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Abstract. The string-theoretic E-functions Eg(X; u, v) of normal complex varieties X having at
most log-terminal singularities are defined by means of snc-resolutions. We give a direct com-
putation of them in the case in which X is the underlying space of the three-dimensional A-D-E
singularities by making use of a canonical resolution process. Moreover, we compute the
string-theoretic Euler number for several compact complex threefolds with prescribed A-D-E
singularities.
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1 Introduction

The string-theoretic (or stringy) Hodge numbers h%,?(X) of normal, projective complex

varieties X with at most Gorenstein quotient or toroidal singularities were introduced
in [7] in an attempt to determine a suitable mathematical formulation (and general-
ization) for the numbers which are encoded into the Poincaré polynomial of the
chiral and antichiral rings of the physical “integer charge orbifold theory”, due to
the LG/CY-correspondence of Vafa, Witten, Zaslow and others. (See [47], [49, §3-5],
[50, §4]). These numbers are generated by the so-called Eg.-polynomials and, as it was
shown in [7] and [6], they are the right quantities to establish several mirror-symmetry
identities for Calabi—Yau varieties. In fact, as long as a stratification (separating
singularity types) for such an X is available, the key-point is how one defines the
E.-polynomial locally at these special Gorenstein singular points (by “measuring”,
in a sense, how far they are from admitting of crepant resolutions).

Recently Batyrev [4] generalized this definition and made it work also for the case
in which one allows X to have at most log-terminal singularities. In this general
framework, ones has to introduce appropriate Eg.-functions Eq.(X;u,v) instead
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which may be not even rational. The treatment of varieties X with ey (X) =
lim, y—.1 Eqr(X;u,v) ¢ Z is therefore unavoidable. Nevertheless, as it turned out, this
new language is a very important tool as it unifies the considerations of certain
invariants associated to a wide palette of “MMP-singularities” and leads to the use
of more flexible manipulations, as for example in the study of the behaviour of log-
flips, and in the proof of the cohomological McKay correspondence—both on the
level of counting dimensions and on the level of determining the motivic Gorenstein
volume. (See [5, 1.6, 4.11 and 8.4] and [13, Thm. 5.1)).

In the present paper we deal with the evaluation of the Eg,-functions and string-
theoretic Euler numbers for the three-dimensional A-D-E singularities, and emphasize
some distinctive features of the computational methodology.

(a) Log-terminal singularities. Let X be a normal complex variety, i.e., a normal,
integral, separated scheme of finite type over C. Suppose that X is Q-Gorenstein, i.e.,
that a positive integer multiple of its canonical Weil divisor Ky is a Cartier divisor. X
is said to have at most log-terminal (respectively, canonical/terminal) singularities if
there exists an snc-desingularization ¢ : X — X, i.e., a desingularization of X whose
exceptional locus €x(¢p) = Ui’:l D; consists of smooth prime divisors Dy, D, ..., D,
with only normal crossings, such that the “discrepancy’ with respect to ¢, which is
the difference between the canonical divisor of X and the pull-back of the canonical
divisor of X, is of the form

,
Ky — 9" (Kx) = ZaiDi
i1

with all the @;’s > —1 (respectively, >0/>0).

Examples 1.1. (i) The quotients C? /G, for G a linearly acting finite subgroup of
GL(2,C) (resp. of SL(2,C)), have at most log-terminal (resp. canonical) isolated
singularities.

(i) All @-Gorenstein toric varieties have at most log-terminal (but not necessarily
isolated) singularities.

(b) E-polynomials. As it was shown by Deligne in [12, §8], the cohomology groups
H'(X,®) of any complex variety X are equipped with a functorial mixed Hodge
structure (MHS). The same remains true if one works with cohomologies H!(X, Q)
with compact supports. Namely, there exists an increasing weight-filtration

W:0=W cWoc W< < Wy < Wy=H(X,Q)
and a decreasing Hodge-filtration

F  H(X,C)=F'>F's ... oF o F*l =0,
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such that #" induces a natural filtration
FP(Gr(H!(X,€))) = (Wi(H!(X,C)) N FP(H!(X,T))
+ Wi (H! (X, ©)))/ Wi (H/(X, ©))

(denoted again by ") on the complexification of the graded pieces

Grk ( (X Q)) = Wk/Wk—l-

Let now

hP(H/(X,Q)) := dim¢ Gr}.Gr): (H!(X,C))

ptq

denote the corresponding Hodge numbers by means of which one defines the so-called
E-polynomial of X:

E(X;u,v) Ze’”’ Yulv? e Zlu,v),

where

P I(X) = 37 (~1) hP(HI (X, ©)).

i=0

The E-polynomials are to be viewed as ‘““‘generating functions” encoding our in-
variants. For instance, the topological Euler characteristic e(X) is E(X;1,1). In fact,
the E-polynomial behaves similarly; e.g., for locally closed subvarieties Y, Y7, Y, of X,

E(X\Y;u,v) = E(X;u,v) — E(Y;u,v), (1.1)
EMU Yy u,v) = E(Yi;u,0) + E(Yy;u,v) — E(Y1 N Ya5u,v) (1.2)

and
E(X;u,v) = E(F;u,v) - E(Z;u,v) (1.3)

whenever F denotes the fiber of a Zariski locally trivial fibration X — Z.

Example 1.2. If Y — X is the blow-up of a d-dimensional complex manifold X at a
point x € X and D =~ ]P(,fi”1 the exceptional divisor, then E(Y;u,v) equals

E(X\{x};u,0) + E(D;u,v) = E(X;u,v) + uv + (uv)* + - - + (uv)*"" (1.4)

(c) Eq-functions. Allowing the existence of log-terminal singularities in order to pass
to stringy invariants, one takes essentially into account the ““discrepancy coefficients”.
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Definition 1.3. Let X be a normal complex variety with at most log-terminal singu-

larities, ¢ : X — X an snc-desingularization of X as in (a), Dy, Dy, ..., D, the prime
divisors of the exceptional locus, and I := {1,2,...,r}. For any subset J = I define
X, if J =
D; = . and Dj := DJ\ U D;.
{ ﬂje] D, ifJ#g / jel\J ’

The algebraic function

uv — 1
(X;u,v) E(Dj;u,v T E— 1.5
slr ch:[ J ;l;[] (uv)”’“ _1 ( )

(under the convention for Hjej tobe 1, if J = &, and E(;u,v) := 0) is called the
string-theoretic E-function of X.

The main result of [4] says that:

Theorem 1.4. The string-theoretic E-function Eg.(X;u,v) is independent of the choice
of the snc-desingularization ¢ : X — X.

Remark 1.5. (i) The proof of 1.4 relies on ideas of Kontsevich [30], Denef and Loeser
by making use of the interpretation of the defining formula (1.5) as some kind of
“motivic non-Archimedean integral” over the space of arcs of X. (For an introduc-
tion to motivic integration and measures, we refer to Craw [11] and Looijenga [31]).

(ii) To define (1.5) it is sufficient for ¢ : X — X to fulfil the snc-condition only for
those D;’s for which a; # 0.

(i) If X admits a crepant desingularization 7 : X — X, ie., Ky = n°Ky with X
smooth, then Ey (X;u,v) = E(X;u,v).

(iv) In general Estr(X ;u,v) may be not a rational function in the two variables
u,v. Nevertheless, if X has at most Gorenstein singularities, then the discrepancy
coefficients ay, .. ., a, are non-negative integers and

Ew(X;u,v) € Z[u,v] N Q(u, v).

(Of course, for X projective, stringy Hodge numbers /4,7(X) can be defined only if

Ew(X;u,v) € Z[u,v]).

(v) The existence of snc-desingularizations of any X is guaranteed by Hironaka’s
main theorems [24]. But since definition 1.3 is intrinsic in its nature, it is practically
fairly difficult to compute Ey(X;u,v) precisely without having at least one snc-
desingularization of X at hand, accompanied firstly with the intersection graph of
Dy, ..., D, and secondly with the knowledge of their analytic structure.
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Definition 1.6. One defines the rational number

esn(X) = 11m Eg(X;u,0) Z D] L (1.6)

jEJaj+1

as the string-theoretic Euler number of X. Moreover, the string-theoretic index
indg,(X) of X is defined to be the positive integer

indg, (X) := min{l €Z>

esu—(X) € %Z}

Examples 1.7. (i) For Q-Gorenstein toric varieties X, indg(X) =1, and eg (X)) is
equal to the normalized volume of the defining fan. Moreover, for Gorenstein toric
varieties X, Ey(X;u,v) is a polynomial.

(i) Normal algebraic surfaces X with at most log-terminal singularities have
indg,;(X) = 1. There exist, however, normal complex varieties X of dimension d > 3
with at most Gorenstein canonical singularities having ind,(X) > 1.

Batyrev formulated in [4, 5.9] the following conjecture:

Conjecture 1.8 (On the range of the string-theoretic index). Let X be a d-dimensional
normal complex variety having at most Gorenstein canonical singularities. Then
ind, (X)) is bounded by a constant C(d) depending only on d.

Remark 1.9. As it will be clear by Theorem 1.11, Conjecture 1.8 is not true in general.
Nevertheless, there exist several classes of examples of such X’s with string-theoretic
index bounded by a constant which depends exclusively on the dimension. (See e.g.
[4, 5.1, 5.10] for the case in which X is the cone over a (d — 1)-dimensional smooth
projective Fano variety being equipped with a projective embedding defined by a suit-
able very ample line bundle). The problem of chacterizing those X’s having bounded
inds,(X) is still open.

(d) The A-D-E’s. The d-dimensional analogues of the classical hypersurface A-D-E
singularities [16] have underlying spaces of the form

X; _X- := Spec(Clxy,...,xs11]/(f)), d=2, (1.7)

with f(x1,...,Xa41) == g(x1,x2) +¢'(x3,..., Xa41)

where g(x],x,) is the defining polynomial of a simple curve singularity

Xy = Spec(C[x1, x2]/(9))
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in the affine plane with

Types g(x1,x2)

An n+1 +x2, > 1

D, |x'+xx3,n>4

E¢ x; + x3
E~ x13 + xlxg
Eg x13 + xg
and ¢'(x3,...,X441) i= Z;Hsl x? is nothing but the defining quadratic polynomial of

the affine (d — 2)-dimensional quadrlc

Xy = X\ = Spec(Cls, ..., xa11]/(9")-

Remark 1.10. The d-dimensional A-D-E singularities have lots of interesting
properties:

(i) Herszberg [23] and Treger [46, Thm. 1] proved that they are absolutely isolated,
i.e., that they can be resolved by blowing up successively a finite number of closed
points; in fact, up to analytic isomorphism, they are the only absolutely isolated sin-
gularities of multiplicity 2.

(i) Generalizing the classical result of Artin [2], Burns [9, 3.3-3.4] showed that
they are rational, i.e., that for any desingularization 7 : ¥ — X, ) in dimension d > 2,
we have (R'm.0y), =0 for all i > 1. In particular, this means that they have to be
canonical (resp. terminal) of index 1 for d > 2 (resp. for d > 3); cf. Reid [33].

(ii) Finally, Arnold’s results [1] (see also [14, 8.26-8.27]) imply that they are the
only simple (i.e., “0-modular’) hypersurface singularities.

These properties lead us to the conclusion that X; (@-g might belong to the class of
the best possible candidates for performing concrete computations for the string-
theoretic invariants. On the other hand, we should stress that none of the above general
techniques mentioned in 1.10(i)—(ii) are “‘constructive” enough in the sense of 1.5(v).
That’s why we restrict ourselves in this paper to the three-dimensional case, and based
on a canonical snc-resolution being constructed by Giblin [18] and independently by
the second-named author in [34], [35], we work out the needed details to prove the
following:

Theorem 1.11. The rational, string-theoretic E-functions of the underlying spaces
X=X 3 of the 3-dimensional A-D-E-singularities are functions in w = uv given
by the followzng Sformulae:
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(i) Type A,, n even.

379

11/2 2
w—1w>=1) (w— 1w
Eg(X;u,0) = w +w— 1+Z wl+1—1 T
, (n/2)—1 1 1
-1 -1 . ‘
+(w =1 =1) 2w — 1)(wit2 1) + (WD — 1) (w3 — 1)

(ii) Type A,, n odd.

n

Ege(X;u,0) = (w = 1)(w+1)* +w+ FJ

1)/2 1)/2
(w— 1) (w— 1)
(w -1 l Z Wit _ Wwnt3)/ Z (Wit — 1) (wit2 — 1)1 ' ’V

=]

(iii) Type Dy, n even.

Eq(X;u,0) = (w—1D(w> 4+ 3w+ 1)

7 (n/2)+1 1 ‘|

wh —1 + 12:3: w2(n+4-2i) _ 1
(n/2)—1 1
Z wl(m/2)=i+1) _ 1

i=1

+(w—=1(w+1)?

+2(w — 1)(1 + 4w+ w?)

+(14w)

+ (14w

w— it w— wAtl n
22/1 <W’”’1 - 1) (W/H'l - 1) 7(5 1)1

N Z (W — \v’”l) (W — W’”1> (W — W”H>
vy Wl wATl— 1) \witl — 1

/)’/

A" W' (w - w”/z) N (H§l <W — wll/2)=i+1)
wh —1 wh/2 — 1 P wl(n/2)—=i+1)

&

x/+1 Ww— WA’H w— k' +1
+2 Z <1,n+1 )(Wi/“—l Wi+l +2n =5

where the pairs (ic, ) of the fourth sum are taken from the set
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{(g—i,g—(i—i—l)) ’1<i<g—2}U{(g—i,2(n—2i)—l) ’1<i

N
NS
|
;_/

the triples (i, A, 1) of the fifth sum from the set

n n
noo.n_ . o <i<"_
{(2 5 i,2(n —2i) 1) ‘1 i 1}

U{(g—(i+1),g—(i+1),2(n—2i)— 1) ‘1

[NSREN

N
N
|
|
)

>

and the triples (k' ', ') of the sixth sum from the set

{(g—i,g—(i+l),2(n—2i)—l>‘1<i< g—Z}U{<n—l,g—l,g—l>}.

(iv) Type D,, n odd.

Egqe(X;u,0) = (w—1)(w+1)?

) | | (n+1)/2 |
=D+ DY Syt T ; I
s (n=3)/2 1
+2(w—=1)(1 +4w+w") ; w({((r—D)/2)—i+1) _ ]
w— w(”l)/2> [W —w" o — w7l }
+2(1+ W)(Wmn/z 1) w1 T

+(14w)

w— ™\ [ — il (n=3)/2 7o (=) /2)=i+1)\?
wh — 1 wh—1 _ 1 + 12:1: w((r=1)/2)—=i+1) _ 1
w—weth\ [y — wAt! 7
2(ZA)<WK+1—1><W’1+1—1 _E(n_1)+6
)
w— w"“) (W — w“1> <w — W”H>
+ (,(;Z:ﬂ) <WK+1 1 wil 1 witl — ]

w— wr T\ (= ALYy — gt
¥2 2 <WK’H - 1> <W/+1 - 1> <w!"“ -1 +2(n—1) -4

(!, A", pt")

+ (14w
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where the pairs (k, ) are taken from the set

n—1 n—1 n—>5
_on—1 i<
{(2 i 3 (z—l—l))‘l\z\ 5 }

U{(ngl_i’z(n—Zi)_3>’1<i n;3}
U{(ngl(i+1),2(n2i)3>‘1<i<n;5},

the triples (ic, A, i) from the set

n—3 n-3 n—-1 .n—-1 . . n-—3
{(n—l,T, 3 >}U{< 3 —l,T—l,Z(H—Zl)—3>‘1<l< 3 }

U{(ngl—(i—&—l),n;1—(1‘—&—1),2(11—21')—3)‘1<i< ”‘5},

A

and the triples (x', ), 1') from the set
n—1 n—1 n—>5
_.on—1 Y <i<
{( 3 i (i+1),2(n—2i) 3)’1 i 3 }

A2t}

(v) Type Es.
w1l (w+D*w=1) (w+1D*w=1)
Ey.(X;u v):w3fl+ 3 +
’ w2+ 1 wl —1 wl0 — 1
2(1 + 4w + w?) (w - w"’“) (w - w”l)
w1 +(1+w) (Kz):) wrtl — ] wAtl — -9
w— wETLY (w — wALN (p — putl
+(“z:u) <WK+1 _ 1) <wl+1 _ 1) <W,u+1 _ 1) +5

where the pairs (k, ) of the first sum are taken from the set

{(1,1),(1,3),(3,1),(1,6),(6,1),(1,9),(9,1),(3,6),(6,9)}
and the triples (k, A, ) of the second sum from the set

{(1,1,9),(1,6,9),(1,9,6),(1,3,6),(1,6,3)}.
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(vi) Type E4.

1
) _ 2
Ew(X;u,0)=(w—-1Ww+1) {1+w6—1+W10—1+le—1+W14—1

1 1 1
_ 2
+2(w 1)(1+4W+W){Lv2—1+‘v3—1+w5—1}

w— WK+1 w— W}Hrl
Z (WK-H _ 1) (WA-H — 1) —-21

(re, 4)

w— K+1 w— W/'Hrl w— W/Hrl
- 3 (rmy) G Gy o

+ (14w

where the pairs (x, ) are taken from the set

{(4,9),(9,4), (4,11), (11,4), (1, 11), (11, 1), (4,4)
(1,4),(4,1),(4,13),(13,4),(2,13),(13,2),(2,2)
(2,5),(5,2),(1,2),(2,1),(4,2),(2,4), (1, 1)}.

and the triples (ic, A, 1t) from the set

{(1,1,11),(1,2,4),(1,4,2),(1,4,11),(1,11,4),(2,2,5),
(2,2,13),(2,4,13),(2,13,4),(4,4,9), (4,4,11), (4,4,13) }.

(vii) Type Eg.

1
Eq(X;u,0) = w3 — 14 (w—1)(w+ I)Z[W12 — +

1 1 1 !
- 2
+2w =11 +4w+w ){;/V2—1+w3—1+w5—1+W8—J

w— chJrl w— WiJrl
Z <w’f+1 —1><w’~+1 - 1> _28]

(r,4)

— wETLN (y — WAL (i — et
+ Z <V”+1—l><w“1—l witl 1 +17

+(1+w)
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where the pairs (k, ) are taken from the set

{(1,1),(1,2),(2,1),(1,4),(4,1),(1,11), (11, 1),
(2,2),(2,4),(4,2),(2,7),(7,2),(2,19),(19,2),
(4,4),(4,7),(7,4),(4,11),(11,4),(4,23),(23,4),
(7,7),(7,15),(15,7),(7,19),(19,7),(7,23),(23,7)}

and the triples (k, A, ) from the set

{(1,1,11),(1,2,4),(1,4,2), (1,4, 11), (1,11,4), (2,2, 19),
(2,4,7),(2,7,4),(2,7,19),(2,19,7), (4,4, 11), (4,4,23),
(4,7,23),(4,23,7),(7,7,15),(7,7,19),(7,7,23)}.

In particular, the values of the corresponding string-theoretic Euler numbers (1.6) are
equal to

Types esr(X)
A,, neven yo 3
m n+3
A,, nodd 2
_ 80n* — 381n° +96n% — 128
16n3
D,, n even

i (372 — 492n% — 32i — 184n> + 20n* + 688in — 160in> + 304in> + 208n + 5n° — 50in*)
sy (n=2i)*(n—2i+2)*

—96n° 4 765n% — 15621 + 1085

16(n —1)%
D,, n odd
’ . 2 2(585m — 129 + 13002 — 306i — 214n® — Sn* — 200in + 40in> + 484in> + 5n° — 50in*)
P (n+1-=2i)(n—1-2i)>
67
Es¢ 20~ 1675
609851
E ~3.2267
7 189,000
315467
E ~1.3692
8 230400

and the string-theoretic indices take the following values:
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Types indg, (X))
1, if n=1 (mod2)
A, n+3, if n=2or4 (mod6)

§+ I, ifn=0 (mod6)

It belongs to the intervall

(n/2)-2

(n,n3 [T (n—2i)(n—2i+2)*| NZ, if n even

D, i=1
(n—5)/2
n16(n—1)" [ (n+1-2)*n—1-2)|NZ, ifnodd
i=1

E¢ 235
E; 2333537
ES 2103252

2 The canonical desingularization procedure

Throughout this section we shall omit the superscript d (=3), use the notation (1.7),
and write the defining equation as:

Xp = {(x1,x2,%3,x3) € C*| f(x1, X2, X3, X4) = g(x1,%2) + X3 + x7 = 0}.

Let 7 : Bly(C*) — €* be the blow up of €* at the origin, with

thj = le[,
Vi, j 1 <ij<4]

& =n"'(0) = {0} x P}, and let U; = Bly(C*) denote the open set given by (1 # 0).
In terms of analytic coordinates we may write for i € {1, 2, 3,4}

Blo((]:4) = {((Xl,X2,X3,X4), ([1 Tty 14)) € (]:4 X IP(%«

(]i - {((X1,XZ,X3,X4),(é],~--7gj7---7é4)) 6(]:4 X 033

Xj = Xifj,
Vi, je{1,2,3,4\{i} |

ti -~ . . . .
where &; = t‘l, and &; means that we omit &;. Moreover, we may identify U; with a ct
i

with respect to the coordinates x;, &, . .. ,E,., ..., &4. The restriction 7|y, is therefore
given by the mapping
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(E49(Xi,51,...,é\i,o-~»é4)

((xi&rse X, X XG5 Xila), (& o \1/ i éy)) e U

i-th pos.
TZ‘ U;

(xiéla v Xl X Xiig, - Xif4)

Note that &; := &N U; is described as the coordinate hyperplane (x; = 0); i.e., the
open cover { Ui}, ;4 Of Bly(C*) restricts to & to provide the standard open cover of

IP3 by affine spaces €°, with {&}eq1,2,3,4\ () being the analytic coordinates of &;.

Notation. To work with a more convenient notation we define

rt

BlO((E4) = U, U= Spec(q:[yi,lv Vi, 25 yl',3»yi,4])a

i=1

by setting as coordinates for U;’s:

[ xk, fori=k
Vik =g fori#k

Step 1. The first blow-up. Blowing up X at the origin, we take the diagram

& c Bly(CH = ¢*
u u u
&NBl(X;) < Bly(X;) 2= X,

and consider the strict transform

Blo(Xy) = 77! (X; N (C*\{0})) = 7! (X;) N (Bly(C*)\&))

of Xy in €* under 7, and the corresponding exceptional (not necessarily prime) divisor
&r = & NBly(Xy) with respect to 7|regr. .

» Local description of Bly(Xy) and &;. After pulling back f by n and restricting
ourselves onto U;, we get

7 (Nl = x5 fi= v

with f; e Cly; 15 Y2 Vi3 Vi.al- More precisely, we obtain
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Types ¥ f
An y111+y12+y13+y14 y§ﬁ1y221+1+y23+y24
D, |y}’ +J’1,1J’1,2+)’1A3+J’1,4 37! yz,z "’J’Z,l)’z.z‘*‘)’z,a"‘yu
Ee Y11 +y12’1y‘1"2+y12"3+y12’4 yg,ﬂ’z,z"‘yg,z"‘yg,a‘*‘ygA
E; Vit Iiaviatyis iy y§,1y2,2+y2$1y§,2+yi3+y§_4
Eg VAt Vit Vit i V32t Vst Vit yiy
and
Types f3 f;
Ay y§'+11J’z3l+J/32+1+J/34 yﬁlJ/44l+y42+y43+1
D, VAT vaiavaat L pia | VAV VIS vaadiavaat yis+ 1
Eq Viavsstyiavis 14 yi, ViiVast Viayiat iz +1
Es Y3avss+y3i¥iavis L b iy | Y vaat vaaVioviatyis+1
Eg ViaVas T yiayis T 143y Vi Vaat Viaviat+is+1
Locally,

Blo(X7)|

~ 4, 5
v — {(yi,lv Vi 2 yl‘,3»yi,4) eC |.fi(yi,17yi,21 Vi3 yi,4) =0},

and using the restrictions of f’s on the &s, i = 1,2,3,4, we get the equations for
rlu;:

Blo(Xf)m@@ gf|U _>{(yz1’.]}127}}z3ay14)e(1j |yzz: (yzlvyz2’yz3vy14) 0}

Lemma 2.1 (Local Reduction). The types of the singularities of Blo(Xy) are given by
the following table:
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i e | N i ettt
of X, on Bly(X)) affine pieces
AL Az — —
A,nz=3 Ay 2 U,
Dy Ay, Aq, Ay Uy, UyNU,, U1 N U,
Ds Az, Aq U, Uy
D, n=6 D, 2, A; U, U,
Es As Us
E, Dg U,
Eg E; U>

387

Proof. The affine pieces in which the singularities of Bly(Xy) are located are obviously
those of the above table (simply by partial derivative checking). Let us now examine
the types of the appearing singularities in each case separately.

Blowing up singularity A,,n > 3, we obtain an A, »-singularity in its normal

form f].

Blowing up D,’s, and working first with the patch Uj, we get a D, »-singularity in
its normal form f; whenever n > 6, no singularity for n = 4, and an As-singularity for
n =5, just by utilizing the analytic coordinate change

i =

y{.iV
1

ie{2,3,4}

2 .
vz 0n2)% i=1

and writing the corresponding defining polynomial as

1 4 2
Vi it ¥iatria=—701 )"+ 1)  + (1s)

Passing to U,, we have

Blo(Xy)| o,

:{(h,lw--

with partial derivatives w.r.t. 0 = 0(y, y,. ..

7J’2,4)€‘E4|9(J/2,1,~--

4

ay2,4):

s V24) = yg_fllyffz} + Y10+ y§,3 + )’574 =0}
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00 o o
EIo =(n—=1)y; 12)’3,23 + V22 = yaa((n — 1))/21,12)/3,24 +1)
a0 — -3 n—1_n—4 _ -3 n—2_ . n—4 1
e (n=3) 1 ¥y + v =ya((n=3)y3 "y, +1)
V22
00 00
—=2 and —— =2y, 4.
a3 V23 2.4 V2

Clearly, for n = 4, the singular locus of Bly(Xy)|y, consists of the points

(0,0,0,0), (v-1,0,0,0) and (—v-1,0,0,0)

which can be expressed as the singularities at the origin 0 of C* for

{J’z371)’z,z+y2‘1y2,2+y22,3+y22,40 o)

3 2 2 2
Y3205 1) £3V=13 (05 1)" = 290001+ (02.3)" + (02.4)" =0

(just by setting y, | = y; | + v—1 and Y2.i= Y3, forie{2,3,4}). Next, applying a
result of Badescu (in a very special case of it, [3, Thm. 1, p. 209]), we see that a/l normal
isolated singularities which can be fully resolved after a single blow-up and have ex-
ceptional divisor E = ;. x IP{. with conormal bundle ./} isomorphic to ¢z(1,1) are
analytically isomorphic to each other. It is easy to verify that this is valid for all sin-
gularities (2.1). Hence, they are all analytically isomorphic to an A;-singularity (which
has the same property). Alternatively, one can show that these are analytically iso-
morphic to A;-singularities by exploiting the fact that they are semiquasihomogeneous
of weight (3,3,1,4) and by using [36, Corollary 3.3]. (The completions are isomorphic
to the singularities defined by that polynomial part consisting of all terms of weight 1,
which is obviously equal to y, 1355+ ¥3 5+ ¥3 4 and =2y} )35 + (¥5.5)° + (13.4)%,
respectively). On the other hand, for n > 5, the only singular point of Bly(Xy)|y, is
(0,0,0,0), which again turns out to be an Aj-singularity (by the same reasoning).

Now the singularity E¢ passes after blowing up to an As-singularity, because using
the analytic coordinate change

Vs ie{l,3,4}

we get

1

6 2 2
Vaada2t ¥iat ¥istyie = —3050)" + (522)7 + (05)

2
+(12.4)"
Starting with E7 we obtain a Dg-singularity, because the analytic coordinate change

yii, ie{l,3,4}
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implies

2

1 5 2 2
y;,1y2,2 + yz,lyzz,z + y22ﬁ3 + y22,4 = _Z(yéﬁl) + 101 (12.2)" + (133)7 + (12.4)"

Finally, blowing up singularity Eg, we acquire an E;-singularity in its normal
form f,.

P Global description of Bly(X) and &;. This can be realized after coming back to
our global coordinates:

Types | Blo(Xy) = all ((x,...,x4),(t1 : 12 : 13 : 1a)) € Bly(C*) with:
A, X+ 3+ 83+ =0
D, X+ 5+ =0
E¢ e +x33+12+13=0
E, X168+ X1X205 + 63+ 13 =0
Esg X8+ x383+12+13=0

In particular, this means that the exceptional locus & is given globally by

Types of X;’s | &, = all (0,(t; : tr: 13 : ta)) € {0} x P with:

Ay B+06+6+15=0

Apn=2 B++13=0
D,,E¢, E7,Eg B4+ =(+V-1t)(tzs —V-1t2) =0

In the latter four cases &, consists of two exceptional prime divisors, say (g@; and 6’;’
(which are ~IPZ). Moreover, taking into account the above local description of sin-
gularities of Blg(X;), we may rewrite them in homogeneous coordinates on {0} x I3
as follows:

Types of X;’s Singular points of Bly(X/)
AL A, —
Ann=3 (0,(1:0:0:0)) &
Dy (0,(0:1:0:0)), (0,(vV-1:1:0:0) e/ N&;
D,,n>5 (0,(1:0:0:0)), (0,(0:1:0:0)) e &/Né&s
E¢, E;, Eg (0,(0:1:0:0) es/Ne&,
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Step 2. The next blow-ups. The desired snc-desingularizations of X;’s, say ¢ : X — X,
will be constructed by blowing up the possibly new singular points again and again
until we reach a smooth threefold X with exceptional locus Ex(¢) consisting of
smooth prime divisors with normal crossings. We give a complete characterization
of ¢’s by the following data:

D> the local resolution diagrams (abbreviated LR-diagrams) which are constructed
after repeated applications of Lemma 2.1 (with each arrow indicating a local
blow-up at a single closed point),

> the intersection (plane) graphs whose vertices represent the exceptional prime
divisors w.r.t. the ¢’s and their edges insinuate that the corresponding vertices
are divisors which have non-empty intersection,

> the structure of the exceptional prime divisors up to biregular isomorphism (which
turn out to be certain compact rational surfaces of Picard number either 2 or 4),
and finally

> the intersection cycles of all intersecting pairs of exceptional prime divisors
(Dj - Dj)|p,, k €{i,j}, as divisors on Dy (cf. [34], [35]), though we are primarily
interested in their underlying topological spaces (see below Lemma 2.3).

The interplay of local and global data (simultaneous blow-ups, strict transforms
after each step etc.) will be explained explicitly only for types A,, D4, E¢. (For reasons
of economy, further details—in this connection—about the other types will be omitted.
The not so difficult verification of the way one builds the corresponding intersection
graphs step by step is left to the reader).

(i) Type A;. Blowing up the origin once, we achieve immediately the required de-
singularization. The exceptional prime divisor

(S"f%{(l‘l:l222‘3214)6]Pé|t12+122+t32+t4%:0}

is biregularly isomorphic to {(¢] : #5 : #} : t}) e Pg | £ty — t4; = 0} = Im(y), where y
denotes the Segre embedding

Pg. x P 3 ((wy : w2), (w] : @) (21t i 230 zg) € P
with

/ / / /
{zl = W wW],2) = W W), Z3 = WrW|,Z4 = WL},
/ / / /
I =121, = zZa,13 = 22,1, = Z3.

Indeed, defining 6 to be the biregular isomorphism
(1) 1ty : 85 2 1) 2, (h—V-=lt:t1 + V-1t : 15— V—=1tg: —(t3 + V—1ty)),

we obtain §(Im(y)) = &7. Consequently, & =~ IP{ x P} and has conormal bundle
s (1,1).
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(ii) Type A;. Blowing up the origin once, Bly(Xy) is smooth (as threefold), though
& ={0,(t :r:t3:14)) € {0} x P |55 + 15 + 1] = 0} = Bly(Xy)

(as surface on the threefold Bly(Xy)) has a singular, ordinary double point at g =
(0,(1:0:0:0)) in &f|y,. For this reason, in order to form an snc-resolution of the
original singularity, we have to blow-up once more our threefold at ¢ and consider

p: X = Bl,(Bly(X))) - X;.

The new exceptional prime divisor is obviously a P2, while the strict transform of
the old one is nothing but the (2-dimensional) blow-up of & at g. Since &y can be
viewed as the projective cone < ]Pé over the smooth quadratic hypersurface V' =
{(tr:t3:t5) ePE |3+ 13+ 12 =0} with (1:0:0:0) as its vertex, blowing up
(1:0:0:0), we obtain a ruled (compact) surface over V' = IP having the inverse
image of (1:0:0:0) as a section Cy with self-intersection C; = —2 (see Hartshorne
(21, V.2.11.4, pp. 374-375]). Hence, the strict transform of &y under ¢ has to be the
rational ruled surface IF, := ]P((O]P‘g ® Opy (—2)) (because IF, is the unique IP¢-bundle

over IP;. having an irreducible curve of self-intersection —2, cf. [19, p. 519)).

Remark 2.2. Among the three-dimensional A-D-E’s, type A, and, in general, type
A,,n even, constitutes the only exception in which one has to blow up a smooth
threefold point at the last step to ensure an snc-resolution. In all the other cases the
snc-condition will be present immediately after the last blow-ups of singular points
(becoming clear from the LR-diagrams which have only A;’s at their last but one
ends).

(iii) Types A,, n > 3. The LR-diagram for these types depends on the (mod 2)-

2
behaviour of n, and the number of the required blow-ups equals m := {%J .

A,,—>A,,_2—>A,,_4—>~--—>A3—>A|—>A0 (1fnzl(mod2))
A=A 2> A g— - —A—A)— A (if n=0 (mod 2))

(A stands for a “smooth chart” on the threefold). But ¢ : X — X is decomposed
also globally into m blow-ups

” Tm

X =Bl (Bl(Im—l (- (Bl‘h (Xf)))) S Bl,, (Bllh (Xf)) - Bl,, (A/f)

m
ﬂliﬂl

Xy

of m points ¢ =0, g = (0,(1:0:0:0)),...,¢m, and is endowed with the “‘separa-
tion property”. By this we mean that, if £y = &, E», ..., E,, are the exceptional loci
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of ny, 7o, ..., 7y, respectively, then for i > 2 a singular point ¢; is resolved by 7; and
the (possibly existing) new singular point ¢;, is not contained in the strict transforms
of E|, E>, ..., E;_; under ;. Thus, defining D; to be the strict transform of E; under

Dy D, D3 Dn2 Dpo1 Dy

Case A,

Tis] O Tiyn O -+ O My O Ty, oN X, we obtain an intersection graph of the form:

It is clear by (i) and (ii) that D,, = P{ x P}, for n=1 (mod 2), and D,, = P,
for n =0 (mod 2), while D; 2IF, for all j, 1 <j<m—1. The Picard group
Pic(IF,) = Z? of each IF, is generated by two projective lines: a fiber f and a section
Co with C; = —2. The intersection cycles read as follows:

(Dj - Dis1)lp; = Co,  (Dj - Dj1)lp;,, ~Co+2f, Vi 1<j<m—2,

and

Hi +H,, if n=1 (mod?2)

Dmf : Dm = ) Dmf : Dm ~ 1
( 1 b, =Co, ( 1 )|p,, {2H7 if n =0 (mod 2)

where C"*]Pé(H) = @‘]Pé(l) in Pic(IPZ), and
@wéxn)g(Hl) = @ngn’é(lao)a @n)éxn)g(HZ) = (leéxlpg(a 1)

in Pic(IP{ x IP.). (We shall keep the notation below whenever the arising exceptional
prime divisors are biregularly isomorphic to IF, or to IP{. x IP). Obviously, (H - H) |]P
= (Hi - Hy)lpr,py = L and (Hi - Hi)lpi,p1 = (Ha - Ha)lp1 1 = 0.

» Three characteristic rational surfaces. The remaining types D-E of singularities
(X7,0) are more complicated as the ¢’s under construction will not fulfil the above
“separation property”’. Furthermore, since the exceptional locus after the first blow-
up consists of two irreducible components é"f’ and é"f” , and the appearing new singular
points (3 in case Dy, 2 in case D,, n > 5, and 1 in cases Eg, E;, Eg) lic on the line
G = éaf N &/, the strict transforms of ¢ together with their intersections with other
components (due to the next desingularization steps) will accompany us until we
arrive at X. In addition, to ensure a uniform resolution procedure from the “global”
point of view, one has to blow up the new singularities simultaneously (in each step)
and take into account the related intrinsic geometry. That’s why, before proceeding
to the examination of the remaining cases, we define three rational compact complex
surfaces which will appear in a natural way as exceptional prime divisors of our ¢’s.
(In fact, they will be inherited from the strict transforms of the original &/ and &'
as well as from the other intermediate components which arise on one’s way on the
“surface level”.)

Let IP¢[3] be the surface resulting after the blow-up Bly,, 4 4,}(P¢) of IP¢ simulta-
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neously at three different points ¢y, q1,¢> of a line 4 < IP(E (This surface is unique up
to biregular 1somorphlsm because for any other triple qo, g1, g5 of different points
of a line ¥’ = IP¢ the linear 1somorphlsm 4 = %' mapping ¢; to ¢/, i =1,2,3, can

be extended to an isomorphism IP¢ — IPC). If we denote by C; the inverse image of
¢; in P2[3], then Pic(IPZ[3]) = Z* with {C,,C;,C,, G} as generating system, where
G is the strict transform of the original line 4. Topologically {Cy, C;, C,, G} looks

)

C() C1 C2

The intersection numbers of these generators on IPZ[3] are the following:

Ci=Ci=C=-1G"=-
(G-Cp)=(G-C)=(G-Cy) =
(and = 0 otherwise)

Let now IP¢[3] be the surface Bl (Bl a1} (IP#)) being constructed by simultaneously
blowing-up of IPc at two different points ¢, g;, followed by the blow-up at the inter-
section point ¢, of the strict transform of 7og; and the blow-up of ¢; on Bl ;1 (IP¢).
(The isomorphism type of PZ[3] is unique, and one can use arbitrary points go # ¢i
for the construction). If we denote by G the strict transform of gyq;, by C; the strict
transform of ¢;,i € {0, 1}, and by C, the blow-up of ¢, within IPZ[3], then Pic(IPZ[3])
~ 7Z* with {Cy,Cy, C,, G} as generating system

C,

G

Co

and intersection numbers

C;=C=-1,C=G"=-
(G-Co)=(G-Cy)=(C;-Cy) =1

(and = 0 otherwise)
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Finally, let PZ[3] denote the surface Bl{qz}(Bl{ql}(Bl{qo}(IPé))) determined by blow-
ing up a point gy of IPC, taking a line ¥ IPC, with ¢go € ¢, such that (strict
transform of %) ﬂBl{qO}(]Pc) = {¢,}, blowing up in turn ¢;, and blowing up (at
the last step) ¢», where (strict transform of (é)ﬂBl{ql}(Bl{qo}(IPq:)) ={q2}. The

isomorphism type of IPZ [3] is again unique, Pic(IPZ [3]) ~ 7Z* is generated by
{Co, Cy,Cy, G}, where G is the (final) strict transform of ¢, C; the strict transform
of ¢;,i € {0,1}, and C; the blow-up of g, within PZ[3]. Topologically {Cy, C;, C,, G}
looks like

i

Co C

and the corresponding intersection numbers are

C;=-1,C;=C{=G" =~
(G-C2)=(Cy-Ci)=(C;-Cy) =1

(and = 0 otherwise)

(iv) Types D, for n = 2k, k > 2. Let us first explain what happens in the D4-case.
Blowing up the origin 0 € X we get

B]()(X}') = {((Xl, - ,X4),(l‘1 T 14)) S Bl()((]:4) |x1t12 +X1[22 + Z»J? + lf = 0}

with & = &;U &/ as exceptional locus. As we have already mentioned above,
Bly(Xy) possess the three A;-singularities

qo=(0,00:1:0:0)), g1 =(0,(V=1:1:0:0)), g2=(0,(—V—-1:1:0:0)),

which belong to the line ¥ = (f N (‘ . To obtain our global desingularization ¢ : X — X; r
it is enough to blow up once more all three points ¢, ¢1, ¢> simultaneously:

X =Bl 4.4, (Blo(Xy)) — Bly(X;) == X;.

Let us denote by Dj (resp. Dy) the strict transform of & (resp. &/ ) under m,
D; =n5'(q0), Dj = ny'(g;), for j e {1,2}, and define '

Ci = HEI‘D{ (resp. D{')(qi)a RS {07 172}
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Then obviously Dy & D, =~ Dy = P{. x P{. and D} =~ D} =~ IPZ[3] with Picard group
generated by Cy,Cy,C; and G, where G is the strict transform of 4 under 7,. The
intersection graph of these five exceptional divisors is illustrated as follows:

D,

Generalizing to Dy, the LR-diagram has the form

Ay
!
Ay
T
Dax — Dyg1y — -+ = D¢ — Ds — A1 — Ay
! ! ! !
Ay Aq Ay Aq
! ! ! !
Ay Ay Ay Ao

with a Dy at its right-hand side and the intersection graph looks like

Dy Di_y Di_y

Dz D3 Dk+1

/1 /" /"
Dl Dk 2 Dk 1
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(The dotted line from D, to D; will be used only for the case of odd »’s and it
should be ignored for the time being). The ordering of the subscripts of the divisors
of the top and the bottom row is 1, 2,... .k — 2, k — 1, whereas that of the divisors of
the middle row is 2, 1, 3, 4,...,k, k+ 1. In this general case one needs altogether
k+1 global (= simultaneous) blow-ups to construct ¢ : X — X;. The exceptional
prime divisors which occur are D; =~ IP{. x IP¢ with 1 < j <k + 1, and

Di =D{ =P¢[3], D/=D/=P¢3], Vj,2<,<k-1,

with the k + 1 Pg x P¢’s coming from the A;’s of the LR-diagram, and the k — 2
pairs of IP¢[3]'s inherited from the strict transforms of the &/ and &/’ with respect to
the first k& — 2 global blow-ups (where in each step the singularities appear pairwise).
The corresponding intersection cycles are:

(D1 - D)lp, =Ha, (D1~ Dy)lp; = Cy,

(D1-Dy)|p, =Hi, (D1 Dy)|pr =Cy,

(D2 - Dy)|p, =Ha, (D2-Dj)lp; = Cy,

Dy D)os = Hi. (D D})loy = C.

(Disr - Di_lpe =Hi, (D - Diy)lp,, = Co,

(Dics1 - D)l =H (Diet1 'D’/f/*l)b/:fl = Co,

while for k > 3, and all j, 3 < j <k,

(D;- D} )lo, = Ha. (D D)oy, = Co
(DD} )l = Hi. (D D)loy = Co.
(Dj- D} lp, =Hi, (DD} )lpr, = Ca,
(D; - DiL)lp; = Ha, (D DiLy)lny, = Co,

(D1 - D3)lpr ~G+Ci+Cy, (Dy-Dy)lp; = Cu,
(D{-DY)lpy ~G+Ci+Cy, (D]~ D)lpy = Cy,
and forall j, 2 < j<k-2,

(D" D}i"f)b;w ~G+Ci+2C, (" D" )l =Ci.

and finally, forall j, 1 < j <k —1,
(D} - D})|p; =G, (D} D})py =G.

(v) Types D, for n = 2k + 1. The LR-diagram in this case reads as follows:
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D21 — Dage1yy1 — - — Ds — A3 — A1 — Ay
! ! !
Ay Ay Ay
! ! !
Ay Ay Ay

Up to the introduction of the extra dotted edge into the game, the intersection
diagram remains the same, and the exceptional prime divisors are

Dy =T, Dj=PixPd, Vj2<j<k+]l,
and
D/ =D/ =Pg[3], Vj,1<j<k-L
Moreover, the intersection cycles are identical with those we have encountered before
in (iv), up to the following ones:
(D1-Da)lp, =Co, (D1:-Da)lp, ~Hi+Hz, (Di-Dy)lp, =f, (Di-Dj)lp; =Ci,
(Dl . D{l)lpl = f/, (D1 'D{/)|Dl” = C], (f # f, fibers of IFz)

set th.

(D" DY) iy ~ G+ Cy +2C, (D" D3 = €1,

I

(vi) Type E¢. The LR-diagram in this case reads as:

E6—>A5—>A3—>A1—>A0

Globally, the desingularization procedure is described as follows. To obtain ¢: X — Xz,
we need 3 additional blow-ups at three points g, 1, q2 after Blo(Xy) 5 Xy, ie.,

Bl,, (Bly, (Blo(Xy))) —— Bly,(Bly(X;)) —— Blo(X) = X/
3
X= Bl,, (Bl,, (B, (Blo(X)))))
where ¢go = (0,(0:1:0:0)) e U, on
Blo(X;) = {((x1,...,Xa), (t1 : 2 : 15 : t4)) € Blo(TY) | x18§ + X383 + 13 + 17 = 0}.
Analogously, one gets g; = (0,(0:1:0:0)) on Bl,, (Blo(Xy)|r,), which equals
{1 v20)s G2 24)) € U X B | (120) iAo+ 25 + 25 + 45 = 0}

(and similarly for ¢» € Bl (Bl,,(Blo(Xy)|y,)) in the last step). The point gy belongs
to the line % = &/ N &/ (where, as usual, z~'(0) = 6, U &) and (Blo(Xy),qo) is an
As-singularity. According to (iii), this will be resolved by 7| o 7, o 73 to give two IF,’s
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and one IPé X ]Pé as exceptional divisors. More precisely, ¢; € (strict transform of ¥
under 7;) N (exceptional locus of 71) is the new As-singularity, while

strict transform
¢ € (strict transform of ¢ under 7; o 7))\ [ of the exceptional
locus of 7; under

is the final A;-singularity. Let us denote by D; the strict transform of the exceptional
locus of 71 under n; o w3, by D, the strict transform of the exceptional locus of 7,
under 73, by D3 the exceptional locus of 73, and finally by D4 (resp. Dy, G) the strict
transform of the original (S"; (resp. (5‘_’;', %) under 7y o 7y o 73, and define

Cy := (strict transform of g, under 7; o 7y o w3 on Dy (resp. Dy))
C, := (strict transform of ¢; under 7, o w3 on Dy (resp. Dy))
C, := (the blow-up of ¢, by 73 on Dy (resp. Dy)).

Then

D =D, = IFQ, D; =~ ]Pé X IPé, Dy = Dé/t = IPé[Zﬂ,

with Pic(Dy) (resp. Pic(D})) generated by Co, Cy, C,, G, intersection graph and inter-
sections cycles

(D1 - D3)|p, =Co, (D1-D1)|p, ~Cp+2f,
(D1 - D4)|p, =f, (D1 D4)lp, = Co,
(D1 -Dy)lp, =f'. (D1~ Dy)|p; = Co,

(D> - D3)|p, =Co, (D2-D3)|p, ~Hi + Ha,

Dy D
D1
D3
Case Eg
(Dz . D4) D, = f7 (Dz 'D4)|D4 = Cla

(D2 Dy, =1, (D2 Dy)|p; =C,
(D3 Dy)|p, =Hi, (D3 Ds)lp, = Cs,
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(D3 Dy)lp, =Ha, (D3 D)l = Cs,
(Da-Dy)lp, =G, (Ds-Dy)lp; = G.
(where f % f fibers of IF,).

set th.

(vii) The cases E; and Eg. Since Eg passes to an E; after the first blow-up, the LR-
diagram looks like

Ay
1
Ay
1
Es — E; - D¢ — Dy — A1 — Ay
! !
Aq Ay
! !
Ao Ao

Globally, for the resolution of an E4- (resp. Eg-) singularity, we need 4 (resp. 5) blow-
ups. The intersection graph contains 10 (resp. 12) vertices (with the dotted edges only
in the Eg-case)

1
D4

Cases E; and Eg
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corresponding to the 12 exceptional prime divisors
Dy = Dy = D3 = Dy = P} x P,
D] = D] =~P3], Dj=Dy=P3],
D; = D! ~ D, ~ D} ~PZ[3].

The “central” four IP¢ x IP¢’s come from the four lastly appearing A;’s, and the four
top IP2[3] s are due to the last three successive blow-ups of & and &/. The two
PZ[3]’s (resp. the two IPZ[3]’s) are in turn inherited from the strict transforms of &
and 5 /' after passing from Dy to the three A;’s (resp. from Dg to D4). Making use of
the previously introduced notation, the intersection cycles read as follows:

(D1-Dy)lp, =Hi, (D1 Dy)lp; =Cy,
(D1 -DY)|p, =Ha, (D1-Dy)|py =Cy,
(D1-D3)|p, = Ha, (D1 D3)|p; = Ca,
(D1 - DY)|p, =Hi, (D1 D5)lpy =Co,
(D1 -D)p; =G, (D D)oy =G,
(Df - D3)lo = Ca, (D}~ Ds)lp, = Hy,

(D -D3)lp; ~ G+Ci+2Cs,  (Df-D3)lp; = Ci,
(D D3)lo; = Co. - (D] D)l = H,
(D{-Dy)lpi ~G+Co+Cy, (D{-D})p;=Cr,
(DY Da)lpy = Cs,  (Dy - Da)lp, = Ha,
(D{'-DY)|py ~G+Cy+2Cy, (D]~ DY)|py =Cr,
(D1 Ds3)lpy = Co, (D1 - Ds)lp, = Hi,

(D -D)lpy ~G+Co+Cs, (D-DY)|py = Ci,
(D3 D3)lp; =G, (D3-D)lpy =G,

(D5 -D3)lp; ~G+Co+Cs, (D5 D3)lp; = Co,
(D3 - D3)lp; = Ca, (D5~ Ds3)lp, = Hu,

(Dy - DY)lpy ~G+Co+Cy,  (Dy-Dy)|py = Co,
(D3 - D3)lpy = Ca, (D3 - D3)|p, = Hi,

(D3 Da)lp; = Hi, (D3 Da)ln, = Co,

(DY - Dy)lpy = Co, (DY - Dy)|p, = Hy,



On the string-theoretic Euler numbers of 3-dimensional A-D-E singularities 401

with (D} - D{)|p; = G, (D} - D{)|p; = G, and

(Dy-Dy)lp; ~G+Cy +2Cy,  (Dy-Dy)lp; = Cy,

(D4 - DJ)Ip, =Hi, (D4~ DJf)Ipy = Cs,

(DY D})lpy ~ G +Ci+2Cy, (DY D)y =Ci,

(D4 D})lp, =Ha, (D4~ Dy)|p; = Cs,

(D5 - Dy)lp; ~ G +Cy +2Cy, (D5 - Dy)lp; = Co,

(Déll'D!l,”D‘{:Ga (Déll'Dé/t/”Di’:Gv

(DY - DY)y ~ G+ Ci+2Cs, (DY DY)ln; = Co,
where these last 2 -7 intersections concern only the snc-resolution of the Eg-type
singularity.

Lemma 2.3. (i) All the edges of the intersection graphs represent smooth, irreducible,
rational compact complex curves.

(i) Let b(X) denote the total number of the edges of the intersection graph asso-
ciated to the desingularization ¢ : X — X, =X, and let t(X) be the number of those
triangles of the graph for which the corresponding three exceptional prime divisors have
non-empty intersection in common. Then each of the t(X) triple non-empty inter-
sections consists topologically of exactly one point. In addition, b(X) and t(X) take the
following values:

Types b(X) t(X)
-1
A, (n odd) m—1<=”2 > 0
n
A, (n even) m—1 (: 5) 0
Dai Tk — 1) 3+ 4(k - 2)
Dakt Tk —6 4440k —2)
E¢ 9 5
E, 21 12
Eg 28 17

(i) In all the cases, there are no four exceptional prime divisors having non-empty

intersection in common.
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Proof. (i) The underlying topological spaces of all divisors H, Hy, H,, f, f', Co, Cy, C,,
G are in all the cases homeomorphic to IP¢. But also all the other divisors (D; - D;)|p,,
k e {i,j}, for which we gave (just for geometric reasons and completeness’ sake)
certain expressions in terms of the generators of Pic(Dy) up to linear equivalence ‘~’,
are actually lines (living on D and being strict transforms of other lines which are
intersections of the exceptional divisors with affine patches in the previous steps).
Therefore they have underlying topological spaces homeomorphic to ]Pé. (It is better
to compare with the corresponding intersections (D; - D;)|p,, ;- for a quick check!)

(i) We find b(X) by simply counting all the edges of each of our graphs. The
graph for type A, contains no triangles. For the remaining types Dy, D2x21, Eg, E7,
Es, the intersection graphs contain 3 + 4(k — 2), 5+ 4(k — 2), 7, 12 and 17 triangles,
respectively, whose vertices are the only graph-vertices lying on their boundaries.
Using the just explicitly described behaviour of the intersections between the corre-
sponding exceptional prime divisors, one verifies easily that the number t(X) equals
3+4(k—-2),444(k—2),5, 12 and 17, respectively. The only triangles which have
to be excluded are those associated to Dy ND;N Dy = & (for type Daxi1) and to
D\NDsNDy=D,NDsNDy =& (for type Eg), and each triple non-empty inter-
section consists obviously of exactly one point.

(iii) Examining each (not necessarily convex or non-degenerate) quadrilateral of
the intersection graphs (with no interior points in its edges), we obtain by the above
given data: D; N D; N Dy N D; = &, for all possible pairwise distinct i, j, k, /.

Lemma 2.4. (i) The E-polynomials of IF, and Iquj X Iquj are equal:

E(Fa;u,0) = E(P{ x Pg;u,v) = 1+ 2uv + (uv)? = (1 + uv)? (2.2)

(ii) PZ[3], IP¢[3] and PE[3] have identical E-polynomials, with

E(P[3];u,v) = E(PE[3);u,0) = E(PE[3);u,v) = 1 + 4uv + (uv)* (2.3)

Proof. (i) is obvious. (For the fibration IF; — IP{ one may use directly (1.3)). (ii)
follows easily from the fact that the E-polynomial of a non-singular surface increases
by uv after a blow-up (cf. (1.4)).

3 Computing the discrepancy coefficients

This section is devoted to the exact computation of the discrepancy coefficients

with respect to the above snc-desingularizations ¢ : X — X = X ) of 3-dimensional
A-D-E’s and to a subsequent simplification of applying formula (1.5).

Proposition 3.1. The discrepancies of the snc-desingularizations
Q: XX

of the underlying spaces X = Xf(3) of the three-dimensional A-D-E singularities (dis-
cussed in §2) are given by the following table:
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Types Discrepancy Ky — ¢*(Kx)
n/2
A,, n even Z iD; + (n+2)D 241
=1
(n+1)/2
A,, n odd Z iD;
=1
(n/2)+1

(n—1)Dy+(n—1)Dy+ Y (2(n—2i)+7)D;

D,, n even
(/-1
+ ~—i|(D/+ D/
> (5 )i on
(n+1)/2
(n=2)D1+(n—1)Dy+ > (2(n—2i—1)+7)D;
D, n odd =
(n—3)/2 n—1
+ —— —i|(D]+ D/
> ("5t o
Es 3Dy + 6D, +9D3 + Dy + D!‘
11Dy 49D, + 13D3 4+ 5Dy + 4Di + 4Di,
E;
+2D} + 2Dy + D} + DY
E 19D, + 15D +23D3 + 11D4 + 71D] + 7DY
8

+4D) +4DY + 2D +2D% + D + DY
2 2 3 3 4 4

Proof. By construction, ¢ : X — X is composed of ““partial”’ resolution morphisms. To
use a uniform notation (from a global point of view) in what follows, we shall write

¢p=¢1op0---0p,and

& Py (%] ?1

X=X, X2 By X Xo=X (3.1)
. . n+2| |n+1
for these partial resolutions (where v = |7 ,4,4,5 for types A,, D,,

Eg, E7, and Eg, respectively, as one deduces from §2). The discrepancy w.r.t. ¢ equals:

Ky — 9" (Kx)

v—1
= (piy100420-00,) (Kx, — 9] (Kx_,)) + Kx, — ¢y (Kx,,)  (32)
=1
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Therefore, for its computation, it suffices to determine the discrepancies w.r.t. each of
the ¢,’s, and then to specify the pull-backs which are involved in (3.2).

I) Computation of the intermediate discrepancies. Since the arising singularities are
isolated, we may investigate the zeros of canonical differentials locally around them.

(i) Type A,. The defining polynomial of the singularity is
F(xtye e, xq) = x4 X3 4+ X3+ X (3.3)

Let n > 2, and consider the rational canonical differential

(dxl Adxy Adxs A dX4) dxs A dxz A dxy
s := Resy =

7 o) < ewore

vV

s is a basis of the dualizing sheaf wy = Oy (Ky) = (Q;’}) whose sections are

defined by

open sets . 3 y is a regular canonical
{ of X } V= IV, 0x) = {U €/ | differential on VN (X\{O})}
Blow up X at 0 and consider the affine piece U; NBly(X), with

Uy = Spec(C[y, 1, Y12, V1.3, V1.4))-

The restriction of the exceptional locus &y on U is nothing but

Blo(X)Né& = 6rly, :{(ylyl,...,y1’4)e(D4|y171 :ﬁ(y1,17~--7Y1.4) =0}

where
ﬁ(yl,lv Vi Vi3 Vi) = yﬁl + y1272 + J’12,3 + y12ﬁ4~
(As we explained before, the possibly existing new (A,_»-) singularity on Bly(X) lies

in &|y,). To find the discrepancy coefficient w.r.t. Blo(X) — X, it suffices to compare
s with the rational canonical differential

5 .— dy12 Adyrz Adyra
(afl/ayl,l)

3
€ Qqy)/c-
(U is non-singular with local coordinates y, ,, y; 3, 4 at any point ¢ for which
f1(q)/0y1,1#0). In Uy wehave x; = y, yand x; = 1 = yy 1)y j, forall j e {2,3,4}.
Hence,
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dxs A dxs A dxy
=ada+yiodi) Aiadns+ yisdvi) AV dvia+ yiady)
= y0 adyia Adyis Adyrs =y sdyig Adyio Adyra

+yiadyian Adyia Adyrs 4y dyia Adyrs Adyg) (3.4)
and
n n n+1 2 r
of foxi = (n+ D)xi = (n+ 1)yiy = —5 ) yia(@fi/oyia) (3.5)

On the other hand, note that
dfy = (n— DyP P dyiy + 201 0dvia+ yadyis + yyadyig) =0
if and only if
2 2—n
dyi1 = PR (Pi2dv12+ p13d13+ 1 adyia) (3.6)

Substituting the expression (3.6) for dy; ; into the right-hand side of (3.4), we obtain
easily

dXQ /\dX3 /\dX4
2 _
= (_myi 1”(Y12,2+J/12,3+Y12,4)+Y13,1> dyiandyizndyra (3.7)

Combining now (3.7) with yi, + y7 3+ yi, = — 7' and (3.5), we get

n+1
(nTl y13,1> dyia ndyrs Adyra

(Zt i)J’%J(afl/a)’l,])

S =

=115 (3.8)

The equality (3.8) shows that the discrepancy coefficient of the exceptional prime
divisor 6y w.r.t. Blo(X) — X equals 1.
If n = 1, then we compare

_dxy Adxy A dxs dyi, 1 Adyra Adyrz

with &= =
(0f [ 0x4) (0f1/0y1.4)
o o,
Since =— =2x4 =2 , ——— = 2y1.4, and
xa 4 V1,1V1,4 14 V1,4

dX1 VAN dXQ VAN dX3 = y1271 dy171 AN dyl"z AN dy1,3,
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we conclude again s = y;15. In fact, this kind of argumentation covers all but one
steps of the resolution procedure for A,’s. The indicated “‘special” case occurs only in
the last step and only for n even, where we blow-up once more to get rid of the
singularity of the exceptional locus for the purpose of ensuring the snc-condition for
9: X — X (“n=07"-ase). But since we blow-up a point which is smooth on the
3-fold, the discrepancy coefficient of the lastly created exceptional prime divisor
D241 equals 2 (see remark 2.2 and Griffiths & Harris [19, Lemma of p. 187]).

(ii) Type D,. For this type we proceed analogously by making use of the affine piece
U,. The only difference here is that the exceptional divisor &, under the first blow-up
has two irreducible components é}’ and é}” Nevertheless, the corresponding local
computation with rational canonical differentials gives again

dxy Adxs Adxy y dyio Adyr 3 Adyr g
(of /ox1) YU (@fJavn)

and the discrepancy coefficient for both of them equals 1. As it is clear from Lemma
2.1 and (i), the discrepancy coefficients in all resolution steps will be again 1.

(iii) Types E¢,E7,Eg. For these types one may work along the same lines with
respect to the affine piece U, = Spec(C[y, 1, Y22, V2.3, V2.4])- The exceptional divisor
&r w.r.t. Blo(X) — X consists again of two prime ones. Each of them has discrep-
ancy coefficient equal to 1. This property remains also valid for all other composites
(3.1) of ¢, exactly as in the case of type D,. Further details will be omitted.

Recapitulating, we should stress that in (i), (ii), (iii), the discrepancy coefficient for
each of the prime divisors of the exceptional locus of the ¢,’s in (3.1) equals 1, up to
the last resolution morphism for type A,, n even, which has discrepancy 2. This fact
will be used below in an essential way.

II) Computation of the pull-backs. To determine the required pullbacks of our dis-
crepancies (see (3.1), (3.2)), we shall denote by E; (resp., E/-'(”)) those exceptional
prime divisors which are created (for the first time) after the application of a ¢; (i.e.,
actually the members of €x(¢,)), so that their strict transforms (on X) are exactly the

exceptional prime divisors (w.r.t. @) which are denoted by D; (resp., D;(/')) in §2.

. 2 . . . o
(i) Type A,. Defining m = V;J, as in §2, ¢ is decomposed into m birational
morphisms:

A} _ Xm Pm Pm—1 93 (2] o1

X1 X, X Xo = X.

Each ¢; (= m; of §2) gives rise to an exceptional prime divisor E;. By I) we get

KX,,—(D;(KXH) :E,', Vi, 1 <is<m-— 1, (39)
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and

D,,, if nis odd,

Ky — o (K = 3.10
= (K1) {2Dm, if n is even. (3.10)
We claim that forall i, 1 <i<m —1,
> Dj, if nis odd,
* J=i
(0ir1 0020 00,) (E) = (3.11)

> D;j+2D,,, if niseven.
j=i

To prove (3.11) we shall work with local equations for the corresponding divisors.
Consider two successive blow-ups

Pjv1 Pi
Xj1 = X; — X;1

and assume that X; has a singularity of type A,, n > 1, (with equation (3.3)), where ¢;

denotes the blow-up of the A, ,-singularity of X;_;. The local equation (f, = 0) is
the equation of Xj.; on the affine chart U, = Spec(C|[y,1, ..., y2,4]), where

S, ¥2.2, 12,3, 12.4) = yé’j‘yﬁ‘zl +1+ y§,3 + Y§,4
(cf. §2). The new exceptional locus Ej1 of ¢, on U N X} is given by the local equa-
tion (2,1 = 0). On the other hand, (x; = 0) and (2,2 = 0) express the local equations

for E; on X; and for its strict transform E; s; on U, N X;,1, respectively. Since the pre-
image of (x; = 0) under ¢, equals (y2,1 - 2,2 = 0), we have:

971(E)) = Ejp1 + Ejsr. (3.12)
It remains to see what happens in the case in which ¢, . is the blow up of a (regular) Ao-
point, i.e., whenever j = m — 1 = k and X} is the last step of the resolution process
for a singularity of type A,x. For n = 0, we get equations

X1 +x§+x§ +x§ =0 and =z + z2(1 +Z%’3 +z§,4) =0,

on X; and U, N Xj,1, respectively. The divisors Dy, Ex, Ej s have local equations
(z22=10),(x; = 0) and (23,1 = 0), respectively. Since

2 2 2
X1 =212 =2,(1 +235+234),
we deduce

¢Z+1(Ek) = 2Dk+1 + Ek,ST = 2Dm + Eme,ST- (313)
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(3.11) follows after repeated application of equations like (3.12) and (3.13). Now
inserting the data of (3.9), (3.10), (3.11) into (3.2) we obtain:

(n+1)/2
> iDj, if nis odd,
i=1

n/2

> iDi+ (n+2)D,2)41, if niseven.

i=1

Kg — 9" (Kx) =

(i) Type D,, n = 2k. In this case ¢ is decomposed into k birational morphisms:

PDic Pre—1 ?3 (2] P

X =X, X1 X> X Xo=X.
By construction, €x(¢,) = {E;_,, E[ ,},
Cx(p) ={Ei_i 1, El_i 1 Ex-in}, Vi, 1 <i<k-2,
and €x(¢,) = {D1, D2, D3}. By I) we have
Ky, — 9 (Kx)) = Ex_y + E/_y,
Ky —0in(Kx) = By + E_i + Ecciva, Vi, 1<i<k =2,
Ky, — 0i(Kx,_,) = D1 + D2 + Ds.

We shall prove that

>~

—1 —1
Ky —¢"(Kx) = 2k = 1)(Dr+ D2) + ) i(Dp_;+Di ) + ) (4 — 1)Dijia.
1 1

»

i

~.
Il

(3.14)

For k = 2 this can be shown easily. Suppose that k¥ > 3. Then

oin (B = B 4 B+ B Vi 1<i<k=2,

1,8T?

(pZ (EI/(//>) =D+ D)+ D3+ D{O/),

and foralli, 1 <i<k-2,

(9101 0 9102) “(EL") = Bt + B + BV o+ B

k—1i,ST,ST"

This means that

(propso---op) (Ex, +E )
k-1

k—2
=> (D ;+ D +2(D1+D2+D3)+2<D3+22Dkj+2+Dk+1>,
=1 j=2

~.
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and that forall i, 2 <i<k -2,
(Piv1 0 @iz 0 o) (Ep_; + E_; + Ex—is3)

—ZD,”—I-D ) +2(D1 + Dy + Ds)

k-2
+2 <D3 +2 Z Dj_jyr + Dki+2> + Di—iy3
j=itl

and
(ﬂZ(El/ + Ell/ + E4) = (Di + Di/) + 2(D1 + Dy +D3) + Dy.

Thus, (3.2) implies (3.14).

(iii) Type D,, n = 2k + 1. Here ¢ is decomposed into k + 1 birational morphisms:

Pret1 Pic ?3 %) P

X = X X X X Xo = X.

Computing the total discrepancy, we find analogously:

k—1
Ky — " (Ky) = (2k = 1)Dy +2kDy + > i(D}_;+ D}_;) +
i=1

Mk-

(4] - I)Dk —j+2-
1

~.
Il

(iv) Type Eg. In this case ¢ is decomposed into 4 birational morphisms:
Y=x2x2xnZ2x =B, 2x=x
By construction,
Cx(p)) = {Es, B4}, Cx(py) = {E}, Cx(p;) = {E2},
and C€x(p,) = {D3} (where ¢; = m;_; of §2). By I) we have

KXI _(DT(KIYI)) =E4+E£, KXz _¢§(KX]) = E,
Ky, — ¢3(Kx,) = E2, Ky, — 95(Kx,) = Ds.

The intersection diagrams imply

(920030 04)"(Ea + E;) = 2Dy + 4D3 + 6D5 + Dy + D,
(930 94)"(E1) = D1 + D + Ds,
94 (E2) = D2 + Ds.

Hence, by (3.2), the discrepancy w.r.t. ¢ equals 3D + 6D, + 9D3 + D4 + Dj.
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(v) Type E;. Here ¢ is decomposed into 4 birational morphisms:

Y=x2x2xnZ2x=B,x) 2 x=x
By construction,
Cx(p)) = {E5, Ef'},  Cx(py) = {E5 E)},  Cx(ps) = {E], E, Ea},
and €x(¢4) = {D1, D2, D3}. By I) we obtain
Ky, —¢{(Kx,) = Es + EY, Ky, —03(Kx,) = E; + EY,
Ky, — ¢3(Kx,) = E{ + E{ + Ea, Kx, — ¢;(Kx,) = D1 + D> + Ds.

The computation of the pull-backs gives

(920030 04)" (E5 + E5)

= 6D + 4D, + 6Ds + 2D4 + 2(D} + DY) + D5 + D5 + D} + Df,
(p3004)"(E5 + EY) = 2Dy + 2D, +4D3 + 2Dy + D{ + DY + D} + D7,
9, (E{ + E{' 4+ E4) = 2Dy + 2D + 2D3 + Dy + D{ + Dy’

Now apply (3.2).
(vi) Type Eg. In this case ¢ is decomposed into 5 birational morphisms:
Y=x2xx2xx2x02x%x=x
By construction, €x(¢,) = {E;, E}'},
Cx(py) = {E5,Ef'},  Cx(ps) ={Ep, By}, Cx(py) = {E}, E{, Ea},
and €x(¢s) = {D1, D2, D3}. By I) we have
Ky, — ¢{(Kx,) = Ey + Ej, Ky, —¢3(Kx,) = E5 + EY,
Ky, — 93(Kx,) = Ey + E;,  Kx, — 0;(Kx,) = E{ + E{ + Ea,
and Ky, — ¢i(Kx,) = D1 + D> + D3. We obtain
(py0p300,005) (E,+ E)) =8Dy + 6D, + 10D;3 + 6D4 + 3(D;] + DY)
+2(Dy+ Dy)+ D+ DY + D, + Dj.

The remaining inverse images (¢;0 @40 ¢s5) (E}+ EY), (ps0¢s5) (E}+ EJ) and
9i(E{ + E| + E4) coincide with (v), where in each case ¢, o - - - o ¢, has to be replaced
by @1 © - - o ¢s. Finally, apply again (3.2).
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Proposmon 3.2. Suppose that X = X Vis the underlying space of an A-D-E-singularity,
¢: X — X its snc- desmgularzzatzon Cx(p ) ={Dy,...,D,} the corresponding excep-
tional set with discrepacy coefficients ay, ... ,a,, I :={1,2,...,r}, and

R, = {(i,/) e | Dy yy # B}, Ry = {(i.j,k) € P | Dy .y # D}

Then the string-theoretic E-function of X satisfies the following equality:

Egw(X;u,0) = )+ Z D,,uav+1 Ul— 1)
) o — (uv)uf+1> <MU . (uv)a,+l> Coix
+ ( + uU) <i,%ﬁw ( (uv)a,‘+l 1 (uv)afH 1 ( )
uv — (uv) a;i+1 v — (uv) aj+1 u — (uv) apt1
) (3.15)

with b(X),t(X) as defined in 2.3 (ii). In particular,
! e D,‘
eur(X) —e(Dy) = (D) +2

S (@) (%) e
aitl (i) R, <a,~ +1\g+1
di 4j g
- I + t(X 3.16
(iﬂj;g@w(ai“rl)(a_/+1><ak+1> ( ) ( )

(As we shall see below in 4.3, e(Dy;) = 0).

Proof. Using the inclusion-exclusion principle (1.2) for the E-polynomial of Dy, we
obtain

E(Djiu,0) = EDpu) — > (DY EWD, 50, v) (3.17)
F#J <I\J

Formula (1.5) can be rewritten via (3.17) as follows:

Estr(XQL‘vU)
) -1
= Z E(Dy;u,v) Z (=D E(D0s;u,v) H (%)
=y G I\ jed (uv)“™ =1
uv — 1
= E(Dy;u,v) (a— 1>
2P L

_ aj+1
= ZE(DJ;%U) H (%)

Jel jeJ (
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Hence,

Es:(X;u,v) — E(Dg;u,v)

~ (uw aj+1
:E(U D,-;u,v) + Z E(DJ;M»U)HC?;D)(E%)

iel gAI<I jeJ

= ZE(D”U7 U) — Z E(D{,]}ﬂ/l, U) + Z E(D{l‘_’j_’k};u, U)
i=1

(i,7)eRy (i,j,k)eQ,
uv — (uv) ™!
+ E( Dj;u,v) | —————
Z ( HU)a‘/Jrl —1 )
_ aj+1
+ Z E(Dy;u,v H(%) (3.18)
jedJ (uv) =1

\1\6{213}

Since |R,| = b(X), |Q,| = t(X), and
E(D{i,j}; u, 1)) =1 + uv, V(ld) € C’R(ﬁv E(D{i,j,k}; u, U) = 17 V(l,], k) € Q(,/)a

Formula (3.15) follows from (3.18), and (3.16) from (3.15) by passing to the limit

u,v — 1.

4 Proof of the theorem

Theorem 1.11 will be proved by direct evaluation of formula (3.15). For this it is
obviously enough to determine the coefficients of the E-polynomials of all excep-
tional prime divisors, on the one hand, and those of £ (D%; u,v), on the other. Hence,
in view of lemma 2.4 and of our explicit description of a canonical desingularization,
what remains to be done is the study of the coefficients of this “first summand”
E (D%; u,v) which depend exclusively on the intrinsic geometry around the singular-
ities. We begin with a general proposition being valid in all dimensions.

Proposition 4.1. Let (iY ,X) be an isolated complete intersection singularity of pure
dimension d > 2 and (X, €x(p)) 2. (X, x) a resolution with exceptional locus €x(p) =
U;Zl D;. Then the coefficients of the E-polynomial

E(X\Gx(p);u,v) = E(Dg;u,v) = E(X\{x};u,v) = () E(Liu”" v7")  (4.1)

of X\€x(¢) depend on those of the E-polynomial of its link L, and, in fact, only on the
Hodge numbers of the (d — 1)-cohomology group of L.
If (X, x) is, in addition, a rational singularity, then
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E(X\€x(p);u,0) = E(X\{x};u,0)
=) =14 (-1)? { > hreHNL, a:))upuq}

1<p,g<d-1
2<ptqg<d—-1

I<p,qg<d-1
d+1<p+q<2d-2

+(-1*! { h P (H(L, (E))u”v"]

Proof. Let L = L(X, x) denote the link of the singularity (X, x), i.e., the intersection
of a closed neighbourhood of x containing it with a small sphere. L is a differentiable,
compact, oriented manifold of dimension 2d — 1, and there are isomorphisms:

H(X, X\{x},Q) = H'(X\{x},Q) = H'(L,Q).

For this reason it is sufficient to consider the natural MHS on the cohomologies of L.
Note that

h"4(H'(L,C)) = h*?(H'(L,C)) (4.3)
while Poincaré duality implies (4.1) because
hP4(H'(L,€)) = k" I(H* (L, )
equals
WP I(H'(L,©)) = h"I(H'(X\{x},C)) = h" " I(HZ (X\{x}, ©)) (4.4)

For the computation of these dimensions it is therefore enough to assume, from now
on, that i < d. According to [44, Cor. (15.9)], the restriction map

H'(X,Q) — H'(X\Cx(p),Q) = H'(L, Q)

is surjective for i < d and equals the zero-map for i = d. From the induced exact
MHS-sequences

0 — Hgy,) (X, Q) — H'(€x(p),Q) — H'(L,Q) = 0 (i <d)
0 — Hg,) (X, Q) — H(Cx(p),Q) — 0 (i = d)

one gets the vanishing of Gr]".”“(Héx(w)(X’, Q)), j #i, and of Gr/"(H'(L,Q)), for
j=i—1(cf [42, Cor. 1.12]), and consequently, for i < d, h?4(H'(L,T)) equals

hea(H (Gx(p), ©)), if prg<i
{ h74(H'(€x(p),T)) — kP 4~1(H>(€x(p),T)), if p+q=i (45)
0, ifp+qg>i
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(The right-hand side of (4.5) is therefore independent of the choice of the resolution).
Since X is also a complete intersection, L is (d — 2)-connected (cf. [20, Kor. 1.3]), and
the local Lefschetz theorem gives:

H(L,C)~C, forie{0,2d—1},

H'(L,€)=0, fori¢{0,d—1,d2d—1}.
Thus, for i € {0,2d — 1}, the only non-zero Hodge numbers are

W OHO(L, €)= h I HY (L, C)) = 1. (4.7)

By (4.5), (4.6) and (4.7) we deduce

E(L;u,v) Z e |

= 3 (W7 9(H (L, €)) — k" I(H* (L, ©)))]u’ v
i ) H N (L, ©)) — hPI(HY (L, €©)))Jul v
= [(R79(H (L, €©)) — h™I(H* (L, ©)))]u"v

+ (=D hPa(HNL,©)) = h P H T (L, ©)))ul o

=1— @)+ (1) l hP4(HY(L, C))u%q]

0<p,q<d

+(—1)d[— > ntr A YL, @))ub v

0<p,q<d

0<p,g<d-1
0<p+g<d-1

- —(uv)d-i-(—l)dl[ > hp’q(Hdl(L,(E))upvq]

I<p,q<d
d+1< p+q<2d—1

I [ PP L G:))upvq]

which proves the first assertion. Now setting
(P4(L) := dimg GrZ.(HP*(L,T)),
one has

/P9(L) = dime H(€x(p), Q7 (log €x(p)) ® Ogx(y))
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(cf. [42, §1] and [45, §3]). Obviously,

(PP (L) = Ed:h"*q(H’ LC
4=0
for i = p. If (X, x) is, in addition, a rational singularity, then for all i > 1 we have
(L) = dim¢ H' (€x(p), Ogyp)) = 0=¢""(L) (4.8)
because /"°(L) < /%(L), H'(X,0z) = 0 and
H'(X,0g) — H'(€x(p), Usx(y)

is surjective by [42, Lemma 2.14]. Hence,

wOoH (L, ©) E L) P o, foro<j<dandiz1.  (4.9)
This means that the E-polynomial of L can be written as
E(L;u,v)
=1- (uv)d + (—1)‘171 |:

1<p,g<d-1

hP4(H (L, @©))ul v
2< ptq<d—1

(4.10)

1<p,q<d-1
d+1< p+q<2d-2

+(1)”{ 3 h"”’*d‘f(Hdl(L,(E))upv‘f]

and formula (4.2) follows from (4.10) and (4.1).

Remark 4.2. (i) Let us now denote by Fr the Milnor fiber being associated to the A-D-E

singularity (X, @ ,0). As it is known (cf. [32, Thm. 6.5]), F; has the homotopy type of
a bouquet of d—spheres and its Milnor number

w(f) = u(Fy) := #{of these spheres} = dim¢ (Qd+1/< A . of >>

0xq41

is in each case equal to the subscript of the type under consideration. According to
the Sebastiani—Thom theorem [39] (see also [15, pp. 86-88]), the splitting f =g+ ¢’
(as in (1.7)) gives rise to the construction of an homotopy equivalence between the
Milnor fiber Fy and the join F, * F, of the corresponding Milnor fibers £, and F . In
particular, this implies

u(f) = ulg) - u(g") = u(g) (4.11)
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(i) For any isolated complete intersection singularity (X, x) of pure dimension d,
with link L, Milnor fiber F and Milnor number u(F), Steenbrink’s invariant

Sj(Xv)C)a 0<]<d7

is defined in [43] by regarding any l-parameter smoothing ¥ : (¥X,x) — (C,0) of
(X, x) (with X9 = ¢ '(0) = X) and setting

si(X, x) := dimg GrL.H(®}(T)),

where #* denotes here the Hodge-filtration of the highest hypercohomology group
of the complex @}, (C) of sheaves of vanishing cycles associated to . (For all g,
the direct image sheaves CDl/’f((E) = R7(4,), € are defined on X, with 3, : X, — X,
denoting the restriction of the retraction 9 : X — X, onto a fiber X,. In fact, the def-
inition of ®!(C) can be made independent of the choice of the fiber X, by passing
to the “canonical” fiber X, of . In this setting, the fiber of the sheaf <I)$((E) over
x is isomorphic to H(X, y, C), where X, , is diffeomorphic to the Milnor fiber F).
s5;(X, x) is an upper semicontinuous invariant under deformations of (X, x), does not
depend on the particular choice of y (cf. [43, (1.8)—(1.10), and (2.6)]), and

WF) =s0(X,x)+s1(X,x)+ -+ s4-1(X, x) + 54(X, x) (4.12)

On the other hand, taking into account the Q(—d)-duality between H“(F, L, C) and
HY(F,C), and the exact MHS-sequence

0— H"Y (L C)— HYF,L,C) - H'(F,C) —» H(L,C) — 0,
one deduces the equalities
5;(X,x) — sq_j(X,x) = 7299 (L) — 797N (L) = ¢ (L) — 4747 N(L) (4.13)

Corollary 4.3. Let X = Xf(3) be the underlying spaces of the three-dimensional A-D-E
singularities. Then we have

E(X\{0};u,0) = (uv — D[1 4+ (1 + 2" (H*(L, T)))uv + (uv)?] (4.14)

where

Types A, D, E¢ | E7 | Eg

1, forn odd
0, for n even

1, forn odd

WAL, ©) { 2, for n even
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Proof. Formula (4.14) is nothing but (4.2) for d = 3. So it remains to compute
hYY(H*(L,T)). Using the notation u(f) := u(Fy) and s;(f) := s;(X,0) for the sin-
gularity (X, 0), the equalities (4.8), (4.9) and (4.13) give

(ML) = kY (HP(L,©)) = s2(f) = s1(f) (4.15)
and so(f) = s3(f). Furthermore, by (4.12),

() =s50(f) +s1(f) +52(f) +5350) = s1(f) +52(f) + 2s3(f)-

In fact, since (X,0) is a Du Bois singularity (as it is a rational isolated singularity), or
equivalently, since s3(f) equals the geometric genus of (X,0) (see [45, §4], [42, (2.17)
and (3.7)]), we have so(f) = s3(f) = 0, i.e., u(f) = so(f) + s1(f). Now the splitting
f=g+g (asin (1.7)) leads to a “Sebastiani-Thom formula” for Steenbrink’s in-
variant; namely,

si(f) = 5-1(9) (4.16)
Applying Milnor’s formula [32, Thm. 10.5] for the curve singularity (X,,0), we obtain
u(g) =24(g) —r(g) + 1 (4.17)
where
r(g) := #{branches of the curve X, passing through the origin}
and

o(g) = #{““virtual” double points w.r.t. X} = dimg(v*@‘g/@‘xg)

with v : X, — X, the normalization of X,. Note that this first number r(g) is dlrectly
computable because the only types for Wthh g(x1,x2)’s are reducible, are A,’s, for n
odd, with

g(xl7x2) ( (n+1)/ +\/_ )( ’1+1)/2—\/—_1X2),

D,’s with
x1 (X772 + x3), if n is odd
g(x1,x2) = n/2 1 n/2-1 PN
x1(x, + vV —1x2)(x] — vV —=1x;), if niseven
and E; with

g(x1,x2) = x1(x{ +x3),
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while d(g) can be read off from (4.17) via the Milnor number. Finally, since

1) 2 s0(9) =8(9) = rg) + 1, 52(/) 2 51(9) = 8(9), (4.18)

(cf. [42, (2.17), p. 526]), we may form the following table:

Types | u(f)=ulg) | r(g) | si(f) =s0(g) | 52(f) =s1(9) =6(g)
n—1 n+1
A,, n odd n 2 5 5
n n
A,, neven n 1 7 5
n—1 n+1
D,, 2
n odd n 5 5
n—2 n+2
D,, n even n 3 3 5
Eg 6 1 3 3
E~; 7 2 3 4
Eg 8 1 4 4

This table allows us to evaluate 2! (H?(L,)) for all possible types via (4.18) and
(4.15).

Proof of Theorem 1.11. It follows directly from the explicit arithmetical data for each
of the canonical resolutions given in Lemma 2.3 and Proposition 3.1, and from for-
mulae (3.15), (3.16), in combination with the formula (4.14) of Corollary 4.3. [

Final remarks and questions 4.4 (i) Is the resolution algorithm (or a slight modifica-
tion of it) extendible to a wider class of three-dimensional Gorenstein terminal (or
canonical) singularities?

(i) The d-dimensional generalization of Theorem 1.11 seems to be feasible as the
pattern of the local reduction of simple singularities remains invariant (after all,
adding quadratic terms does not cause very crucial changes in the desingularization
procedure), though the investigation of the structure of the corresponding exceptional
prime divisors and of their intersections for the D-E’s might be rather complicated.

(iii) Since the string-theoretic “adjusting property” of Eg.-functions is of local
nature and focuses solely on the singular loci of the varieties being under consider-
ation, it is clear how to treat of Ey, and ey, in global geometric constructions with
prescribed A-D-E singularities. We close the paper by giving some examples of this
sort.
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5 Global geometric applications

In view of Theorem 1.11, the Eg,-function of a complex threefold Y having only
A-D-E singularities ¢i,¢»,...,qr is computable provided that one knows how to
determine the Hodge numbers A74(H!(Y,C)) of Y, as we obtain:

k
Eqe(Y;u,0) = E(Y\{q1,42, .-,k }s,0) + > Exie((Y, ) ,v)

i=1
k

= E(Ysu,0) + Y (Ea((Y . q0)s0,0) — 1) (5.1)
i=1

(a) Complete intersections in projective spaces. A very simple closed formula for eg;
can be built whenever Y is a (global) complete intersection in a projective space.

Proposition 5.1. Let Y = Y4, q,.... ) be a three-dimensional complete intersection of
multidegree (dy,dy,...,d,—3) in ]Pc havmg only k isolated singularities q1,q>, ..., qx
of type A-D-E. Then its string-theoretic Euler number equals

() ([ 2w (IT9)

i

estr( Y) =

+ lesu(Y,qi) +u(Y,qi) — 1] (5.2)

k
i=1

1

where u(Y, q;) is the Milnor number of the singularity (Y, q;) and es (Y, q;) can be read
off from the Theorem 1.11.

Proof. Considering a small deformation of Y one can always obtain a non-singular
complete intersection Y’ in Py having multidegree (di,d>,...,d,—3). If we take a
ball B; in IP{ centered at the point ¢;, then, choosing B; small enough, B;NY is
contractible and B;N Y’ can be identified with the (closed) Milnor fiber of the
singularity (Y, ;). Yf: Y\(U;Bi) and Y’ := Y’\(U:;l B;) are homeomorphic.
Therefore ¢(Y) = e(Y'). Using the Mayer—Vietoris sequence for the splitting ¥ =
YU U; ((BiNY), on the one hand, and for the splitting ¥’ = ¥'U Ulk:l(t?,ﬂ Y,
on the other, we get e(Y) = e(Y) + k and

k
(Y = e(¥) + k=3 u(Y.q),

i=1

respectively (see [15, Ch. 5, Cor. 4.4 (ii), p. 162]). Hence,

k
e(Y)=e(Y)+ ) u(Y,q).
i=1
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The Euler number of Y’ can be computed in terms of its multidegree data either
by determining the y -characteristic of Y’ via the Riemann-Roch Theorem (see
Hirzebruch [25, §2]) or directly by the Gauss—Bonnet Theorem, i.e., by evaluating
the highest Chern class of Y’ at its fundamental cycle (cf. [19, p. 416] and Chen—
Ogiue [10, Thm. 2.1]), and is expressible by the closed formula

r+1 3 L+ r=3
( ; >+Z(—1)(3_v)< > dj]...dj‘ﬂ( dj>‘
v=1 1<y <<y <=3 =1

Now (5.2) follows clearly from (5.1).

e(Y') =

Example 5.2. (i) If Y possesses only A-singularities (i.e., “ordinary double points™ or
“nodes”), then the second summand in (5.2) equals 2#(nodes of Y). Let us apply
(5.2) for some well-known hypersurfaces Y in P¢ with many nodes. [eq:(Y) is nothing
but the Euler number of the overlying spaces of the so-called (simultaneous) ‘“‘small
resolutions” of the nodes of Y’s.]

» Schoen’s quintic [37]. This is the quintic

Y{(21:~~~:25)EIP&‘:

iz? - Sﬁzi = O.}
i=1 i=1

having 125 nodes, namely the members of the orbit of the point (1:1:1:1:1) under
the action of the group which is generated by the coordinate transformations

(zieoorizs) = (210 3z e 1 ($2s),
where {5 = e®mV=D/5, Z;‘l:l a; = 0 (mod 5). Hence, eg,(Y) = —200 + 2 - 125 = 50.

» Hirzebruch’s quintic [26]. Let {®(x, y) = Hle ®;(x, y) =0} be the equation of
the curve of degree 5 in the real (x, y)-plane constructed by the five lines @;(x, y) = 0,
1 <i <5, of aregular pentagon:

Ty

P
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This real picture shows that both partial derivatives of ® vanish at the 10 points of
line intersections, as well as at one point ¢; at every triangle 7; and at the center of the
pentagon. Moreover, by symmetry, one has ®(#;) = ®(t;) for all 1 <i < j<5. The
hypersurface Y < ]Pé obtained after homogenization of the three-dimensional affine
complex variety

{(21,22,23724) € (]:4 | (I)(Zl,Zz) - (I)(Z3,Z4) = 0}
has 102 + 52 + 12 = 126 nodes. This means that ey, (Y) = —200 + 2 - 126 = 52.

» Symmetric Hypersurfaces. In IPé with (z; : ---: z¢) as homogeneous coordinates
we define the threefolds

Yi:={(z1:--:ze) eIPé|al(zl,...,26) ZZ?:IZ? =0},
Y2 = {(21 : -~-:26)€IP<5|:‘0'1(21,...,Z6) 204(217~--726> 20},
0'1(21,...726) 20'5(21,...726)
Y3::{(21:---:z6 e P, ,
) ¢ +02<21,...,26)0'3(21,...726):0
where
O'j(Zl,...,Z6): Z ZKI'ZKZ'”-'ZK,-a 1<J<67
1 <K <rp<--<K; <6
denote the elementary symmetric polynomials with respect to the variables zy, . . ., z6.

Obviously, the Y;’s are invariant under the symmetry group S¢ acting on ]Pé by
permuting coordinates. Moreover, since the first equation

o1(z1y...,z6) =21+ +23+za+25+26=0
is linear, the Y;’s can be thought of as hypersurfaces in
]Pé:{(zl :ZG)EIP(SE‘O'l(Z],...,Zé) :0}

The threefold Y; has 10 nodes, namely the points of ]Pé for which three of
their coordinates are 1 and the other three are —1 (i.e., just the members of the
Sg-orbit of (1:1:1:—1:—1:—1)). Correspondingly, Y> has 45 nodes, and Y3
has 130 nodes, 10 constituting the Sg-orbit of (1:1:1:—1:—-1:-1), 90 in
the Sg-orbit of (1:1:—1:—1:+v/=3:—+/=3) and 30 more in the Sg-orbit of
(1:1:1:1:v/=3—-2:—v/=3—2). The following table gives their special names,
their string-theoretic Euler numbers, as well as the main references for further reading
about their geometric properties. (Note that Y, and Y, attain exactly the upper
bound for the cardinality of nodes for cubics and quartics in ]Pé, respectively. Y3 is,
to the best of our knowledge, the quintic in ]Pé with the largest known number of
nodes).
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Threefolds Name Ref. Cstr
n Segre’s cubic [41] —-6+2-10=14
Y, Burkhart’s quartic | [8], [17] | —56+2-45=34
Y; van Straten’s quintic [48] —200+2-130 =60

(i) Let now Y, Y5 be the three-dimensional complete intersections of two quadrics

Yii={z=(z1:20: - :26) ePg | ZMiz = 'zM/z = 0}, i=1,2,
where

0 0 0 0 0 1 0 0 0 0 0O
00 0 010 0 0 0 0 01

M, = 00 01 00 7 Ml,: 00 0 01 0 ’
001 0 0 O 0 001 0O
01 0 0 0 O 0 01 0 0 O
1 00 0 0 O 01 0 0 0 O
00 0 0 1 0 0 0 00 0O
00 01 00 0 0 0 0 1 0

My — 001 0 0O 7 MZIZ 0 0 01 00O
01 0 0 0 O 0 01 0 0 O
1 00 0 0 O 01 0 0 0 O
00 0 0 0 1 0 00 0 0 O

Yiand Y haveq=(1:0:0:0:0:0) as single isolated point and belong to a family
of complete intersections which have been studied extensively by Segre [40] and
Knérrer [28, pp. 38-51]. (Yi,q) turns out to be an As-singularity and (Y2,q) a
Dg-singularity. For both Y} and Y; the first summand in (5.2) equals

Kg) _2'2'@)“'22'(?)‘4'23}(22#0.

Hence, ey (Y1) =2+ 5—1 =6 € Z, whereas

2633 41
esur(Y2) :W+6_ 1= 8"’@ eQ\Z.

(b) Fiber products of elliptic surfaces over ]Pé. Another kind of compact complex
threefolds having both Ay and A;-singularities arises from a slight generalization of
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Schoen’s construction [38]. Let Z — IP{ and Z’ — [P denote two relatively minimal,
rational elliptic surfaces with global sections, and let S (resp. S’) be the images of the
exceptional fibers of Y (resp. of Y’) in ]Pé. The fiber product

Yi=Zxp Z' 5 P
is a complex threefold with singularities located only in the fibers
Y,=n'(s)=2Z,x Z!

lying over points s € S” := SN S’. Since the Euler number of any smooth fiber is zero,
we have obviously

e(Y) = e(Z)e(Z)). (5.3)
seS”
We shall henceforth assume that S” = {sy,s2,...,8.}, where for 1 <i <k, Z is of

Kodaira type I, (i.e., a rational curve with an ordinary double point, if b; =1,
and a cycle of b; smooth rational curves, if b; > 2), while Z;j is of Kodaira type
Ib/;, for all j with 1 < j<v, (v <k < 12), and of Kodaira type II (i.e., a rational
curve with one cusp), for all j with v+ 1 < j < k. (See [29, Thm. 6.2] for the classi-
fication and Kodaira’s notation of exceptional fibers). Under this assumption, Y is
a 3-dimensional Calabi-Yau variety with b;1b{ + - - - + b, b, A;-singularities (each of
which contributing a 2 as string-theoretic Euler number) and b, + - + b, As-
singularities (each of which contributing a % as string-theoretic Euler number). Since
e(Zy,) =biforalliwith1 <i<«,e(Z))=bjforall jwith1 < j<v, ande(Z]) =2
for all j with v+ 1 < j < «, the string-theoretic Euler number of ¥ can be computed
by (5.1) and (5.3), and can be written as follows:

ew(Y) = 2(2 bibz> + (Z b,-> (54)
i=1

i=v+1

Example 5.3. Using Kodaira’s homological and functional invariants (cf. [29, §8]),
as well as the normal forms of the corresponding Weierstrass models (due to Kas
[27]), Herfurtner has shown in detail in [22, cf. Table 3, pp. 336-337] the existence
of relatively minimal, rational elliptic surfaces Z; (resp. Z,, Z3) with sections which
possess exactly four exceptional fibers having types I, I}, Is, Is over the ordered 4-
1+\/§)5 (1—\/§>5 0
2 ’ 2 T
(—-1,1,0,00) € (]Palj)“, resp. types Iy, I, I1, I; over (—%, —%,0, w) € (]Pé)“). Hence,

tuple of points (( w| e (]qu:)4 (resp. types I, I}, I, Iy over

Yl = 21 X[Pal Z37 (I'CSp. Y2 = Zz X]qu Z3)7

has singularities only in the fibers over 0 and oco; more precisely, it has five A,-



424 Dimitrios I. Dais and Marko Roczen

singularities over 0 and 35 A;-singularities over oo (resp., two A,-singularities over 0
and 56 A;-singularities over oo). Consequently, (5.4) gives:

12
es (1) :2~35+?~5:8261
whereas

esu(Y2) =2- 56+%-2 = 116+§€Q\Z.
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