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Abstract. The main result of the present paper is that the projective line over a ring R is con-
nected with respect to the relation “distant” if, and only if, R is a GE,-ring.
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1 Introduction

One of the basic notions for the projective line IP(R) over a ring R is the relation distant
(A) on the point set. Non-distant points are also called parallel. This terminology
goes back to the projective line over the real dual numbers, where parallel points
represent parallel spears of the Euclidean plane [4, 2.4].

We say that IP(R) is connected (with respect to A) if the following holds: For any
two points p and ¢ there is a finite sequence of points starting at p and ending at
¢ such that each point other than p is distant from its predecessor. Otherwise IP(R)
is said to be disconnected. For each connected component a distance function and a
diameter (with respect to /) can be defined in a natural way.

One aim of the present paper is to characterize those rings R for which IP(R) is
connected. Here we use certain subgroups of the group GL,(R) of invertible 2 x 2-
matrices over R, namely its elementary subgroup E;(R) and the subgroup GE;(R)
generated by E,(R) and the set of all invertible diagonal matrices. It turns out that
IP(R) is connected exactly if R is a GE,-ring, i.e., if GE2(R) = GL2(R).

Next we turn to the diameter of connected components. We show that all connected
components of IP(R) share a common diameter.

It is well known that IP(R) is connected with diameter < 2 if R is a ring of stable
rank 2. We give explicit examples of rings R such that IP(R) has one of the following
properties: IP(R) is connected with diameter 3, IP(R) is connected with diameter oo,
and IP(R) is disconnected with diameter co. In particular, we show that there are chain
geometries over disconnected projective lines.

* Supported by a Lise Meitner Research Fellowship of the Austrian Science Fund (FWF),
project M574-MAT.
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2 Preliminaries

Throughout this paper we shall only consider associative rings with a unit element
1, which is inherited by subrings and acts unitally on modules. The trivial case 1 = 0
is not excluded. The group of invertible elements of a ring R will be denoted by R*.

Firstly, we turn to the projective line over a ring: Consider the free left R-module
R?. Its automorphism group is the group GLy(R) of invertible 2 x 2-matrices with
entries in R. A pair (a,b) € R? is called admissible, if there exists a matrix in GL,(R)
with (a, b) being its first row. Following [14, p. 785], the projective line over R is the
orbit of the free cyclic submodule R(1,0) under the action of GL,(R). So

IP(R) := R(1,0)%=®

or, in other words, IP(R) is the set of all p < R? such that p = R(a,b) for an admis-
sible pair (a,b) € R?. As has been pointed out in [8, Proposition 2.1], in certain cases
R(x, y) € IP(R) does not imply the admissibility of (x, y) € R?. However, throughout
this paper we adopt the convention that points are represented by admissible pairs
only. Two such pairs represent the same point exactly if they are left-proportional by
a unit in R.

The point set IP(R) is endowed with the symmetric relation distant (/) defined by

A = (R(1,0), R(0, 1)), (1)

Letting p = R(a,b) and ¢ = R(c,d) gives then

pAge (j Z) € GLy(R).

In addition, A is anti-reflexive exactly if 1 # 0.

The vertices of the distant graph on IP(R) are the points of IP(R), the edges of this
graph are the unordered pairs of distant points. Therefore basic graph-theoretical
concepts are at hand: IP(R) can be decomposed into connected components (maxi-
mal connected subsets), for each connected component there is a distance function
(dist(p, g) is the minimal number of edges needed to go from vertex p to vertex ¢), and
each connected component has a diameter (the supremum of all distances between its
points).

Secondly, we recall that the set of all elementary matrices

Bua(t) = ((1) i) and  Bo (1) ::(1 ?) with 7 € R 2)

generates the elementary subgroup E,(R) of GL,(R). The group E»(R) is also gen-
erated by the set of all matrices

E(I) = <t1 (1)) = Blz(l) '321(—1) ~Blz(l) '321([) with 7 € R, (3)
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since Byy(7) = E(—1) - E(0) " and By, (1) = E(0)™" - E(¢). Moreover, we have E(7) ' =
E(0)-E(—t)- E(0), which implies that all finite products of matrices E(¢) already
comprise the group E;(R).

The subgroup of GL,(R) which is generated by E;(R) and the set of all invertible
diagonal matrices is denoted by GE,(R). By definition, a GE,-ring is characterized
by GL,(R) = GE,(R); see, among others, [10, p. 5] or [18, p. 114].

3 Connected components

We aim at a description of the connected components of the projective line IP(R) over
a ring R. The following lemma, although more or less trivial, will turn out useful:

Lemma 3.1. Let X' € GL,(R) and suppose that the 2 x 2-matrix X over R has the
same first row as X'. Then X is invertible if, and only if, there is a matrix

M= (l 2) € GE»(R) (4)

such that X = MX'.

1 0

s u
X = MX' is invertible exactly if u € R*. This in turn is equivalent to (4).

Proof. Given X' and X then XX'~! = ( ) =: M for some s,u € R. Further,

Here is our main result, where we use the generating matrices of E,(R) introduced
in (3).

Theorem 3.2. Denote by C, the connected component of the point R(1,0) in the pro-
Jjective line P(R) over a ring R. Then the following holds:
(@) The group GLy(R) acts transitively on the set of connected components of IP(R).

(b) Let t1,t2,...,ty € R, n =0, and put
(x7y) = (170)'E(ln)'E(tnfl)"'E(Zl)- (5)

Then R(x, y) € Cy, and, conversely, each point r € Cy, can be written in this way.
(c) The stabilizer of Cy, in GLy(R) is the group GE;(R).
(d) The projective line P(R) is connected if, and only if, R is a GE;-ring.
Proof. (a) This is immediate from the fact that the group GL,(R) acts transitively on
the point set IP(R) and preserves the relation A.

(b) Every matrix E(t;) appearing in (5) maps C,, onto C., since R(0,1) € C, goes
over to R(1,0) € C,. Therefore R(x, y) € Cy.
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On the other hand let re€ C,,. Then there exists a sequence of points p; =
R(a;,b;) eP(R), i € {0,1,...,n}, such that

R(1,0)=py Apy A - Ap,=r. (6)

Now the arbitrarily chosen admissible pairs (a;, b;) are “‘normalized” recursively as
follows: First define (x_;,y_;) := (0,—1) and (xo0, yy) := (1,0). So py = R(xo, yg)-
Next assume that we already are given admissible pairs (x;, y;) with p; = R(x;, y;)
for all je{0,1,...,i— 1}, 1 <i<n. From Lemma 3.1, there are s; € R and u; € R*

such that
Xi-1 yier) _ (1 0 X1 Ji-l (7)
ai bi ) \si wi)\ —x , —yia)

By putting x; := u; 'a;, y; := u; 'b;, and 1; := u; 's; we get

X Vi Xi—1 Yi-1
=E(t;) - 8
( —Xi-1  —JYi-1 > (4) ( —Xi-2 —Vi-2 ) ®)

and p;, = R(x;, y;). Therefore, finally, (x,, y,) is the first row of the matrix
G':=E(ty) - E(ty—1) - E(t1) € E2(R), 9)

and r = R(x,, y,)-

(c) As has been noticed at the end of Section 2, the set of all matrices (3) gener-
ates E»(R). This together with (b) implies that E,(R) stabilizes C,,. Further, R(1,0)
remains fixed under each invertible diagonal matrix. Therefore GE,(R) is contained
in the stabilizer of C.

Conversely, suppose that G € GLy(R) stabilizes C,,. Then the first row of G, say
(a,b), determines a point of C,,. By (5) and (9), there is a matrix G’ € E;(R) and a
unit # € R* such that (a,b) = (1,0) - (uG’). Now Lemma 3.1 can be applied to G and
uG' € GE(R) in order to establish that G € GE»(R).

(d) This follows from (a) and (c).

From Theorem 3.2 and (9), the connected component of R(1,0) € IP(R) is given by
all pairs of (1,0) - E;(R) or, equivalently, by all pairs of (1,0) - GE,(R). Each prod-
uct (5) gives rise to a sequence

(x5, ;) =(1,0)- E(t;) - E(t;i-1)--- E(t1), i € {0,1,...,n}, (10)

which in turn defines a sequence p, := R(x;, y;) of points with p, = R(1,0). By put-
ting p, =: r and by reversing the arguments in the proof of (b), it follows that (6)
is true. So, if the diameter of C,, is finite, say m > 0, then in order to reach all points
of C, it is sufficient that » ranges from 0 to m in formula (5).
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By the action of GL,(R), the connected component C, of any point p € IP(R) is
GL;(R)-equivalent to the connected component C,, of R(1,0) and the stabilizer of
C, in GLy(R) is conjugate to GE»(R). Observe that in general GE,(R) is not normal
in GLy(R). Cf. the example in 5.7 (c). All connected components are isomorphic
subgraphs of the distant graph.

4 Generalized chain geometries

If K = Ris a (not necessarily commutative) subfield, then the K-sublines of IP(R) give
rise to a generalized chain geometry (K, R); see [7]. In contrast to an ordinary chain
geometry (cf. [14]) it is not assumed that K is in the centre of R. Any three mutually
distant points are on at least one K-chain. Two distinct points are distant exactly if
they are on a common K-chain. Therefore each K-chain is contained in a unique
connected component. Each connected component C together with the set of K-chains
entirely contained in it defines an incidence structure X(C). It is straightforward to
show that the automorphism group of the incidence structure £(K, R) is isomorphic
to the wreath product of AutX(C) with the symmetric group on the set of all con-
nected components of IP(R).

If 2(K, R) is a chain geometry then the connected components are exactly the max-
imal connected subspaces of £(K, R) [14, p. 793, p. 821]. Cf. also [15] and [16].

An R-semilinear bijection of R? induces an automorphism of (K, R) if, and only
if, the accompanying automorphism of R takes K to ' Ku for some u € R*. On the
other hand, if IP(R) is disconnected then we cannot expect all automorphisms of
Y(K, R) to be semilinearly induced. More precisely, we have the following:

Theorem 4.1. Let (K, R) be a disconnected generalized chain geometry, i.e., the pro-
Jjective line P(R) over R is disconnected. Then (K, R) admits automorphisms that
cannot be induced by any semilinear bijection of R>.

Proof. (a) Suppose that two semilinearly induced bijections y;, 7, of IP(R) coincide on
all points of one connected component C of IP(R). We claim that y; = y,. For a proof
choose two distant points R(a,b) and R(c,d) in C. Also, write o for that projectivity

-1

which is given by the matrix . Then f := ay;y; 'o~1 is a semilinearly induced

b
d
bijection of IP(R) fixing the connected component C., of R(1,0) pointwise. Hence
R(1,0), R(0,1), and R(1,1) are invariant under /5, and we get

R(x, »)¥ = R(x*u, y*u) for all (x, y) € R?

with (€ Aut(R) and u € R*, say. For all x e R the point R(x,1) is distant from
R(1,0); so it remains fixed under f. Therefore x = u~!x‘u or, equivalently, x‘u =
ux for all x e R. Finally, R(x, y)* = R(ux,uy) = R(x, y) for all (x, y) € R?, whence

7’1 =72
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(b) Let y be a non-identical projectivity of IP(R) given by a matrix G € GE;»(R), for
example, G = Bjy(1). From Theorem 3.2, the connected component C,, of R(1,0) is
invariant under y. Then

p—p’ forall pe Cy,
0 P(R) — P(R) : {p —p forall pe P(R)\C, (1)
is an automorphism of (K, R). The projectivity y and the identity on IP(R) are dif-
ferent and both are linearly induced. The mapping ¢ coincides with y on C., and with
the identity on every other connected component. There are at least two distinct
connected components of P(R). Hence it follows from (a) that 6 cannot be semi-
linearly induced.

If a cross-ratio in IP(R) is defined according to [14, 1.3.5] then four points with
cross-ratio are necessarily in a common connected component. Therefore, the auto-
morphism ¢ defined in (11) preserves all cross-ratios. However, cross-ratios are not
invariant under ¢ if one adopts the definition in [4, p. 90] or [14, 7.1] which works for
commutative rings only. This is due to the fact that here four points with cross-ratio
can be in two distinct connected components.

We shall give examples of disconnected (generalized) chain geometries in the next
section.

5 Examples

There is a widespread literature on (non-)GE,-rings. We refer to [1], [9], [10], [11],
[12], [13], and [18]. We are particularly interested in rings containing a field and the
corresponding generalized chain geometries.

Remark 5.1. Let R be a ring. Then each admissible pair (x, y) € R? is unimodular, i.e.,
there exist x’, y’ € R with xx” 4+ yy’ = 1. We remark that

(x, y) € R? unimodular = (x, y) admissible (12)

is satisfied, in particular, for all commutative rings, since xx’ + yy’ = 1 can be inter-
preted as the determinant of an invertible matrix with first row (x, y). Also, all rings
of stable rank 2 [19, p. 293] satisfy (12); cf. [19, 2.11]. For example, local rings, matrix
rings over fields, and finite-dimensional algebras over commutative fields are of stable
rank 2. See [13, 4.1B], [19, §2], [20], and the references given there.

The following example shows that (12) does not hold for all rings: Let R:=
K[X, Y] be the polynomial ring over a proper skew field K in independent central
indeterminates X and Y. There are a,b € K with ¢ := ab — ba # 0. From

(X +a)(Y +b)c ' — (Y +b)(X +a)c ' =1,

the pair (X +a,—(Y +b)) € R? is unimodular. However, this pair is not admis-
sible: Assume to the contrary that (X +a,—(Y 4 b)) is the first row of a matrix
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M € GLy(R) and suppose that the second column of M~! is the transpose of
(vo, wo) € R%. Then

P:={(v,w) e R*| (X +a)v— (Y +b)w =0} = (vy, wo)R.

On the other hand, by [17, Proposition 1], the right R-module P cannot be generated
by a single element, which is a contradiction.

Examples 5.2. (a) If R is a ring of stable rank 2 then IP(R) is connected and its
diameter is <2 [14, Proposition 1.4.2]. In particular, the diameter is 1 exactly if R is
a field and it is 0 exactly if R = {0}.

As has been pointed out in [2, (2.1)], the points of the projective line over a ring
R of stable rank 2 are exactly the submodules R(t,¢; + 1,1,) of R? with 1,1, € R.
Clearly, this is just a particular case of our more general result in Theorem 3.2 (b).

Conversely, if an arbitrary ring R satisfies (12) and IP(R) is connected with diam-
eter < 2, then R is a ring of stable rank 2 [14, Proposition 1.1.3].

(b) The projective line over a (not necessarily commutative) Euclidean ring R is
connected, since every Euclidean ring is a GE;-ring [13, Theorem 1.2.10].

Our next examples are given in the following theorem:

Theorem 5.3. Let U be an infinite-dimensional vector space over a field K and put R :=
Endg (U). Then the projective line P(R) over R is connected and has diameter 3.

Proof. We put V' := U x U and denote by ¥ those subspaces W of V' that are iso-
morphic to V/W. By [5, 2.4], the mapping

® : P(R)— % : R(a,f) — {(u*,uf)|ue U} (13)

is bijective and two points of IP(R) are distant exactly if their ®-images are comple-
mentary. By an abuse of notation, we shall write dist(W;, W) = n, whenever Wy, W,
are ®-images of points at distance n, and W, A W, to denote complementary ele-
ments of 4. As V is infinite-dimensional, 2dim W = dim V' = dim W for all W € 4.

We are going to verify the theorem in terms of %: So let W, W, € 4. Put Y, :=
W1 N W, and choose Y>3 < W, such that W, = Y1, @ Y»3. Then Wi N Y3 = {0} SO
that there is a W3 € ¢ through Y,3 with W7 A W3. By the law of modularity,

WryN Wy = (Y23—|— Y]z)ﬂ W3 = Y3 + (Y]zﬂ W3) = Y»3.

Finally, choose Y14 < W) with W) = Y1, ® Y14 and Y34 < W3 with W3 = Y3 @
Y34. Hence we arrive at the decomposition

V=Yu4®@ Y@ ¥Ys ® Y. (14)

As Wy e %, sois also Wy := Y4 @ Y34. Now there are two possibilities:



114 Andrea Blunck and Hans Havlicek

Case 1: There exists a linear bijection ¢ : Y4 — Y3. We define Y := {v+ 07|
v € Y1a}. Then Y4, Y23, and Y are easily seen to be mutually complementary sub-
spaces of Y14 @ Y»3. Therefore, from (14),

V=Yu@®Yn®Y®Yu=Y®Y2® Y@ Y, (15)

e, Wi A(Y @ Y34) A W5, So diSt(Wl, Wz) < 2.

Case 2: Y14 and Y3 are not isomorphic. Then dim Y}, = dim W, since other-
wise dim Y, < dim W) = dim W, together with well-known rules for the addition
of infinite cardinal numbers would imply

dim W1 = max{dim le, dim Y14} = dim Y147
dim W2 = max{dim le, dim Y23} = dim Y237

a contradiction to dim Yj4 # dim Y»s.

Likewise, it follows that dim Y34 = dim 3. But this means that Y, and Y34 are
isomorphic, whence the proof in case 1 can be modified accordingly to obtain a Y <
Y12 @ Y34 such that Wy A W3 A (Y @ Y14) A W>. So now diSt(Wl, Wz) < 3.

It remains to establish that in ¢ there are elements with distance 3: Choose
any subspace W € ¢ and a subspace W, < W such that W /W, is 1-dimensional.
With the previously introduced notations we get Y1, = W5, dim Y14 = 1, Yo3 = {0},
Yiu=W3€%, and Wy = Y4 ® W3. As before, V=W, ® W, and from dim W, =
1 +dim W, =dim W) =dim W3 =1 +dim W3 =dim W, we obtain W), W, e .
By construction, dist(W, W,) # 0, 1. Also, this distance cannot be 2, since W A W,
implies W + W, # V forall W e &.

This completes the proof.

If K is a proper skew field, then K can be embedded in Endg (U) in several ways [6,
p. 17]; each embedding gives rise to a connected generalized chain geometry. (In [6]
this is just called a “chain geometry”.) If K is commutative, then Endg(U) is a K-
algebra and x — xidy is a distinguished embedding of K into the centre of Endk (U).
In this way an ordinary connected chain geometry arises; cf. [14, 4.5. Example (4)].

Our next goal is to show the existence of chain geometries with connected com-
ponents of infinite diameter.

Remark 5.4. If R is an arbitrary ring then each matrix 4 € GE,(R) can be expressed
in standard form

A = diag(u,v) - E(ty) - E(ty_1) - E(11), (16)

where u,v € R*, t,1, € R, t,t3,...,t,_1 € R\(R*U{0}), and #1,#, # 0 in case n =2
[10, Theorem (2.2)]. Since E(0)* = diag(—1,—1), each matrix 4 € GE;(R) can also
be written in the form (16) subject to the slightly modified conditions u,v € R*,
tth€R, ty,t3,..., 1,1 € R\(R*U{0}), and n > 1. We call this a modified standard
form of A.
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Suppose that there is a unique standard form for GE,(R). For all non-diagonal
matrices in GE;(R) the unique representation in standard form is at the same time
the unique representation in modified standard form. Any diagonal matrix 4 €
GE,(R) is already expressed in standard form, but its unique modified standard form
reads 4 = —A4 - E(O)z. Therefore there is also a unique modified standard form for
GE,(R).

By reversing these arguments it follows that the existence of a unique modified
standard form for GE;(R) is equivalent to the existence of a unique standard form
for GE,(R).

Theorem 5.5. Let R be a ring with a unique standard form for GE»(R) and suppose that
R is not a field. Then every connected component of the projective line P(R) over R has
infinite diameter.

Proof. Since R is not a field, there exists an element 7 € R\(R* U {0}). We put
Gm = R(cm, dy) where (¢, dy) = (1,0) - E(t)" for all m e {0,1,...}. (17)
Next fix one m > 1, and put n — 1 := dist(qo, ¢m—1) = 0. Hence there exists a sequence

pOAplA"'Ap/FlApn (18)

such that py = qo, p,—1 = gm-1, and p, = ¢,. Now we proceed as in the proof of
Theorem 3.2 (b): First let p; = R(a;,b;) and put (x_1,y_;) := (0,—1), (x0, yg) :=
(1,0). Then pairs (x;, y;) € R*> and matrices E(t;) € E;(R) are defined in such a
way that p; = R(x;, y;) and that (8) holds for i € {1,2...,n}. It is immediate from
(8) that a point p,, i > 2, is distant from p, , exactly if #; € R*. Also, p; = pi»
holds if, and only if, ; = 0. We infer from (8) and dist(p;, p;) = i — j| for all i, j e
{0,1,...,n— 1} that

Xn Vn
—E(t)-E(t,)) - E(11), 19
(L ) =) B B0 (19)
where #; € R\(R*U{0}) for all i € {2,3,...,n— 1}. On the other hand, by (17) and
(Cm—1,dm-1) = (0,—1) - E(t)", there are v,v’ € R* with

Xn y}’l . ! m
= diag(v,v") - E(0)". 20
(L5 ) = dinso) 00 (20)
From Remark 5.4, the modified standard forms (19) and (20) are identical. There-
fore, n = m, dist(qo,gm—1) = m — 1, and the diameter of the connected component
of ¢y is infinite.

By Theorem 3.2 (a), all connected components of IP(R) have infinite diameter.

Remark 5.6. Let R be a ring such that R* U {0} is a field, say K, and suppose that we
have a degree function, i.e. a function deg : R — {—o0}U{0,1,...} satisfying
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dega = —oco if, and only if, a = 0,
dega =0 if, and only if, a € R",
deg(a + b) < max{dega, degb},
deg(ab) = deg(a) + deg(b),

for all a,b € R. Then, following [10, p. 21], R is called a K-ring with a degree function.
If R is a K-ring with a degree function, then there is a unique standard form for
GE3(R) [10, Theorem (7.1)].

Examples 5.7. (a) Let R be a K-ring with a degree-function such that R # K. From
Remark 5.6 and Theorem 5.5, all connected components of the projective line IP(R)
have infinite diameter.

The associated generalized chain geometry (K, R) has a lot of strange properties.
For example, any two distant points are joined by a unique K-chain. However, we do
not enter a detailed discussion here.

(b) Let K[X] be the polynomial ring over a field K in a central indeterminate X.
From (a) and Example 5.2 (b), the projective line IP(K[X]) is connected and its diam-
eter is infinite. On the other hand, if K is commutative then K[X] has stable rank 3 [20,
2.9]; see also [3, Chapter V, (3.5)]. So there does not seem to be an immediate connec-
tion between stable rank and diameter.

(c) Let R := K[X1, X3, ..., X,] be the polynomial ring over a field K in m > 1 inde-
pendent central indeterminates. Then, by an easy induction and by [10, Proposition

(7.3));

A, =

(21)

C+m% X? f

<1—|—I’ZX1X2 I’lez >
X7 1-XX

—nX22 1 —nXle

is in GL2(R)\GE2(R) for all n € Z that are not divisible by the characteristic of K.
Also, the inner automorphism of GL,(R) arising from the matrix A4; takes Bj»(1) €
E,(R) to a matrix that is not even in GE,(R); see [18, p. 121-122]. So neither E,(R)
nor GE;,(R) is a normal subgroup of GL(R).

We infer that the projective line over R is not connected. Further, it follows from
(21) that the number of right cosets of GE,(R) in GL,(R) is infinite, if the charac-
teristic of K is zero, and >char K otherwise. From Theorem 3.2, this number of right
cosets is at the same time the number of connected components in IP(R). Even in
case of char K = 2 there are at least three connected components, since the index of
GE;,(R) in GL,(R) cannot be two. From (a), all connected components of IP(R) have
infinite diameter.

So, for each commutative field K, we obtain a disconnected chain geometry (K, R),
whereas for each skew field K a disconnected generalized chain geometry arises.

Acknowledgement. The authors are obliged to the referee for pointing out the
paper [17].
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