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Abstract. The main result of the present paper is that the projective line over a ring R is con-
nected with respect to the relation ``distant'' if, and only if, R is a GE2-ring.
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1 Introduction

One of the basic notions for the projective line P�R� over a ring R is the relation distant

(h) on the point set. Non-distant points are also called parallel. This terminology
goes back to the projective line over the real dual numbers, where parallel points
represent parallel spears of the Euclidean plane [4, 2.4].

We say that P�R� is connected (with respect to h) if the following holds: For any
two points p and q there is a ®nite sequence of points starting at p and ending at
q such that each point other than p is distant from its predecessor. Otherwise P�R�
is said to be disconnected. For each connected component a distance function and a
diameter (with respect to h) can be de®ned in a natural way.

One aim of the present paper is to characterize those rings R for which P�R� is
connected. Here we use certain subgroups of the group GL2�R� of invertible 2� 2-
matrices over R, namely its elementary subgroup E2�R� and the subgroup GE2�R�
generated by E2�R� and the set of all invertible diagonal matrices. It turns out that
P�R� is connected exactly if R is a GE2-ring, i.e., if GE2�R� � GL2�R�.

Next we turn to the diameter of connected components. We show that all connected
components of P�R� share a common diameter.

It is well known that P�R� is connected with diameterW 2 if R is a ring of stable
rank 2. We give explicit examples of rings R such that P�R� has one of the following
properties: P�R� is connected with diameter 3, P�R� is connected with diameter y,
and P�R� is disconnected with diameter y. In particular, we show that there are chain
geometries over disconnected projective lines.

* Supported by a Lise Meitner Research Fellowship of the Austrian Science Fund (FWF),
project M574-MAT.



2 Preliminaries

Throughout this paper we shall only consider associative rings with a unit element
1, which is inherited by subrings and acts unitally on modules. The trivial case 1 � 0
is not excluded. The group of invertible elements of a ring R will be denoted by R�.

Firstly, we turn to the projective line over a ring: Consider the free left R-module
R2. Its automorphism group is the group GL2�R� of invertible 2� 2-matrices with
entries in R. A pair �a; b� A R2 is called admissible, if there exists a matrix in GL2�R�
with �a; b� being its ®rst row. Following [14, p. 785], the projective line over R is the
orbit of the free cyclic submodule R�1; 0� under the action of GL2�R�. So

P�R� :� R�1; 0�GL2�R�

or, in other words, P�R� is the set of all pWR2 such that p � R�a; b� for an admis-
sible pair �a; b� A R2. As has been pointed out in [8, Proposition 2.1], in certain cases
R�x; y� A P�R� does not imply the admissibility of �x; y� A R2. However, throughout
this paper we adopt the convention that points are represented by admissible pairs
only. Two such pairs represent the same point exactly if they are left-proportional by
a unit in R.

The point set P�R� is endowed with the symmetric relation distant (h) de®ned by

h :� �R�1; 0�;R�0; 1��GL2�R�: �1�

Letting p � R�a; b� and q � R�c; d� gives then

p h q, a b

c d

� �
A GL2�R�:

In addition, h is anti-re¯exive exactly if 10 0.
The vertices of the distant graph on P�R� are the points of P�R�, the edges of this

graph are the unordered pairs of distant points. Therefore basic graph-theoretical
concepts are at hand: P�R� can be decomposed into connected components (maxi-
mal connected subsets), for each connected component there is a distance function

(dist�p; q� is the minimal number of edges needed to go from vertex p to vertex q), and
each connected component has a diameter (the supremum of all distances between its
points).

Secondly, we recall that the set of all elementary matrices

B12�t� :� 1 t

0 1

� �
and B21�t� :� 1 0

t 1

� �
with t A R �2�

generates the elementary subgroup E2�R� of GL2�R�. The group E2�R� is also gen-
erated by the set of all matrices

E�t� :� t 1

ÿ1 0

� �
� B12�1� � B21�ÿ1� � B12�1� � B21�t� with t A R; �3�
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since B12�t� � E�ÿt� �E�0�ÿ1 and B21�t� � E�0�ÿ1 �E�t�. Moreover, we have E�t�ÿ1 �
E�0� �E�ÿt� �E�0�, which implies that all ®nite products of matrices E�t� already
comprise the group E2�R�.

The subgroup of GL2�R� which is generated by E2�R� and the set of all invertible
diagonal matrices is denoted by GE2�R�. By de®nition, a GE2-ring is characterized
by GL2�R� � GE2�R�; see, among others, [10, p. 5] or [18, p. 114].

3 Connected components

We aim at a description of the connected components of the projective line P�R� over
a ring R. The following lemma, although more or less trivial, will turn out useful:

Lemma 3.1. Let X 0 A GL2�R� and suppose that the 2� 2-matrix X over R has the
same ®rst row as X 0. Then X is invertible if, and only if, there is a matrix

M � 1 0

s u

� �
A GE2�R� �4�

such that X �MX 0.

Proof. Given X 0 and X then XX 0ÿ1 � 1 0

s u

� �
�: M for some s; u A R. Further,

X �MX 0 is invertible exactly if u A R�. This in turn is equivalent to (4).

Here is our main result, where we use the generating matrices of E2�R� introduced
in (3).

Theorem 3.2. Denote by Cy the connected component of the point R�1; 0� in the pro-

jective line P�R� over a ring R. Then the following holds:

(a) The group GL2�R� acts transitively on the set of connected components of P�R�.
(b) Let t1; t2; . . . ; tn A R, nX 0, and put

�x; y� :� �1; 0� � E�tn� � E�tnÿ1� � � �E�t1�: �5�

Then R�x; y� A Cy and, conversely, each point r A Cy can be written in this way.

(c) The stabilizer of Cy in GL2�R� is the group GE2�R�.
(d) The projective line P�R� is connected if, and only if, R is a GE2-ring.

Proof. (a) This is immediate from the fact that the group GL2�R� acts transitively on
the point set P�R� and preserves the relation h.

(b) Every matrix E�ti� appearing in (5) maps Cy onto Cy, since R�0; 1� A Cy goes
over to R�1; 0� A Cy. Therefore R�x; y� A Cy.
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On the other hand let r A Cy. Then there exists a sequence of points pi �
R�ai; bi� A P�R�, i A f0; 1; . . . ; ng, such that

R�1; 0� � p0 h p1 h � � � h pn � r: �6�

Now the arbitrarily chosen admissible pairs �ai; bi� are ``normalized'' recursively as
follows: First de®ne �xÿ1; yÿ1� :� �0;ÿ1� and �x0; y0� :� �1; 0�. So p0 � R�x0; y0�.
Next assume that we already are given admissible pairs �xj; yj� with pj � R�xj; yj�
for all j A f0; 1; . . . ; i ÿ 1g, 1W i W n. From Lemma 3.1, there are si A R and ui A R�

such that

xiÿ1 yiÿ1

ai bi

� �
� 1 0

si ui

� �
xiÿ1 yiÿ1

ÿxiÿ2 ÿyiÿ2

 !
: �7�

By putting xi :� uÿ1
i ai, yi :� uÿ1

i bi, and ti :� uÿ1
i si we get

xi yi

ÿxiÿ1 ÿyiÿ1

� �
� E�ti� � xiÿ1 yiÿ1

ÿxiÿ2 ÿyiÿ2

� �
�8�

and pi � R�xi; yi�. Therefore, ®nally, �xn; yn� is the ®rst row of the matrix

G 0 :� E�tn� � E�tnÿ1� � � �E�t1� A E2�R�; �9�

and r � R�xn; yn�.
(c) As has been noticed at the end of Section 2, the set of all matrices (3) gener-

ates E2�R�. This together with (b) implies that E2�R� stabilizes Cy. Further, R�1; 0�
remains ®xed under each invertible diagonal matrix. Therefore GE2�R� is contained
in the stabilizer of Cy.

Conversely, suppose that G A GL2�R� stabilizes Cy. Then the ®rst row of G, say
�a; b�, determines a point of Cy. By (5) and (9), there is a matrix G 0 A E2�R� and a
unit u A R� such that �a; b� � �1; 0� � �uG 0�. Now Lemma 3.1 can be applied to G and
uG 0 A GE2�R� in order to establish that G A GE2�R�.

(d) This follows from (a) and (c).

From Theorem 3.2 and (9), the connected component of R�1; 0� A P�R� is given by
all pairs of �1; 0� � E2�R� or, equivalently, by all pairs of �1; 0� �GE2�R�. Each prod-
uct (5) gives rise to a sequence

�xi; yi� � �1; 0� � E�ti� � E�tiÿ1� � � �E�t1�; i A f0; 1; . . . ; ng; �10�

which in turn de®nes a sequence pi :� R�xi; yi� of points with p0 � R�1; 0�. By put-
ting pn �: r and by reversing the arguments in the proof of (b), it follows that (6)
is true. So, if the diameter of Cy is ®nite, say mX 0, then in order to reach all points
of Cy it is su½cient that n ranges from 0 to m in formula (5).
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By the action of GL2�R�, the connected component Cp of any point p A P�R� is
GL2�R�-equivalent to the connected component Cy of R�1; 0� and the stabilizer of
Cp in GL2�R� is conjugate to GE2�R�. Observe that in general GE2�R� is not normal
in GL2�R�. Cf. the example in 5.7 (c). All connected components are isomorphic
subgraphs of the distant graph.

4 Generalized chain geometries

If K HR is a (not necessarily commutative) sub®eld, then the K-sublines of P�R� give
rise to a generalized chain geometry S�K ;R�; see [7]. In contrast to an ordinary chain
geometry (cf. [14]) it is not assumed that K is in the centre of R. Any three mutually
distant points are on at least one K-chain. Two distinct points are distant exactly if
they are on a common K-chain. Therefore each K-chain is contained in a unique
connected component. Each connected component C together with the set of K-chains
entirely contained in it de®nes an incidence structure S�C�. It is straightforward to
show that the automorphism group of the incidence structure S�K ;R� is isomorphic
to the wreath product of Aut S�C� with the symmetric group on the set of all con-
nected components of P�R�.

If S�K ;R� is a chain geometry then the connected components are exactly the max-

imal connected subspaces of S�K ;R� [14, p. 793, p. 821]. Cf. also [15] and [16].
An R-semilinear bijection of R2 induces an automorphism of S�K ;R� if, and only

if, the accompanying automorphism of R takes K to uÿ1Ku for some u A R�. On the
other hand, if P�R� is disconnected then we cannot expect all automorphisms of
S�K ;R� to be semilinearly induced. More precisely, we have the following:

Theorem 4.1. Let S�K ;R� be a disconnected generalized chain geometry, i.e., the pro-

jective line P�R� over R is disconnected. Then S�K ;R� admits automorphisms that

cannot be induced by any semilinear bijection of R2.

Proof. (a) Suppose that two semilinearly induced bijections g1; g2 of P�R� coincide on
all points of one connected component C of P�R�. We claim that g1 � g2. For a proof
choose two distant points R�a; b� and R�c; d� in C. Also, write a for that projectivity

which is given by the matrix
a b

c d

� �
. Then b :� ag1gÿ1

2 aÿ1 is a semilinearly induced

bijection of P�R� ®xing the connected component Cy of R�1; 0� pointwise. Hence
R�1; 0�, R�0; 1�, and R�1; 1� are invariant under b, and we get

R�x; y�b � R�xzu; yzu� for all �x; y� A R2

with z A Aut�R� and u A R�, say. For all x A R the point R�x; 1� is distant from
R�1; 0�; so it remains ®xed under b. Therefore x � uÿ1xzu or, equivalently, xzu �
ux for all x A R. Finally, R�x; y�b � R�ux; uy� � R�x; y� for all �x; y� A R2, whence
g1 � g2.
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(b) Let g be a non-identical projectivity of P�R� given by a matrix G A GE2�R�, for
example, G � B12�1�. From Theorem 3.2, the connected component Cy of R�1; 0� is
invariant under g. Then

d : P�R� ! P�R� :
p 7! pg for all p A Cy

p 7! p for all p A P�R�nCy

�
�11�

is an automorphism of S�K ;R�. The projectivity g and the identity on P�R� are dif-
ferent and both are linearly induced. The mapping d coincides with g on Cy and with
the identity on every other connected component. There are at least two distinct
connected components of P�R�. Hence it follows from (a) that d cannot be semi-
linearly induced.

If a cross-ratio in P�R� is de®ned according to [14, 1.3.5] then four points with
cross-ratio are necessarily in a common connected component. Therefore, the auto-
morphism d de®ned in (11) preserves all cross-ratios. However, cross-ratios are not
invariant under d if one adopts the de®nition in [4, p. 90] or [14, 7.1] which works for
commutative rings only. This is due to the fact that here four points with cross-ratio
can be in two distinct connected components.

We shall give examples of disconnected (generalized) chain geometries in the next
section.

5 Examples

There is a widespread literature on (non-)GE2-rings. We refer to [1], [9], [10], [11],
[12], [13], and [18]. We are particularly interested in rings containing a ®eld and the
corresponding generalized chain geometries.

Remark 5.1. Let R be a ring. Then each admissible pair �x; y� A R2 is unimodular, i.e.,
there exist x 0; y 0 A R with xx 0 � yy 0 � 1. We remark that

�x; y� A R2 unimodular) �x; y� admissible �12�
is satis®ed, in particular, for all commutative rings, since xx 0 � yy 0 � 1 can be inter-
preted as the determinant of an invertible matrix with ®rst row �x; y�. Also, all rings
of stable rank 2 [19, p. 293] satisfy (12); cf. [19, 2.11]. For example, local rings, matrix
rings over ®elds, and ®nite-dimensional algebras over commutative ®elds are of stable
rank 2. See [13, 4.1B], [19, x2], [20], and the references given there.

The following example shows that (12) does not hold for all rings: Let R :�
K �X ;Y � be the polynomial ring over a proper skew ®eld K in independent central
indeterminates X and Y. There are a; b A K with c :� abÿ ba0 0. From

�X � a��Y � b�cÿ1 ÿ �Y � b��X � a�cÿ1 � 1;

the pair �X � a;ÿ�Y � b�� A R2 is unimodular. However, this pair is not admis-
sible: Assume to the contrary that �X � a;ÿ�Y � b�� is the ®rst row of a matrix
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M A GL2�R� and suppose that the second column of Mÿ1 is the transpose of
�v0;w0� A R2. Then

P :� f�v;w� A R2 j �X � a�vÿ �Y � b�w � 0g � �v0;w0�R:

On the other hand, by [17, Proposition 1], the right R-module P cannot be generated
by a single element, which is a contradiction.

Examples 5.2. (a) If R is a ring of stable rank 2 then P�R� is connected and its
diameter is W2 [14, Proposition 1.4.2]. In particular, the diameter is 1 exactly if R is
a ®eld and it is 0 exactly if R � f0g.

As has been pointed out in [2, (2.1)], the points of the projective line over a ring
R of stable rank 2 are exactly the submodules R�t2t1 � 1; t2� of R2 with t1; t2 A R.
Clearly, this is just a particular case of our more general result in Theorem 3.2 (b).

Conversely, if an arbitrary ring R satis®es (12) and P�R� is connected with diam-
eterW 2, then R is a ring of stable rank 2 [14, Proposition 1.1.3].

(b) The projective line over a (not necessarily commutative) Euclidean ring R is
connected, since every Euclidean ring is a GE2-ring [13, Theorem 1.2.10].

Our next examples are given in the following theorem:

Theorem 5.3. Let U be an in®nite-dimensional vector space over a ®eld K and put R :�
EndK�U�. Then the projective line P�R� over R is connected and has diameter 3.

Proof. We put V :� U �U and denote by G those subspaces W of V that are iso-
morphic to V=W . By [5, 2.4], the mapping

F : P�R� ! G : R�a; b� 7! f�ua; ub� j u A Ug �13�

is bijective and two points of P�R� are distant exactly if their F-images are comple-
mentary. By an abuse of notation, we shall write dist�W1;W2� � n, whenever W1;W2

are F-images of points at distance n, and W1 h W2 to denote complementary ele-
ments of G. As V is in®nite-dimensional, 2 dim W � dim V � dim W for all W A G.

We are going to verify the theorem in terms of G: So let W1;W2 A G. Put Y12 :�
W1 VW2 and choose Y23 WW2 such that W2 � Y12 lY23. Then W1 VY23 � f0g so
that there is a W3 A G through Y23 with W1 h W3. By the law of modularity,

W2 VW3 � �Y23 � Y12�VW3 � Y23 � �Y12 VW3� � Y23:

Finally, choose Y14 WW1 with W1 � Y12 lY14 and Y34 WW3 with W3 � Y23 l
Y34. Hence we arrive at the decomposition

V � Y14 lY12 lY23 lY34: �14�

As W2 A G, so is also W4 :� Y14 lY34. Now there are two possibilities:
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Case 1: There exists a linear bijection s : Y14 ! Y23. We de®ne Y :� fv� vs j
v A Y14g. Then Y14, Y23, and Y are easily seen to be mutually complementary sub-
spaces of Y14 lY23. Therefore, from (14),

V � Y14 lY12 lY lY34 � Y lY12 lY23 lY34; �15�

i.e., W1 h�Y lY34�h W2. So dist�W1;W2�W 2.
Case 2: Y14 and Y23 are not isomorphic. Then dim Y12 � dim W1, since other-

wise dim Y12 < dim W1 � dim W2 together with well-known rules for the addition
of in®nite cardinal numbers would imply

dim W1 � maxfdim Y12; dim Y14g � dim Y14;

dim W2 � maxfdim Y12; dim Y23g � dim Y23;

a contradiction to dim Y14 0 dim Y23.
Likewise, it follows that dim Y34 � dim W3. But this means that Y12 and Y34 are

isomorphic, whence the proof in case 1 can be modi®ed accordingly to obtain a Y W
Y12 lY34 such that W1 h W3 h �Y lY14�hW2. So now dist�W1;W2�W 3.

It remains to establish that in G there are elements with distance 3: Choose
any subspace W1 A G and a subspace W2 WW1 such that W1=W2 is 1-dimensional.
With the previously introduced notations we get Y12 �W2, dim Y14 � 1, Y23 � f0g,
Y34 �W3 A G, and W4 � Y14 lW3. As before, V �W2 lW4 and from dim W2 �
1� dim W2 � dim W1 � dim W3 � 1� dim W3 � dim W4 we obtain W2;W4 A G.
By construction, dist�W1;W2�0 0; 1. Also, this distance cannot be 2, since W h W1

implies W �W2 0V for all W A G.
This completes the proof.

If K is a proper skew ®eld, then K can be embedded in EndK�U� in several ways [6,
p. 17]; each embedding gives rise to a connected generalized chain geometry. (In [6]
this is just called a ``chain geometry''.) If K is commutative, then EndK�U� is a K-
algebra and x 7! x idU is a distinguished embedding of K into the centre of EndK�U�.
In this way an ordinary connected chain geometry arises; cf. [14, 4.5. Example (4)].

Our next goal is to show the existence of chain geometries with connected com-
ponents of in®nite diameter.

Remark 5.4. If R is an arbitrary ring then each matrix A A GE2�R� can be expressed
in standard form

A � diag�u; v� � E�tn� � E�tnÿ1� � � �E�t1�; �16�

where u; v A R�, t1; tn A R, t2; t3; . . . ; tnÿ1 A Rn�R� U f0g�, and t1; t2 0 0 in case n � 2
[10, Theorem (2.2)]. Since E�0�2 � diag�ÿ1;ÿ1�, each matrix A A GE2�R� can also
be written in the form (16) subject to the slightly modi®ed conditions u; v A R�,
t1; tn A R, t2; t3; . . . ; tnÿ1 A Rn�R� U f0g�, and nX 1. We call this a modi®ed standard

form of A.
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Suppose that there is a unique standard form for GE2�R�. For all non-diagonal
matrices in GE2�R� the unique representation in standard form is at the same time
the unique representation in modi®ed standard form. Any diagonal matrix A A
GE2�R� is already expressed in standard form, but its unique modi®ed standard form

reads A � ÿA � E�0�2. Therefore there is also a unique modi®ed standard form for
GE2�R�.

By reversing these arguments it follows that the existence of a unique modi®ed
standard form for GE2�R� is equivalent to the existence of a unique standard form
for GE2�R�.

Theorem 5.5. Let R be a ring with a unique standard form for GE2�R� and suppose that

R is not a ®eld. Then every connected component of the projective line P�R� over R has

in®nite diameter.

Proof. Since R is not a ®eld, there exists an element t A Rn�R� U f0g�. We put

qm :� R�cm; dm� where �cm; dm� :� �1; 0� � E�t�m for all m A f0; 1; . . .g: �17�

Next ®x one mX 1, and put nÿ 1 :� dist�q0; qmÿ1�X 0. Hence there exists a sequence

p0 h p1 h � � � h pnÿ1 h pn �18�

such that p0 � q0, pnÿ1 � qmÿ1, and pn � qm. Now we proceed as in the proof of
Theorem 3.2 (b): First let pi � R�ai; bi� and put �xÿ1; yÿ1� :� �0;ÿ1�, �x0; y0� :�
�1; 0�. Then pairs �xi; yi� A R2 and matrices E�ti� A E2�R� are de®ned in such a
way that pi � R�xi; yi� and that (8) holds for i A f1; 2 . . . ; ng. It is immediate from
(8) that a point pi, iX 2, is distant from piÿ2 exactly if ti A R�. Also, pi � piÿ2

holds if, and only if, ti � 0. We infer from (8) and dist�pi; p j� � ji ÿ jj for all i; j A
f0; 1; . . . ; nÿ 1g that

xn yn

ÿxnÿ1 ÿynÿ1

� �
� E�tn� � E�tnÿ1� � � �E�t1�; �19�

where ti A Rn�R� U f0g� for all i A f2; 3; . . . ; nÿ 1g. On the other hand, by (17) and
�cmÿ1; dmÿ1� � �0;ÿ1� � E�t�m, there are v; v 0 A R� with

xn yn

ÿxnÿ1 ÿynÿ1

� �
� diag�v; v 0� � E�t�m: �20�

From Remark 5.4, the modi®ed standard forms (19) and (20) are identical. There-
fore, n � m, dist�q0; qmÿ1� � mÿ 1, and the diameter of the connected component
of q0 is in®nite.

By Theorem 3.2 (a), all connected components of P�R� have in®nite diameter.

Remark 5.6. Let R be a ring such that R� U f0g is a ®eld, say K, and suppose that we
have a degree function, i.e. a function deg : R! fÿygU f0; 1; . . .g satisfying
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deg a � ÿy if , and only if, a � 0;

deg a � 0 if , and only if , a A R�;

deg�a� b�Wmaxfdeg a; deg bg;
deg�ab� � deg�a� � deg�b�;

for all a; b A R. Then, following [10, p. 21], R is called a K-ring with a degree function.
If R is a K-ring with a degree function, then there is a unique standard form for

GE2�R� [10, Theorem (7.1)].

Examples 5.7. (a) Let R be a K-ring with a degree-function such that R0K . From
Remark 5.6 and Theorem 5.5, all connected components of the projective line P�R�
have in®nite diameter.

The associated generalized chain geometry S�K ;R� has a lot of strange properties.
For example, any two distant points are joined by a unique K-chain. However, we do
not enter a detailed discussion here.

(b) Let K �X � be the polynomial ring over a ®eld K in a central indeterminate X.
From (a) and Example 5.2 (b), the projective line P�K �X �� is connected and its diam-
eter is in®nite. On the other hand, if K is commutative then K �X � has stable rank 3 [20,
2.9]; see also [3, Chapter V, (3.5)]. So there does not seem to be an immediate connec-
tion between stable rank and diameter.

(c) Let R :� K �X1;X2; . . . ;Xm� be the polynomial ring over a ®eld K in m > 1 inde-
pendent central indeterminates. Then, by an easy induction and by [10, Proposition
(7.3)],

An :� 1� X1X2 X 2
1

ÿX 2
2 1ÿ X1X2

� �n

� 1� nX1X2 nX 2
1

ÿnX 2
2 1ÿ nX1X2

� �
�21�

is in GL2�R�nGE2�R� for all n A Z that are not divisible by the characteristic of K.
Also, the inner automorphism of GL2�R� arising from the matrix A1 takes B12�1� A
E2�R� to a matrix that is not even in GE2�R�; see [18, p. 121±122]. So neither E2�R�
nor GE2�R� is a normal subgroup of GL2�R�.

We infer that the projective line over R is not connected. Further, it follows from
(21) that the number of right cosets of GE2�R� in GL2�R� is in®nite, if the charac-
teristic of K is zero, and Xchar K otherwise. From Theorem 3.2, this number of right
cosets is at the same time the number of connected components in P�R�. Even in
case of char K � 2 there are at least three connected components, since the index of
GE2�R� in GL2�R� cannot be two. From (a), all connected components of P�R� have
in®nite diameter.

So, for each commutative ®eld K, we obtain a disconnected chain geometry S�K;R�,
whereas for each skew ®eld K a disconnected generalized chain geometry arises.

Acknowledgement. The authors are obliged to the referee for pointing out the
paper [17].
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