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Topological and smooth unitals
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Abstract. We first show that under natural topological assumptions in compact, connected
projective planes there are no objects besides ovals which have incidence geometric properties
analogous to those of unitals in finite projective planes. After giving a brief account of ‘classical
unitals’, i.e. sets of absolute points of continuous polarities in the classical projective planes
P2F, F A fR;C;H;Og, we define unitals by means of their intersection properties with re-
spect to lines, in analogy to properties of classical unitals. Under suitable topological assump-
tions, unitals turn out to be homeomorphic to spheres. The existence of exterior lines is related
to the codimension of the unital in the point space. Our main result is that unitals satisfying an
additional regularity condition have the same dimensions as classical unitals. Finally, we con-
sider smooth unitals in smooth projective planes. In this case some results can be improved by
using transversality arguments.

This paper is inspired by the beautiful paper [3] by Buchanan, Hähl and Löwen on
topological ovals. The methods which we will use here, however, are often quite dif-
ferent. Unitals were defined originally as sets of absolute points of unitary polarities
of Desarguesian finite projective planes. Such unitals have the characteristic property
that every line intersects in 0, 1 or n points (nb 2 fixed). This property can be used to
define unitals in arbitrary finite projective planes (cf. [4], in particular 3.3.7). At the
beginning of Section 2, we will give a short proof that under natural topological as-
sumptions there are no such objects besides ovals (n ¼ 2) in compact, connected pro-
jective planes. Hence, this is not the right way to generalize the concept of a unital to
compact, connected projective planes.
This gives the motivation for introducing the notion of a unital in another way, as

a generalization of topological ovals and of sets of absolute points of continuous
polarities in the classical projective planes P2F, F A fR;C;H;Og, where H denotes
the skew-field of quaternions, and O the alternative division algebra of octonions
(or Cayley numbers). In these planes, there are two conjugacy classes of continuous
polarities with non-empty sets of absolute points (called classical unitals and denoted
by U in the following), the hyperbolic polarities and the planar polarities. In the hy-
perbolic case, U is a sphere of codimension 1. The planar case occurs only for l > 1
(where l denotes the dimension of F over R), and then U is a sphere of dimension



3
2 l � 1. In 2.4, we will discuss various properties of classical unitals and will sketch
proofs for some of these properties. Unitals in compact, connected projective planes
in general will be defined by their intersection properties with respect to lines, see
Definition 2.5, analogously to the definition of ovals in [3]. We will show that under
natural topological assumptions unitals are homeomorphic to spheres. For the re-
maining part of this paper we will then concentrate on spherical unitals (see Defini-
tion 2.7). At the end of Section 2, we will investigate the existence of exterior lines of
unitals according to their codimension in the point space. The main result of this
paper is the following

Theorem. Let U be a spherical unital. Then, under natural assumptions, U has the same

dimension as one of the classical unitals.

In Section 3, we will make this statement precise and prove this theorem by means
of a Gysin sequence. A partial result of this type will be obtained under weaker as-
sumptions by means of the Vietoris–Begle mapping theorem. In the last section we
will consider smooth unitals (see Definition 4.1). By using transversality arguments
we will prove additional regularity properties for such unitals. In this way, we will see
that certain assumptions, which had to be included in the previous two sections, are
always satisfied for smooth unitals.
In [9], H. Löwe, R. Löwen, and E. Soytürk investigated unitals from a di¤erent

point of view. Their definition of a unital is contained in our notion of a spherical
unital (cf. Definition 2.7). They concentrate on unitals of codimension 1 in the point
spaces of topological translation planes and show—among other topics—that every
compact ovoid inR2l is a unital in any topological a‰ne translation plane defined on
R2l , where l A f1; 2; 4; 8g. In our forthcoming paper [7] we will consider sets of abso-
lute points of continuous (or smooth) polarities in compact, connected (or smooth)
projective planes and will investigate in which respect such sets are similar to classical
unitals.
I would like to thank Andreas Schroth for proposing to me some of the ques-

tions treated here. I am grateful to Rainer Löwen and Reiner Salzmann for valuable
discussions.

1 Preliminaries and notation

LetP ¼ ðP;L;FÞ be a projective plane. We call the elements of P points, the elements
of L lines and the elements of the incidence relation FJP�L flags. If ðp;LÞ is a
flag, we say that the point p and the line L are incident, or that p lies on L, or that L
passes through p. The set of points incident with a line L is called a point row and is
denoted by PL or also by L, if no confusion can arise. The set Lp of lines incident
with a point p is called a line pencil. The incidence structure P� obtained by inter-
changing the rôles of P and L is called the dual plane of P.

Definition 1.1. A compact, connected projective plane is a projective plane P ¼
ðP;L;FÞ whose point space P and line spaceL are compact, connected topological

Stefan Immervoll334



spaces such that joining points and intersecting lines are continuous operations on
their respective domains, i.e. the join map4 : P� PnDðPÞ ! L and the intersection
map5 : L�LnDðLÞ are continuous, where D denotes the diagonal: DðX Þ ¼ fðx; xÞ j
x A Xg. For later use we define4p : Pnfpg ! Lp : q 7! p4q for any p A P.

By [10], Corollary 41.5, the flag space F of a compact projective plane P ¼
ðP;L;FÞ is closed in P�L. For the sake of simplicity, we will always assume here
that point rows are topological manifolds. In fact, the topological properties of com-
pact, connected projective planes are close to those of manifolds, see [10], Chapter 5,
and no examples of compact, connected projective planes are known for which this
assumption would not be satisfied. In some cases, however, this assumption is unnec-
essary or would become unnecessary if we replaced statements on the homeomorphism
type of certain sets (cf. Definitions 2.5, 2.7) by statements on their (co-)homological
properties. This would seem quite artificial in the present context, but will become
natural in our forthcoming paper [7], where we will investigate sets of absolute points
of continuous polarities.
By the continuity of the join map and the intersection map, also P, L, and F are

topological manifolds. Furthermore, point rows and line pencils are homeomorphic
to l-dimensional spheres, where l A f1; 2; 4; 8g, the point space P and the line spaceL
have dimension 2l, and F has dimension 3l. Throughout this paper, the letter l will
always be used in this sense. The sphere of dimension m will be denoted by Sm. For
every line L A L the set P=L (with the quotient topology) is homeomorphic to S2l .
All these statements can be found in [10], 52.1, 3, 5, and 6 (b).

Definition 1.2. A smooth projective plane is a projective plane whose point space and
line space are di¤erentiable manifolds such that the join map and the intersection
map are di¤erentiable.

Both ‘di¤erentiable’ and ‘smooth’ will be used in the sense of Cy in this paper. By
a smooth submanifold we will always mean a smoothly embedded submanifold. The
classical planes P2F, F A fR;C;H;Og, are smooth projective planes and smooth
projective planes are compact, connected projective planes. The point space and the
line space of a smooth projective plane are homeomorphic to the point space of the
classical projective plane of the same dimension, see [8]. Point rows of smooth pro-
jective planes are smoothly embedded submanifolds of the point space, and any two
distinct point rows L, K intersect transversally in P, i.e. TpPL þ TpPK ¼ TpP for
p ¼ L5K , see [1], 2.6 and 2.13. A dual statement holds for line pencils instead of
point rows.

2 The concept of a unital

Throughout this section, P ¼ ðP;L;FÞ will always denote a compact, connected
projective plane of dimension 2l with manifold lines.

Definition 2.1. In analogy to the definition of unitals in finite geometry, cf. [4], 3.3.7,
we define a unital of finite type as a subset U of the point space of a projective plane,
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such that every line intersects U in precisely 0, 1 or n points, where nb 2 is a fixed
number, and for every point p A U there is exactly one line Tp which intersects U only
in p. Unitals of finite type with n ¼ 2 are called ovals.

The unique line Tp with U VTp ¼ fpg is called the tangent to U at the point p.
Lines which intersect U in more than one point are called secants, and lines which
have no point in common with U are called exterior lines. The same notions will be
used also in connection with other types of unitals, which will appear later in this
paper.
By [3], Theorem 2.6, a closed oval O in a compact, connected projective plane P is

a topological oval in the sense of [3], Definition 2.4. This implies that the maps

cy : O ! Ly : x 7!
x4y if x0 y

Ty if x ¼ y

�

are homeomorphisms for each y A U . In particular, we have a (trivial) covering with
covering space Onfyg, base spaceLynTy and projection4yjOnfyg. This motivates the
following definition: a unital of finite type U in a compact, connected projective plane
P ¼ ðP;L;FÞ is called a topological unital of finite type if U is closed in P and the
maps xy : Unfyg ! LynfTyg : x 7! x4y are covering projections for each y A U .
Since each secant intersects U in exactly n points, Unfyg is then an ðn� 1Þ-fold
covering ofLynfTyg.

Proposition 2.2. There are no topological unitals of finite type other than topological

ovals.

Proof. That topological ovals are topological unitals of finite type has already been
shown above. So let U be a topological unital of finite type and let y A U . Since
xy : Unfyg ! LynfTyg is a covering projection and LynfTyg is homeomorphic to
the simply connected space Rl , the space Unfyg is homeomorphic to n� 1 disjoint
copies ofRl . Thus, U itself is homeomorphic to a bouquet of n� 1 spheres, where the
common point of all spheres corresponds to y. Now choose z A U distinct from y. By
the above arguments, U is also homeomorphic to a bouquet of n� 1 spheres, where
the common point of the spheres corresponds to z. This yields a contradiction except
for n� 1 ¼ 1. Thus, U is a closed oval.

Definition 2.3. A polarity of a projective plane P ¼ ðP;L;FÞ is a map p of the dis-
joint union PUL onto itself with p2 ¼ id which exchanges points and lines and
preserves incidence, i.e. ðp;LÞ A F , ðLp; ppÞ A F. A point p A P which lies on pp is
called an absolute point.

2.1 A brief account of classical unitals. We call the sets of absolute points of con-
tinuous polarities of classical projective planes classical unitals. Every continuous
polarity of a classical plane P2F (F A fR;C;H;Og) is conjugate to the standard

elliptic polarity, the standard planar polarity, or the standard hyperbolic polarity, see
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[10], 13.18 and 18.29. For F ¼ R, there is no planar polarity. As a general reference
for polarities of classical projective planes we mention Sections 13 and 18 of [10], in
particular 13.18, 18.32 and 18.33. Some of the properties of classical unitals discussed
here will be proved later by more theoretical arguments, others will provide the moti-
vation for certain assumptions in propositions and theorems in the following sections.
In order to describe polarities of classical planes, we recall that the R-algebras F

may be constructed inductively by means of the Cayley–Dickson process (cf. [10], 11.1,
or [5], Chapter 9), where F0 ¼ R, F1 ¼ C, F2 ¼ H and F3 ¼ O. For mb 1, these
algebras have an involutory antiautomorphism x 7! x, called conjugation, and an in-
volutory automorphism e which leaves Fm�1 fixed and commutes with conjugation
(cf. [10], 18.28). By the way, e induces on P2Fm, m A f1; 2; 3g, an involutory auto-
morphism which fixes pointwise the subplane P2Fm�1. For m ¼ 0 there is no such
involutory automorphism, and conjugation is defined to be the identity.
Except for F ¼ O, the standard polarities on P2F may by described by the corre-

sponding sesquilinear forms, which in homogeneous coordinates are given as follows:

f ðx; yÞ ¼ x1y1 þ x2y2 þ x3y3 standard elliptic polarity

gðx; yÞ ¼ x1y1 þ x2y2 � x3y3 standard hyperbolic polarity

hðx; yÞ ¼ x e
1y1 þ xe

2y2 þ xe
3y3 standard planar polarity

The standard elliptic polarity on P2F has no absolute points. As can be seen from
the definition of the Hermitian form g, the unital UhypðFÞ consisting of the absolute
points of the standard hyperbolic polarity of P2F has exterior lines. In a‰ne coor-
dinates we have UhypðFÞ ¼ fðx1; x2Þ A F2 j jx1j2 þ jx2j2 ¼ 1g. The latter is true also
in the case F ¼ O, see 18.21. In particular, UhypðFÞ is always homeomorphic to a
sphere of dimension 2l � 1 (l ¼ dimF). For F A fC;H;Og, the unital UplaðFÞ which
corresponds to the set of absolute points of the standard planar polarity is a sphere
of dimension 32 l � 1, cf. [10], 18.32. This can be proved in the following way: the Lie
group of collineations of P2F which commute with the standard planar polarity (the
planar motion group) acts doubly transitively on U ¼ UplaðFÞ. Using this smooth
group action, one can show that for each p A U we have a locally trivial fibration
with total spaceUnfpg, base spaceLpnfTpg, and projection xp : Unfpg ! LpnfTpg :
x 7! x4 p. Here, Tp is the image of p under the standard planar polarity. For a
suitable choice of p A U and K A LpnfTpg, we see by easy calculations that the fibre
ðK VUÞnfpg is homeomorphic to Rðl=2Þ�1. The proof is then completed as in Prop-
osition 2.6 below. We summarize here some further consequences: the planar unital
U is a smooth submanifold of P, there is exactly one tangent at each point p A U , and
each secant intersects U transversally in a submanifold homeomorphic to Sðl=2Þ�1.
Also the hyperbolic motion group (defined analogously) acts doubly transitively on

UhypðFÞ, cf. [10], 18.23. We obtain that for each point q A UhypðFÞ there is exactly
one tangent at q to UhypðFÞ, and each secant intersects UhypðFÞ transversally in a
smooth submanifold homeomorphic to Sl�1.

The following definition of unitals is motivated by the properties of classical unitals
established above.
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Definition 2.4. Let P ¼ ðP;L;FÞ be a compact, connected projective plane. A subset
U of P is called a unital if the following axioms are satisfied:

(U1) For every x A U there is exactly one tangent Tx A Lx.

(U2) Every secant intersects U in a set homeomorphic to Sk (kb 0 fixed).

Throughout this paper, the letter k will always be used in the sense of Definition
2.4. We will denote the set of tangents by U � and the set of tangents through a point
p A PnU by Tp. The set of points in which these tangents touch the unital U, also
called the set of feet of p, will be denoted by Bp.
For each x A U , the map xx : Unfxg ! LxnfTxg is surjective, and for each L A

LxnfTxg the set x�1x ðLÞ is homeomorphic to Rk. It would be natural to require that
for each point x A U the maps xx are locally trivial fibrations. In fact, this is the case
for the classical unitals, see 2.1. However, this condition is unnecessarily strong. The
next proposition shows that already under weaker assumptions U is homeomorphic
to a sphere.

Proposition 2.5. Let U be a unital in a compact, connected projective plane P ¼
ðP;L;FÞ. Then each of the following two conditions implies that U is homeomorphic

to a sphere of dimension k þ l:

(i) U is closed in P and there is a point p A U such that the map xp (defined above) is a
locally trivial fibration.

(ii) There are two distinct points p, q A U such that the maps xp and xq are locally

trivial fibrations.

Proof. The punctured line pencil LpnfTpg is homeomorphic to Rl . Since Rl is con-
tractible, we infer that the locally trivial fibration induced by xp is in fact trivial.
Hence, Unfpg is homeomorphic to Rl � Rk. If U is compact as required in (i), we
conclude that U is homeomorphic to Skþl . In the case (ii), both Unfpg and Unfqg
are homeomorphic to Rkþl . Thus U is a ðk þ lÞ-dimensional topological manifold.
Choose a homeomorphism c : Unfpg ! Rkþl and identify Skþl with the one-point
compactification of Rkþl . Then the map

U ! Skþl : x 7! cðxÞ for x0 p

y for x ¼ p

�

is a continuous bijection and thus a homeomorphism by domain invariance, see [6],
p. 82, Exercise (18.10).

Proposition 2.5 and the results on classical unitals motivate the following.

Definition 2.6. A unital U in a compact, connected projective plane is called a spherical
unital if U is homeomorphic to a sphere of dimension k þ l.

Remark. Note that topological ovals are spherical unitals by [3], Theorem (3.7). For
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spherical unitals, we have ka l � 1. Otherwise U would be an open submanifold of P.
Since U is compact and P is connected we would get U ¼ P, a contradiction.

The following proposition characterizes spherical unitals U whose sets of tangents
U � are spherical unitals in the dual plane. As a consequence of this proposition, we
then have U�� ¼ U , since U�� consists of those points p with jLp VU �j ¼ 1.

Proposition 2.7. Let U be a spherical unital in a compact, connected projective plane

P ¼ ðP;L;FÞ. Then U � is a spherical unital in P� if and only if U � is closed in P and

for each x A PnU there are either no tangents at all through x or the set Bx of feet is

homeomorphic to Sk.

Proof. Let U be a spherical unital with the properties described above. By the com-
pactness of U � and F, we see that the map U 7! U � : x 7! Tx is a homeomorphism,
i.e. U �ASkþl . For q A U , we have Lq VU � ¼ fTqg, where Tq is the unique tangent
at q. For p A PnU , there are no tangents to U through p at all, i.e.Lp VU � ¼ q, or
Bp is homeomorphic to Sk. Then the continuous map4p induces a homeomorphism
between Bp and Tp, i.e. Lp VU �ASk. Hence, U

� satisfies the axioms of a spherical
unital.
Assume now that U � is a spherical unital in P�. Then U � is homeomorphic to

Sk 0þl for some k
0 b 0, and using again the homeomorphism U 7! U � : x 7! Tx we see

that k 0 ¼ k. Choose x A PnU . For each L A U � there is exactly one point y A P with
Ly VU � ¼ fLg, namely the point y determined by PL VU ¼ fyg. In particular, the
line pencil Lx cannot have exactly one line in common with U �. Hence, Lx VU � is
empty or homeomorphic to Sk. We have to show that in the latter case Bx is homeo-
morphic toSk. SinceU is compact andF is closed inP�L, the mapTx !U :K 7! yK
with PK VU ¼ fyKg is continuous. Hence, Bx is homeomorphic to Tx ¼ Lx VU �

and therefore to Sk. This completes the proof.

The results on spherical unitals in the following proposition are analogous to results
on topological ovals in [3], Theorem (3.7).

Proposition 2.8. Let U be a spherical unital. Then there are secants through every point.
Moreover, PnU consists of exactly two connected components if U has codimension 1
in P, and PnU is connected otherwise. Assume in addition that the set of secants is open
in L. Then exterior lines exist if and only if the codimension of U in P is equal to 1.

Proof. For k ¼ 0, U is a closed oval. In this case, the above statements (and much
more) have been proved in [3]. So we may assume that k > 0, l > 1. Assume that
there exists a point p such that there are no secants through p. Then we have p B U ,
and the map4p induces a homeomorphism between U andTpJLp. Since UASkþl
and LpASl we conclude by [6], Theorem 18.3, that k þ la l, a contradiction.
Because of l > 1, we have H1ðP;ZÞ ¼ 0 by [10], 52.14, and H0ðP;PnU ;ZÞG

H 2lðU ;ZÞ ¼ 0 by Alexander duality. The exact homology sequence of the pair
ðP;PnUÞ then yields a short exact sequence

0! H1ðP;PnU ;ZÞ ! H0ðPnU ;ZÞ ! H0ðP;ZÞ ! 0.
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This sequence splits because of H0ðP;ZÞGZ. Again by Alexander duality, we have
H1ðP;PnU ;ZÞGH 2l�1ðU ;ZÞ. Hence, H0ðPnU ;ZÞ is isomorphic to Z2 for k ¼ l � 1
and isomorphic to Z in the other cases. This proves the second statement.
By the compactness of U and F we see that the set E of exterior lines is open in

L. Since, by assumption, the set S of secants is open, too, we conclude that U � is
closed inL. Then an easy compactness argument shows that the map which assigns to
each point x A U the tangent Tx is continuous and hence a homeomorphism onto U

�.
In particular, U � is homeomorphic to Skþl . As above, we see that LnU � consists of
exactly two connected components if the codimension ofU � inL is equal to 1 and that
LnU � is connected otherwise. The set S ¼ 4ðU �UnDðUÞÞ is connected because
the codimension of DðUÞ inU �U is at least 2. SinceLnU � is the disjoint union of the
open, connected set S and the open set E, we conclude that exterior lines exist if and
only if the codimension of U � inL, and hence of U in P, is equal to 1.

Remark. For smooth unitals U (see Definition 4.1), we will see in Section 4 that the
set of secants is always open in L. Furthermore, we will show by means of a Wang
sequence that there are tangents through every point of PnU if the codimension of U
in P is bigger than 1. In our forthcoming paper [7] we will prove more detailed results
on the existence of secants, tangents and exterior lines through various points for sets
of absolute points of smooth polarities.

3 Possible dimensions of unitals

In this section we will investigate the possible dimensions of spherical unitals. Under
natural assumptions (see (R1) and (R2)) we will show that dimensions which do not
occur for classical unitals are impossible also in this more general setting.
LetU be a spherical unital in a compact, connected projective planeP ¼ ðP;L;FÞ.

Since unitals of codimension 1 exist in the classical projective planes, we may assume
that the codimension of U in P is bigger than 1. Then the following regularity as-
sumption is natural (cf. Propositions 2.7, 2.8):

(R1) There exists a point p A PnU such that every line through p intersects the unital,
and the set Bp of feet (or the setTp of tangents through p) is homeomorphic to
a sphere of dimension k.

Note that for BpASk the map4p induces a homeomorphism between Bp and Tp.
Conversely, if Tp is homeomorphic to Sk we see that BpASk by using the compact-
ness of U and F, cf. the proof of Proposition 2.7.

Proposition 3.1. Let U be a spherical unital which satisfies condition (R1). Then we

have l > 1, and the dimension of U cannot exceed 32 l � 1, the dimension of the classical
planar unital in the classical projective plane of the same dimension.

Proof. For l ¼ 1, the unital U would be a closed oval which satifies condition (R1), in
contradiction to [3], Theorems 2.6 and 3.7 (a). Hence, we have l > 1. The continuous,
surjective map rp : UnBp ! LpnTp : x 7! x4 p is closed since U is compact and

Stefan Immervoll340



4�1
p ðTpÞ ¼ Bp. For each L A LpnTp, we have r

�1
p ðLÞASk and hence

~HHqðr�1p ðLÞ;ZÞ
¼ 0 for all q < k. By the Vietoris–Begle mapping theorem (see [11], p. 344, Theorem
15), the map r�

p : HqðLpnTp;ZÞ ! HqðUnBp;ZÞ is an isomorphism for q < k. Now
assume that k > ðl=2Þ � 1. Then we have l � k � 1< k and hence Hl�k�1ðUnBp;ZÞG
Hl�k�1ðLpnTp;ZÞ. By [6], Theorem 18.3, the homology groups of UnBp and LpnTp

are isomorphic to those of spheres of dimensions ðkþ lÞ� k� 1 ¼ l� 1 and l� k� 1,
respectively. Thus, for k < l � 1 we have Hl�k�1ðUnBp;ZÞ ¼ 0 (because of 0 <
l � k � 1 < l � 1) and Hl�k�1ðLpnTp;ZÞ ¼ Z, a contradiction. For k ¼ l � 1, we
get a contradiction, too: we then have H0ðUnBp;ZÞ ¼ Z (because of l > 1) and
H0ðLpnTp;ZÞ ¼ Z2.

Using the fact that closed ovals do not exist in 8-dimensional compact, connected
projective planes (hence k > 0, see [3], Theorem 3.5), we get the following

Corollary 3.2. Let U be a spherical unital in an 8-dimensional compact, connected
projective plane, such that condition (R1) is satisfied. Then U has dimension 5, i.e. it
has the same dimension as the classical planar unital in P2H.

If we assume that in addition to (R1) the following regularity assumption (R2) is
satisfied, we can improve our result obtained in Proposition 3.1.

(R2) UnBp is a fibration overLpnTp with projection rp :UnBp !LpnTp : x 7! x4p.

Theorem 3.3. Let U be a spherical unital which satisfies conditions (R1) and (R2). Then
we have l > 1, and U has dimension ð3=2Þl � 1, i.e. it has the same dimension as the

classical planar unital in the corresponding classical plane.

Proof. By Proposition 3.1 we have k < l � 1. In the sequel we assume that
k0 ðl=2Þ � 1. Then we have k > 0 since closed ovals do not exist in 8- and 16-
dimensional compact projective planes (see [3], Theorems 2.6 and 3.5). The essen-
tial tool in this proof is the Gysin exact sequence associated with the fibration
ðUnBp;LpnTp; rpÞ (see, e.g., [11], p. 260, Theorem 11). We use homology with
coe‰cients in Z2. Then the homology groups of the fibres r�1p ðLÞASk have trivial
automorphism groups because of k > 0. Thus the fibration is orientable, and the
Gysin sequence may be applied (cf. the remark below). By [6], Theorem 18.3, the
homology groups of UnBp and LpnTp are isomorphic to those of spheres of
dimensions l � 1 and l � k � 1, respectively. Hence we haveHl�2k�2ðLpnTp;Z2Þ ¼ 0
and Hl�k�1ðUnBp;Z2Þ ¼ 0 because of 0 < k < l � 1. The Gysin sequence

� � � ! Hl�k�1ðUnBp;Z2Þ ! Hl�k�1ðLpnTp;Z2Þ ! Hl�2k�2ðLpnTp;Z2Þ ! � � �

then yields Hl�k�1ðLpnTp;Z2Þ ¼ 0, a contradiction.

Remark. We did not use homology with coe‰cients in Z since the Gysin exact
sequence applies only to orientable fibrations. Here, a fibration is called orientable if
the fundamental group of the base space acts trivially on the homology of the fibre
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(cf. [11], p. 476). For homology with coe‰cients in Z, the non-vanishing homology
groups of the fibres r�1p ðLÞASk are isomorphic to Z for k > 0. Since the auto-
morphism group of Z is abelian, the action of the fundamental group of LpnTp on
the homology of Sk reduces to an action of the abelianization of this group, i.e. to
an action of H1ðLpnTp;ZÞ. Hence, the fact that Tp might be wildly embedded in
Lp causes no problem in our case, but if Tp has codimension 2 in Lp, then it is not
clear if the fibration is orientable because we then have H1ðLpnTp;ZÞGZ by [6],
Theorem 18.3.

4 Unitals in smooth projective planes

In this section we will show that certain regularity assumptions in the previous two
sections (cf. Proposition 2.8 and Theorem 3.3) are satisfied for smooth unitals in
smooth projective planes P ¼ ðP;L;FÞ.

Definition 4.1. Let P ¼ ðP;L;FÞ be a smooth projective plane. A smooth unital U is
a spherical unital which is a smooth submanifold of the point space P such that every
secant intersects U transversally.

Remark. Note that in virtue of 2.4 all classical unitals are smooth unitals.

In Propositions 4.3 and 4.4 we will establish additional geometric properties for
smooth unitals. The next lemma contains two results on smooth projective planes
which will be used in the proofs of these propositions.

Lemma 4.2. Let P ¼ ðP;L;FÞ be a smooth projective plane. Then the join map4 is a

submersion onto L and the map4p is a submersion onto Lp for each p A P.

Proof. Let p A P and x A Pnfpg. We want to show that the di¤erential ðD4pÞx is
surjective. For an arbitrary line L A Lxnfx4pg the perspectivity PL !Lp : z 7! z4p

is a di¤eomorphism with inverseLp ! PL : K 7! K5L. Thus the map ðD4pÞxjTxPL
:

TxPL ! Tx4pLp is an isomorphism and ðD4pÞx is surjective. Hence, the map4p is a
submersion.
Now let x; y A P, x0 y and put L :¼ x4 y. The di¤erential of4 in ðx; yÞ is the

map D4ðx;yÞ : TxP� TyP ! TLL : ðu; vÞ 7! ðD4yÞxðuÞ þ ðD4xÞyðvÞ. The images of
ðD4yÞx and ðD4xÞy are TLLy and TLLx, respectively. Since line pencils intersect
transversally, the surjectivity of D4ðx;yÞ follows. Thus4 is a submersion.

Proposition 4.3. The set of secants of a smooth unital U is open in L and the set U � of
tangents is compact.

Proof. The set of secants of U is the image of the the join map restricted to the sub-
manifold ðU �UÞnDðUÞ of ðP� PÞnDðPÞ. We want to show that4jðU�UÞnDðUÞ is still
a submersion. Choose x, y A U , x0 y and put L :¼ x4 y. Since4x maps PLnfxg
onto fLg, the tangent space TyPL is contained in the kernel of ðD4xÞy. Analogously,
we get ðD4yÞxðTxPLÞ¼f0g. Hence we have D4ðx;yÞðTxPL� TyPLÞ¼ðD4yÞxðTxPLÞ�
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ðD4xÞyðTyPLÞ ¼ f0g. Because of ðTxU � TyUÞ þ ðTxPL � TyPLÞ ¼ TxP� TyP we
conclude that D4ðx;yÞðTxU � TyUÞ ¼ TLL, see Lemma 4.2. Thus the restriction of4
to ðU �UÞnDðUÞ is a submersion and hence an open map. In particular, the image
of ðU �UÞnDðUÞ is open inL. Finally, U � is compact being the complement of the
union of the open set of secants and the open set of exterior lines in the compact
spaceL.

Proposition 4.4. Let U be a smooth unital of codimension bigger than 1 in P. Then
there are no exterior lines. Furthermore, there are secants and tangents through every

point of PnU .

Proof. For k ¼ 0, the unital U is a closed oval and the above statements follow by [3],
Theorems 3.5 and 3.7. So we may assume that k > 0, l > 1. Since the set of secants
is open, the first statement and the fact that there are secants through every point of
PnU are consequences of Proposition 2.8.
Assume that there is a point p A PnU such that there are only secants through

p. We first show that the restriction of4p to U is a submersion. So let x A U and
let L :¼ x4 p. Because of ðD4pÞxðTxPLÞ ¼ f0g, we have ðD4pÞxðTxUÞ ¼ ðD4pÞx �
ðTxU þ TxPLÞ ¼ ðD4pÞxðTxPÞ ¼ TLLp. Here we have used Lemma 4.2 and the
transversal intersection of U and PL. Hence,4pjU is a submersion. This map is also
proper since U is compact. By the fibration theorem of Ehresmann ([2], Theorem
8.12), we conclude that U is a locally trivial fibration over Lp with projection4pjU
and fibres homeomorphic to Sk. Because of 0 < k < l� 1 we have Hkþ1�lðSk;Z2Þ ¼ 0
and HkðUÞ ¼ 0. Thus the Wang sequence

� � � ! Hkþ1�lðSk;Z2Þ ! HkðSk;Z2Þ ! HkðUÞ ! � � �

associated with this fibration (see, e.g., [11], p. 456, Corollary 6) yieldsHkðSk;Z2Þ ¼ 0,
a contradiction.
The following corollary is a consequence of Theorem 3.3 in the case of smooth

unitals.

Corollary 4.5. Let U be a smooth unital such that condition (R1) is satisfied. Then U

has the same dimension as one of the classical unitals.

Proof. It su‰ces to show that also condition (R2) is satisfied. Then we can apply
Theorem 3.3. The map rp (defined in (R2)) is proper, since it extends to4pjU :U !Lp.
As in the proof of the preceding Proposition we see that rp is a submersion. Hence,
by the fibration theorem of Ehresmann (see [2], Theorem 8.12), UnBp is a locally
trivial fibre bundle over LpnTp with projection rp, i.e. condition (R2) is satisfied.
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projective planes. Walter de Gruyter & Co., Berlin 1995. Zbl 851.51003
[11] E. H. Spanier, Algebraic topology. McGraw-Hill Book Co., New York 1966.

Zbl 145.43303
[12] J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl.
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