F ðþ; �Þ with r0 ¼ 1,

let Sk ¼ fx 7! x � h : h A Hkg and ~SSk ¼ rk � Sk ¼ fx 7! xrk � h : h A Hkg, and put
S ¼ 6

0ck<d
Sk and ~SS ¼ 6

0ck<d
~SSk.

Sk and ~SSk are partial spread map sets of F (as a vector space over GFðpÞ) of the
form:

Sk ¼ x 7! xq
kþdi � oðqkþdi�1Þ=ðq�1Þþnj : 0c i <

n

d
and 0c j <

qn � 1

n

� �

~SSk ¼ x 7! xp
tk qkþdi � oðqkþdi�1Þ=ðq�1Þþnj : 0c i <

n

d
and 0c j <

qn � 1

n

� �
:

(c) ~SS is a spread map set of F if and only if d j ðptk � 1Þ for all 0c k < d.

(d) Suppose ~SS is a spread map set of F, and let Að~SSÞ denote the corresponding trans-
lation plane with point set FlF . ThenAð~SSÞ is a generalized André plane of order
qn obtained from the nearfield planeAðSÞ by multiple net replacement.Að~SSÞ admits
a group of homologiesHð0Þ ¼ fðx; yÞ 7! ðx; y � hÞ : h A Hg of order ðqn � 1Þ=d and
a group of homologies ZðyÞ ¼ fðx; yÞ 7! ðx � z; yÞ : z A Zg of order ðqn � 1Þ=n.
The kernel of Að~SSÞ has order pg where g ¼ gcdftk þ rk : 1c kc dg (where
td ¼ 0). In particular, the kernel is a subfield of GFðqdÞ.

Proof. Parts (a) and (b) are clear from considerations made above; part (c) follows
from Claim 6.2. For part (d), Að~SSÞ is a generalized André plane since SJ
GLð1;Fðþ; �ÞÞ. The statement concerning the homology groups follows from Claim
6.1. The rest follows from the fact that the kernel is the fixed field of the set of
companion automorphisms lð~SSÞ ¼ fx 7! xp

tk qkþdi : 0c k < d and 0c i < n=dg ([5,
Theorem 10.7]).

Example 6.4. The case d ¼ 2. (This case was considered in [3, (3.4)], but the claim
that the kernel must be a subfield of GFðqÞ is in error.) Since 2 j n and n j ðqn � 1Þ, p
must be odd. So 2 j ðpt1 � 1Þ for all t1. Thus, any choice for t1 leads to a spread. By
appropriate choice of t1, one can obtain planes with any subfield of GFðq2Þ as kernel.
In particular, by taking t1 to be an odd multiple of r, we see that the kernel can in fact
grow to GFðq2Þ.

Example 6.5. The case d ¼ 3. Here we have 3 j n, so 3 j ðq� 1Þ. If 3 j ðp� 1Þ (in par-
ticular, when r is odd), then any choices for t1 and t2 yield a spread. If 3 j ðpþ 1Þ,
then any choices with t1 and t2 even will yield a spread.

The generalized André systems resulting from Theorem 6.3 can be subjected to the
decomposition in Theorem 4.1. Here we determine appropriate values for the pa-
rameters in this decomposition. Quantities appearing in Theorem 4.1 will be adorned
with overbars to distinguish them from those that occur in Theorem 6.3. The groups
H and Z correspond directly in both theorems. Thus, d ¼ d and nd ¼ n, from which
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we obtain qn ¼ pt ¼ qn ¼ qnd , so q ¼ qd . Further, pr ¼ q ¼ qd ¼ prd , so r ¼ rd. To
determine s, observe that lðosÞ ¼ ðx 7! xqÞ ¼ ðx 7! xq

d Þ ¼ lðo�dÞ ¼ lðoðqd�1Þ=ðq�1ÞÞ,
so we can take s ¼ ðqd � 1Þ=ðq� 1Þ. To determine choices for the rk’s, we compare
the exponents on o for arbitrary elements of F 
 under both representations:

qkþdi � 1

q� 1
þ nj ¼ qdi � q

k � 1

q� 1
þ qdi � 1

q� 1
þ nj

¼ qk � 1

q� 1
� qi þ s � q

i � 1

q� 1
þ n dj;

so we can take rk ¼ ðqk � 1Þ=ðq� 1Þ. Finally, to determine the tk’s, the automor-
phisms lðorkq

iþsðq i�1Þ=ðq�1ÞÞ ¼ ðx 7! xp
tk q iÞ and lðoðqkþdi�1Þ=ðq�1ÞÞ ¼ ðx 7! xp

tk qkþdi Þ
must coincide. Hence, we can take tk1 tk þ rkmod t.
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