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Abstract. We introduce the notion of amicable partitions for combinatorial manifolds with
complementarity. We prove that any 4-dimensional combinatorial manifold X 4

9 satisfying
complementarity has an amicable partition and any amicable partition determines X 4

9 up to
isomorphism. This gives a short proof of the uniqueness of KuÈhnel's 9-vertex complex projec-
tive plane.

2000 Mathematics Subject Classi®cation. 57Q15, 57M15.

1 Introduction

1.1. In [4], Brehm and KuÈhnel proved that if X is a non-sphere d-dimensional
combinatorial manifold on n vertices then nX 3d=2� 3. In case of equality, the only
possibilities are d � 2m, mW 4, and in these cases jX j is a `manifold like a projective
plane'. Arnoux and Marin showed in [1] that in the cases of equality X must have the
following complementarity property: exactly one of the two cells in any non-trivial
bipartition (of the vertex set of X ) must be a face of X. In [6], the second-named
author proved the following converse: if X is an n-vertex d-dimensional combinato-
rial manifold with the complementarity property then n � 3d=2� 3 (and hence d �
2m, mW 4).

1.2. Let us say that a non-sphere combinatorial manifold is a B-K manifold (B-K
stands for Brehm and KuÈhnel, of course) if it satis®es n � 3d=2� 3. It is well known
(and quite easy to prove, see for instance [3]) that there is a unique 2-dimensional B-
K manifold, namely the 6-vertex real projective plane RP2

6 . It is also known (and
this is much harder to prove) that there is a unique 4-dimensional B-K manifold,
namely KuÈhnel's 9-vertex complex projective plane CP2

9 . In [5], Brehm and KuÈhnel
constructed three distinct 8-dimensional B-K manifolds. These three are combinatori-
ally equivalent and hence their geometric realizations are PL-homeomorphic. (Recall
that two simplicial complexes are called combinatorially equivalent if they have iso-
morphic subdivisions.) It is not known whether these are the only 8-dimensional B-K



manifolds, nor is it known whether the common topological manifold triangulated
by them is the quaternionic projective plane. No 16-dimensional example is known at
present; presumably such an object would triangulate the Cayley projective plane.

1.3. Several proofs of the existence and uniqueness of CP2
9 are now known. The

®rst was the computer-aided proof of KuÈhnel and Laûmann [9]. (A beautiful exposi-
tion of this paper may be found in [8].) The second proof, due to Arnoux and Marin
[1], uses cohomology theory with Z2 coe½cients. The third, a combinatorial proof,
is due to the present authors in [2]. In [11], Morin and Yoshida surveyed the known
proofs (and added one of their own) of the fact that the topological space triangu-
lated by CP2

9 is the complex projective plane. Since then, one more proof of the last-
named fact has been found by Madahar and Sarkaria [10]. They constructed a 17-
vertex 4-ball D4

17 whose boundary is a 12-vertex 3-sphere S3
12 and de®ned a combi-

natorial analogue h : S3
12 ! S2

4 of the Hopf map so that the simplicial complex
S2

4 Uh D4
17 is precisely CP2

9 .

1.4. In [11], Morin and Yoshida presented arguments in support of having so many
proofs identifying the geometric realization of CP2

9 . The gist of their argument is that
CP2

9 is such an important and exotic object that it is certainly worth in-depth studies,
and di¨erent proofs will throw light on di¨erent aspects of this object. We believe that
this argument applies equally well to proofs of the uniqueness of CP2

9 . Thus encour-
aged, we present yet another combinatorial proof of the uniqueness. More precisely
we prove:

Theorem. Up to simplicial isomorphism there is a unique 9-vertex 4-dimensional com-

binatorial manifold satisfying complementarity.

1.5. In [7], the second-named author proved that a 4-dimensional weak pseudo-
manifold (without boundary) satisfying complementarity is automatically a combina-
torial manifold on 9 vertices. Therefore, the above theorem may also be stated as
saying that: up to isomorphism there is a unique 4-dimensional weak pseudomanifold

without boundary satisfying complementarity. Our proof, presented below, has the vir-
tue of brevity: it is much shorter than all the previous proofs. The proof is based on the
notion of amicable partition: in the language of [2], they are just the partitions of the
vertex set into blue triangles. We prove that (a) any combinatorial manifold X � X 4

9

satisfying complementarity has an amicable partition, (b) up to isomorphism there are
two types of amicable partitions, (c) any amicable partition determines X 4

9 up to iso-
morphism and (d ) both types of amicable partitions determine the same combinato-
rial manifold. The general theory is developed in Section 2, while we specialize these
results to CP2

9 in Section 3. Thus, Section 3 contains the proof of the main theorem.

2 Amicable partitions

2.1. Amicable partitions may be de®ned for any d-dimensional B-K manifold. These
are the partitions of its vertex set into three �d=2�-faces A1, A2, A3 such that the link
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of each Ai is the standard �d=2ÿ 1�-sphere on Ai�1 (addition in the su½x is modulo
three). We have:

Lemma 1. Let A be a �d=2�-face of a d-dimensional B-K manifold X. Suppose the link

of A is a standard sphere. Then A belongs to a unique amicable partition of X.

Proof. Put A � A1. Let A2 be the vertex-set of the link of A1 and let A3 be the set
of vertices outside A1 UA2. Then each Ai contains d=2� 1 vertices. Note that com-
plementarity implies that any set of d=2� 1 (or fewer) vertices of X spans a face. In
particular, each Ai is a �d=2�-face of X. So, to complete the proof, it is su½cient to
show that the link of A2 (respectively A3) is the standard sphere on A3 (respectively
A1).

Take any vertex x A A2. Then A3 U fxg is not a face since its complement A1 U
�A2nfxg� is a face. Thus no vertex of A2 belongs to the link of A3. Therefore, the
vertex set of the link of A3 is contained in A1. Since this link has at least d=2� 1 ver-
tices, it follows that the link of A3 is the standard sphere on A1. Replacing A1 by A3

(and hence A2 by A1, A3 by A2) in this argument, we see that the link of A2 is the
standard sphere on A3.

In particular, this lemma shows that each edge of RP2
6 is a cell of a unique ami-

cable partition. Hence there are ®ve amicable partitions in RP2
6 , and this fact trivi-

alises the existence and uniqueness of RP2
6 . From [2] it can be read o¨ that CP2

9 has
seven amicable partitions. (But this fact will not be used in what follows.) We observe
that each of the three known 8-dimensional B-K manifolds has amicable partitions.
(In fact, these three B-K manifolds have ®ve, nine and eleven amicable partitions,
respectively.) But we see no way to prove (or disprove!) the following:

Conjecture. Every B-K manifold has an amicable partition.

2.2. If U is an n-vertex m-sphere �n > m� 2� then clearly each vertex x of U is of
degreeXm� 1 (i.e., x is in at least m� 1 edges). If x is a vertex of degree m� 1, we
can construct an �nÿ 1�-vertex m-sphere V as follows. Delete the vertex x (and all
faces through x); introduce the set of neighbours of x as a new facet (i.e., maximal
face). We shall say that V is obtained from U by collapsing the vertex x. Conversely,
U can be recovered from V by starring a vertex x in the new facet.

Let X be a d-dimensional B-K manifold with an amicable partition fA1;A2;A3g.
Say, A1 � fx0; . . . ; xd=2g. Then the link in X of the �d=2ÿ 1�-face A1nfxig is a �d=2�-
sphere on the vertex set fxigUA2 UA3 wherein xi is a vertex of degree d=2� 1 and its
neighbours are the vertices in A2. Let Xi be the �d=2�-sphere obtained by collapsing
xi. The set fXi : 0W i W d=2g of �d=2�-spheres thus obtained will be called a layer of
the given amicable partition with respect to the cell A1. Thus, any amicable partition
has three layers of �d=2�-spheres corresponding to its three cells.

2.3. For any combinatorial sphere U, we shall use G�U� to denote the graph with
the vertices of U as vertices, such that two distinct vertices x and y are adjacent in
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G�U� if and only if fx; yg is not a face of U. In other words, the edges of G�U� are
precisely the missing edges of U. Thus G�U� is just the graph theoretic complement of
the 1-skeleton of U.

The spheres in a layer of an amicable partition are far from arbitrary; they satisfy
some strong compatibility requirements:

Lemma 2. Let fXi : 0W i W d=2g be a layer of an amicable partition fA1;A2;A3g of a

d-dimensional B-K manifold X, say with respect to the cell A1. Then

(a) A2 and A3 are common facets of all the Xi, 0W iW d=2; and fA2;A3g gives a

partition of the common vertex set of these spheres. It follows that for each i, G�Xi�
is a bipartite graph (with A2, A3 as its parts).

(b) fG�Xi� : 0W iW d=2g is an edge-partition of the complete bipartite graph

Kd=2�1;d=2�1 with parts A2, A3.

(c) For 0W i0 j W d=2, any facet C of Xi intersects any facet D of Xj, provided
fC;Dg0 fA2;A3g.

Proof. A2 is a facet of each Xi by construction. Since LkX �A3� is the standard sphere
on A1, A3 U �A1nfxig� is a facet of X, and hence A3 is a facet of Xi. Since A2 (or A3)
is a facet of Xi, no two vertices in A2 (or in A3) are adjacent in G�Xi�. So, G�Xi� is
bipartite. This proves (a).

Let fx; yg be an edge of Kd=2�1;d=2�1. Say x A A2, y A A3. Then �A2nfxg�U
�A3nfyg� is a �d ÿ 1�-face of X. One of the two facets of X containing this face is
A2 U �A3nfyg�. The other facet cannot be �A2nfxg�UA3 (since the vertex set of
LkX �A3� is A1). So, there is a unique vertex xi in A1 such that �A2nfxg�U �A3nfyg�U
fxig is a facet of X. By complementarity, xi is the unique vertex in A1 for which
�A1nfxig�U fx; yg is not a face of X. Thus fx; yg is not a face of Xi for a uniquely
determined index i. This proves (b).

If C VD �q, C a facet of Xi, D is a facet of Xj, then C UD � A2 UA3. If, further
fC;Dg0 fA2;A3g then it follows that C 0A2 and D0A2. Hence C U �A1nfxig�
and DU �A1nfxjg� are two facets of X which together cover the vertex set of X (as
i 0 j). Therefore, the complement of either of these two facets of X is a face of XÐ
contradicting complementarity. This proves (c).

2.4. If fXi : 0W i W d=2g is one of the layers of an amicable partition, then the set
fG�Xi� : 0W iW d=2g will be called the frame of the layer. Thus the frame is an edge
partition of a complete bipartite graph by spanning subgraphs.

Lemma 3. Each layer of an amicable partition of a B-K manifold determines the other

two frames.

Proof. Let the cells of the amicable partition be Ai � fxij : 0W j W d=2g with corre-
sponding layer fXij : 0W j W d=2g and frame fGij � G�Xij� : 0W j W d=2g; 1W iW 3.
Suppose the layer fX1j : 0W j W d=2g is known. Then fx1j ; x3lg is an edge of G2k if
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and only if �A2nfx2kg�U fx1j; x3lg is not a face of the B-K manifold X; by com-
plementarity this happens if and only if �A1nfx1jg�U �A3nfx3lg�U fx2kg is a facet of
X, i.e., if and only if �A3nfx3lg�U fx2kg is a facet of X1j . Similarly fx1j ; x2kg is an
edge of G3l if and only if �A2nfx2kg�U fx3lg is a facet of X1j.

3 Uniqueness of CP2
9

Throughout this section, Y is a 4-dimensional B-K manifold. Hence Y satis®es com-
plementarity. From complementarity and Dehn±Sommerville equations, it readily
follows that the number fi of i-faces of Y are given by: f0 � 9, f1 � 9

2

ÿ � � 36,
f2 � 9

3

ÿ � � 84, f3 � 90 and f4 � 36. Further, we have:

Lemma 4. Y has an amicable partition.

Proof. By Lemma 1, it is su½cient to show that there is at least one triangle (i.e., 2-
face) in Y whose link is an S1

3 . Suppose not. Then the link of each triangle has X4
vertices. Fix any facet s of Y. By complementarity, the complement of s induces an
S2

4 . Therefore, the link of each of the four triangles in the complement of s is con-
tained in s and hence (by our assumption) has four or ®ve vertices. Let a of them
have 5-vertex links, hence the remaining 4ÿ a have 4-vertex links. Therefore, the
total number of tetrahedra meeting s in a singleton is 5a� 4�4ÿ a� � 16� a. But,
by complementarity, this number is 5

1

ÿ �
4
3

ÿ �
minus the number of facets meeting s in a

3-face � 20ÿ 5 � 15. Hence a � ÿ1, a contradiction.

Next we determine the possibilities for the layers of an amicable partition of Y.
Each layer consists of three 6-vertex 2-spheres (S2

6 's). It is well known (and immediate
from the classi®cations of S d

d�4's in [3]) that up to isomorphism there are two S2
6 's.

Their G-graphs are 3K2 (the disjoint union of three edges) and the three path P3 �
� � � � (plus two isolated vertices) respectively. We need the following
stronger statement:

Lemma 5. Given a graph G � 3K2 or P3, there is a unique 6-vertex 2-sphere U with
G�U� � G (not merely unique up to automorphism of G).

Proof. Note that any 6-vertex 2-sphere U has eight facets and they are 3-cocliques of
G�U�. (Recall that a coclique in a graph is a set of pairwise non-adjacent vertices.)
Since G � 3K2 has exactly eight 3-cocliques, the lemma is immediate in this case.

In the second case, let G � �a �b �c �d with isolated vertices x and y. Then
the link of x in U is a pentagon. This pentagon induces a 3-path on fa; b; c; dg
which is edge disjoint from G. Hence this 3-path is �b �d �a �c. Thus, the link

of x in U is

b� �c�� ��
d� �a

� y

. Similarly, the link of y is

b� �c�� ��
d� �a

� x

. This determines all the facets
of U.
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Lemma 6. Y is uniquely determined (not merely up to isomorphism) by any of the

frames of any given amicable partition.

Proof. Since the graphs in any frame are isomorphic to 3K2 or P3, Lemma 5 shows
that the frame determines the corresponding layer. Then Lemma 3 determines all the
frames of the given amicable partition. Another appeal to Lemma 5 determines all
three layers. The known links of the three cells of the amicable partition give us 9
facets of Y. The known layers give ��8ÿ 2� � 3� 3�=2 � 27 more. We now have all
the 9� 27 � 36 facets of Y.

Lemma 7. Up to isomorphism there are two possible types of frames for Y.

Proof. If two of the graphs in a frame are 3K2, they must consist of alternating edges
of a hexagon. Then the third graph in the frame is determined as the relative com-
plement of this hexagon with respect to K3;3. This third graph is the 3K2 whose edges
are the long diagonals of the hexagon. This yields the ®rst type of framesÐconsisting
of three edge-disjoint copies of 3K2.

Next let the frame consist of one 3K2 and hence two P3's. Then the relative com-
plement of the 3K2 is a hexagon and each P3 must consist of three consecutive edges

of the hexagon. Say, the edges of the 3K2 are �1 �10 , �2 �20 , �3 �30 . Then, without

loss, the P3's in the frame are �1 �20 �3 �10 and �10 �2 �30 �1. Then, from
the proof of Lemma 5, we see that f1; 1 0; 2g is a face of the S2

6 with the ®rst P3 as G-
graph while f2 0; 3; 3 0g is a face of the S2

6 with the second P3 as G-graph. Since these
two triangles are disjoint and distinct from the parts f1; 2; 3g, f1 0; 2 0; 3 0g of the K3;3,
this contradicts Lemma 2 (c).

So, in the remaining case, the frame must be an edge partition of K3;3 into three
copies of P3. Let the parts of the K3;3 be f1; 2; 3g and f1 0; 2 0; 3 0g. Without loss, let the

®rst graph in the frame be �1 �20 �3 �30 . The relative complement (with respect

to K3;3) of this graph is

�1 �1
0
�3j j�

30
�
2

�
20 . It is obvious that the last graph has a unique

edge partition into two P3's. So the remaining two graphs in the frame must be

�2 �30 �1 �10 and �3 �10 �2 �20 . This gives the second isomorphism type of
frames, consisting of three copies of P3.

Lemma 8. Y has an amicable partition one of whose frames is of the ®rst type (i.e.,

consists of three copies of 3K2).

Proof. Take an amicable partition f1; 2; 3g, f1 0; 2 0; 3 0g, f1 00; 2 00; 3 00g of Y. (This
exists by Lemma 4.) If the frame corresponding to the cell f1 00; 2 00; 3 00g is not of
the ®rst type, then (by Lemma 7) it is of the second type. Hence, without loss, this

frame consists of G�X1� � �2 �10 �3 �30 , G�X2� � �3 �20 �1 �10 , G�X3� �
�1 �30 �2 �20 , where Xi is the 2-sphere obtained from the link of f1 00; 2 00; 3 00gn
fi 00g by collapsing i 00. Thus, following the proof of Lemma 6, Y is uniquely deter-
mined. Hence one ®nds that ff1; 1 0; 1 00g, f2; 2 0; 2 00g, f3; 3 0; 3 00gg is also an amicable
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partition of Y and the frame corresponding to the part f1; 1 0; 1 00g consists of

f�2 �30 ; �20 �3; �200 �300g, f�2 �3; �20 �300; �200 �30g and f�2 �300; �20 �30 ; �200 �3g. This
frame is of the ®rst type.

Proof of the theorem. By Lemma 6 and Lemma 8, Y is uniquely determined up to
isomorphism.

Remark. It can be seen that all three frames of any amicable partition of CP2
9 are of

the same type. CP2
9 contains a unique amicable partition of type one and six of type

two.
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