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Abstract. For a manifold M, the structure set S�M; rel q� is the collection of manifolds homo-
topy equivalent to M relative to the boundary. Siebenmann [11] showed that in the topological
category, the structure set is 4-periodic in the sense that S�M; rel q�GS�M �D4; rel q� up to a
copy of Z. The periodicity has been extended in [27] to topological manifolds with homotopi-
cally strati®ed group actions by odd order groups, with D4 replaced by the unit ball of any 4-
fold permutation representation. In this paper, we extend such equivariant periodicity to the
case that the group is compact abelian, and D4 is replaced by the unit ball of twice of any
complex representation.
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1 Introduction

One of the most fundamental phenomena in the homotopy classi®cation theory of
topological manifolds is Siebenmann's periodicity theorem [11]: There is a 1-1 corre-
spondence between the manifolds homotopy equivalent (relative to the boundary) to
a manifold M and the same thing for M �D4. (This is actually not entirely correct in
the context of manifolds [17]. But the deviation is small, and the theorem as stated in
[11] is true if one replaces manifolds by ANR-homology manifolds [3]). The object of
this paper is to generalize this to manifolds with group actions.

An equivariant generalization is given in [25]: for arbitrary strati®ed spaces there is
a ``Siebenmann type periodicity'' for crossing with D4, and an equivariant theorem
follows by consideration of the quotient. However, the most interesting and natural
equivariant generalization involves consideration of DV , the unit disk of an orthog-
onal representation V, in place of D4. As a matter of fact, Siebenmann periodicity is
a cousin of Bott periodicity, which has such an equivariant generalization. For odd
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order groups a class of ``periodicity representations'' is given in [27]. Equivariant
products are rather complicated from a purely strati®ed point of view, and the oper-
ation does not have a natural meaning for general strati®ed spaces, so that one hopes
that deeper elements of the theory of group actions should follow from such period-
icity theorems.

Indeed, the equivariant periodicity theorem seems to play a more useful role than
the nonequivariant one. One reason for this is the following: The geometric topology
of G-manifolds seems to be best analyzed in a category that only involves isovariant

maps. These are maps which not only map ®xed sets of subgroups to one another,
but also sends complements of such sets to each other. This is a di½cult notion to
work with (constant maps are equivariant but not isovariant, for instance). Browder
has shown that assuming a large gap hypothesis, equivariant homotopy equivalences
are homotopic to isovariant ones (the gap hypothesis is, in any case, an important
one in transformation groups). Using a periodicity theorem, one can cross with a
suitably large representation (meaning with large enough gaps) to achieve the desired
gap hypothesis, without losing information. Then one can do geometry and homo-
topy theory in a more congenial environment.

Successful applications of this idea (and, indeed, of the results of this paper) have
already been executed: In [25] where these results are used in disproving the equiv-
ariant topological rigidity conjecture (for equivariantly aspherical manifolds), and in
[5] they are applied to the problem of the variation of the homotopy type of the ®xed
point set of a group action within a given equivariant homotopy type (the replace-
ment problem). Further applications of the ideas presented here will appear in [26]
and [6] where decomposition theorems will be proven for equivariant surgery groups
and structure sets, and to functoriality of equivariant surgery theory.

In this paper, we are mainly concerned with the actions by abelian groups. For
actions of odd order groups see [8], [16], [27].

Denote by SG�M; rel qM� the space of G-isovariant homotopy structures of M rela-
tive to the boundary qM (the 0-th homotopy are the homeomorphism classes of G-
manifolds isovariantly homotopy equivalent to M, which are already homeomorphic
on the boundaries).

Theorem 1. Let V � C2 be twice of the natural representation of S1. Suppose that M

is a homotopically strati®ed S1-manifold with codimensionX 3 gap and nontrivial S1-
action. Then there is a periodicity equivalence

SS 1�M; rel qM�FSS 1�M �DV ; rel q�M �DV��:

By virtually the same proof, we also see that the periodicity is ``inductive''.

Theorem 2. Let k : G ! S1 be a character of a compact Lie group G. Let V � C2 be
twice of the G-representation induced from k. Suppose that M is a homotopically

strati®ed G-manifold with codimensionX 3 gap and nontrivial G-action. Then there is a

periodicity equivalence
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SG�M; rel qM�FSG�M �DV ; rel q�M �DV��:

Since any complex representation of a compact abelian Lie group G is a direct
sum of characters, we have the following result by repeatedly applying the above
Theorem.

Theorem 3. Suppose that G is a compact abelian Lie group, W is a complex G-

representation and V �W lW . Suppose that M is a homotopically strati®ed G-

manifold such that M has codimensionX 3 gap, and M � V and M have the same

isotropy everywhere. Then there is periodicity equivalence

SG�M; rel qM�FSG�M �DV ; rel q�M �DV��:

This isotropy condition was de®ned in [27]: Any point in M has an arbitrarily small
neighborhood U such that the sets of isotropy groups of U � V and of U are identi-
cal. The condition essentially means that M � V and M have the same isovariant
®xed point structures (or the same posets, in the terminology of [9]). In case every
subgroup of G appears as an isotropy subgroup of V, the condition means that M has
a strongly saturated orbit structure as de®ned in [8].

With certain applications in mind, we would also like the equivariant periodicity to
be natural.

Theorem 4. The periodicity is compatible with the restriction to ®xed points of sub-

groups and, provided the subgroup has ®nite index, the restriction to the action of sub-

groups.

We expect the ®nite index condition to be unnecessary. However, the proof in that
case seems to involve some delicate points.

We note that in general, one cannot much improve these results. Indeed the class of
``periodicity representations'' is precisely the representations that are twice a complex
representation for the case of the torus group. However, an important conjectural
extension of our result is suggested by the following (see [28] for further evidence).

Conjecture. Twice any complex representation of any compact Lie group is a peri-
odicity representation.

The keys to proving periodicity theorems on structure sets are a surgery theory that
has a suitable ``local-global'' form (see [25]) and an appropriate ``periodicity theo-
rem'' for L-groups. Indeed the result of [27] follows from a core result on L-groups
that is the same as the key result in [8]. Till this paper, no periodicity theorems were
known for even order groups, even Z2, let alone for compact Lie groups. As explained
in [8] (see Proposition 3.7 on page 96), the di½culty encountered is that there does not
seem to be an equivariant variant of CP2 to cross with for the even order case. The
trouble is that one needs a manifold whose equivariant signature is the one dimen-
sional trivial representation. In addition, one needs the ®xed point set of every sub-
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group to be connected and simply connected. These do not seem to exist. A similar
issue arises in the work of [13] on decomposition theorems for equivariant surgery
groups.

In fact, in [16] equivariant transversality was shown to follow from a topological
version of equivariant Bott periodicity (i.e., from the construction of K-theoretic
Thom classes for topological bundles). However, equivariant transversality fails for
Z2, which might suggest that periodicity does as well. (See [22] for an explanation of
how to prove equivariant Bott periodicity using the signature operator instead of the
Dirac operator. That proof fails for Z2 exactly for the same computational reason
that produces nonlinear similiarities for even order cyclic groups of order > 4). We
avoid this di½culty by making use of the complex structure of the representations,
so that our periodicities of topological structure sets are not topologically invariant!
We hope to return to this issue in a future paper on Thom isomorphism for
structure sets of equivariant ``bundles'', where such problems are much more serious.
This defect is, in some ways, an advantage, in that in the equivariant case there are a
number of distinct periodicities which puts a useful algebraic structure on structure
sets (unequivariantly, there are only two, which di¨er by a sign). Again, this will be
dealt with elsewhere.

The way we get around the lack of ``periodicity G-manifolds'' (which are supposed
play a similar role equivariantly to that of CP2 in the classical periodicity) is to make
use of certain G-spaces that are not manifolds (or even pseudomanifolds). The idea is
to consider strati®ed spaces whose singularities are themselves boundaries of other
strati®ed spaces with some special ``p-p structure''. This p-p structure ensures that the
singularities are not ``too serious'' in a certain algebraic sense, and the strati®ed
spaces can be used with success in manifold theory.

The advantage of using such spaces can be understood via consideration of the
important work of [7]. To de®ne a purely free manifold theoretic product from arbi-
trary G-manifolds, one would want to cobord to a free manifold. The Conner±Floyd
approach is to make the singular set into an appropriate boundary, and to insist that
the ``normal bundle data'' bound as well. This bundle theory actually is dominant
in the size of equivariant bordism theory. Our contribution is to show that it can be
ignored for surgery theoretic purposes.

Philosophically, the reason one can do this goes back to Atiyah's analysis [1] of the
lack of multiplicativity of the signature (which is the main contribution of manifold
cobordism theory from the point of view of surgery theory; see [21]). The idea is to
®nd something that bounds the boundary of a tubular neighborhood of the singular
set and use this to replace the normal sphere (considered by Conner and Floyd)
around the ``coboundary'' of the ®xed sets. If a signature were multiplicative, and the
singular set bounded even a simply connected manifold, the signature of the bound-
ary of the tubular neighborhood of the singular set would vanish. This would be an
important ®rst step. However, this does not hold for mapping cylinders of Atiyah's
bundles.

Still, Atiyah showed that the deviation from multiplicativity has a characteristic
class formula, so that if the singular manifold bounded a manifold with the same
fundamental group as itself, this deviation term would vanish as well, and we would
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have the vanishing of the signature. Our exotic products provide a precise chain level
construction (performed thanks to some magic in strati®ed surgery theory) that applies
to more complex singularities and to more sophisticated invariants (some of ®nite
order, for instance) than merely the signature. In fact, the result also includes the
multiplicativity of higher signatures noticed by Lusztig [15] as well. We note that
LuÈck and Ranicki [14] have also analyzed Atiyah's formula from a surgery theoretic
point of view. Indeed, in the manifold case, their result is much more precise than
what we accomplish, but we need the added generality of nonmanifold singular sets
when we get to noncyclic groups. It is an interesting project to try to combine their
formulae with our construction.

The most important problem posed by this work is how to make the ``exotic prod-
uct'' idea yet more exotic, by allowing the singular set to bound in a more exotic (less
geometric) fashion. Currently, that seems like the most likely route to general non-
abelian results.

Our paper is organized as follows. In section two we introduce a particular useful
``periodicity space''. We will see how crossing with this space leads to the periodicity
in the following sections. Section three gives a result for surgery obstruction groups.
Section four gives the corresponding result for stable structure sets.

Section ®ve destabilizes our periodicity theorem. Unfortunately we have not found
a way to axiomatize the proof in section ®ve in a useful way, nor have we a direct
approach to proving the periodicity theorem for (the unstable) structure sets in gen-
eral. If the reader were only interested in the PL locally linear category, destabiliza-
tion would not be necessary, although the periodicity would be marred by (1) the
usual Kirby±Siebenmann di½culties and (2) the kind of boundary conditions imposed
by Nicas on Siebenmann's periodicity. The reason is that many of the G-manifolds
produced by the theory, without a boundary condition, will only be locally simple
homotopy linear, not actually locally linear.

Finally, in the last section we discuss the naturalities present under restriction to
subgroups or to ®xed point sets.

The authors would like to thank the Courant Institute, and the second author
would like to thank the University of Chicago as well, for hospitality when this work
was done.

Notations and conventions. In this paper, we work on manifold strati®ed spaces (or
strati®ed spaces for short, at least in this paper) X: X has a ®ltration fXag of closed
subspaces indexed by a partially ordered set such that Xa HXb for a < b and the
strata X a � Xa ÿ X<a are topological manifolds. We will always assume that up to
strati®ed homotopy, the neighborhood of lower strata in higher strata is the mapping
cylinder of a ®bration map, i.e., X is a homotopically strati®ed space in the sense
of Quinn [19]. This is the (weaker) homotopical version of geometrically strati®ed

spaces of Browder and Quinn [2]. We will assume the maps between strati®ed
spaces to be strati®ed, i.e., the strata are preserved. Moreover, we will assume
homotopy equivalences between homotopically strati®ed spaces to be homotopically

transverse, meaning that the induced map on the ®brations are ®brewise homotopy
equivalences.
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A strati®ed space X with a stratum-preserving G-action is a G-strati®ed space.
The quotient X=G has an induced strati®cation doubly indexed by the isotropy sub-
groups of X and the indices of X. This generalizes the induced strati®cation (indexed
by the isotropy subgroups only) on the quotient of a nonstrati®ed X, which may also
be considered as having a single stratum. In this paper, we will always assume that
the quotient strati®ed space X=G is homotopically strati®ed. Under the assumption,
we also say that the group action is homotopically strati®ed.

To simplify notation, we will pretend qM �q throughout this paper. In addition,
we will write M � �A; rel B� for �M � A; rel qM � AUM � B�. In particular, by M �
�DV ; rel SV� we mean �M �DV ; rel q�M �DV��.

An equivariant map f : X ! Y is called an equivariant p0-equivalence if f H :
X H ! Y H is a one-to-one correspondence of connected components for each sub-
group H. f is called an equivariant p1-equivalence if, in addition to being a one-to-
one correspondence of connected components, f H induces an isomorphism on the
fundamental groups of each component.

The notions of equivariant p0- and p1-equivalences have isovariant analogues.
Instead of considering the restriction of f on connected components of X H , we will
only consider the restrictions of f on the isovariant components: connected compo-
nents of XH � X H ÿ X>H . If an equivariant map X ! Y induces a one-to-one cor-
respondence on the collections of isovariant components, then the map is called an
isovariant p0-equivalence. If, in addition, the map also induces an isomorphism on the
isovariant components, then it is called an isovariant p1-equivalence.

A G-manifold M has codimensionX 3 gap if for any equivariant components
M H

a HM K
b , we have either M H

a �M K
b or dim M H

a � 3W dim M K
b . If f is an iso-

variant map between G-manifolds with codimensionX 3 gaps, then f is an equivar-
iant p0-equivalence (p1-equivalence) if and only if it is an isovariant p0-equivalence
(p1-equivalence).

We will need generalizations of the notion of p0- and p1-equivalences to strati®ed
G-spaces. By this we mean the (equivariant or isovariant) p0- and p1-equivalences for
the restriction of the strati®ed G-map on each stratum.

2 Periodicity spaces

Products of G-strati®ed spaces are G-strati®ed spaces. In this paper, we will ®nd it
necessary to take the product of a G-manifold M with a certain periodicity space P,
which is a geometrically G-strati®ed space instead of a G-manifold. The manifold M

is trivially G-strati®ed, having only one stratum. Thus the G-strati®cation on M � P

is given by the G-strati®cation of P, and the quotient �M � P�=G has an induced
strati®cation. Since P is geometrically G-strati®ed, �M � P�=G will be geometrically
(homotopically) strati®ed if M=G is geometrically (homotopically) strati®ed.

To construct P, we start with the complex representation V � C2 where S1 acts by
complex scalar multiplication. We add a trivial representation C to V and obtain the
induced S1-action on the complex projective space CP2 � CP�V lC�. Under the
obvious identi®cation (the boundary SV of DV maps onto CP�V� � S2 via Hopf
projection)
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CP2 � CP�V lC� � DV US2;

the S1-action is semifree with ®xed points

�CP2�S 1 � 0
a

S2:

We note that CP�V lC� is not a periodicity manifold in the sense of [8] or [27]
because the ®xed point set is not connected.

Since the expected periodicity representation comes from the neighborhood DV of
the origin 0, we need to eliminate the contribution from the other component S2.
This is achieved by expanding CP2 by gluing the obvious nullcobordism D3 of S2:

P � CP2 US 2 D3:

This is a manifold geometrically strati®ed space. By letting S1 act trivially on D3, P
becomes an S1-strati®ed space.

3 Periodicity of S1-surgery obstruction groups

The periodicity will come from the following operations

M �)�P
M � P(�incl

M � �DV ; rel SV�: �1�

The operations will be applied to the stable surgery obstructions Lÿy
S 1 and the Tate

cohomology Ĥ�Z2; Whtop;W0� of the topological Whitehead torsion. Both are func-
tors over S1-equivariant homotopically strati®ed spaces. The operations (1) can also
be applied to unstable surgery obstructions LS 1 , and the subsequent periodicity results
remain true. However, this fact is not directly needed in this paper.

An element of Lÿy
S 1 �M� is represented by a stable S1-surgery problem with a ref-

erence S1-map to M. The operation �P means crossing the problem by the space P,
and crossing the reference map by idP. An element in Lÿy

S 1 �M � �DV ; rel SV�� is
represented by a stable S1-surgery problem with a reference S1-map to M �DV . The
inclusion operation does not change the surgery problem itself, and only takes a new
viewpoint on the reference map. Speci®cally, we view the reference map as mapping
into M � �DV ÿ SV� part of M � P (this is a strati®ed map), so that over M �
�D3 IS2� there is only the empty problem. The simple geometric description of the
operations (1) readily implies the commutativity of all the diagrams in the subsequent
proofs.

We ®rst consider the case of free actions.

Lemma 5. Suppose S1 acts freely on M. Then (1) induces equivalences of surgery

obstructions

LÿyS 1 �M�FLÿyS 1 �M � P�FLÿyS 1 �M � �DV ; rel SV��:
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Proof. Consider the diagram

Lÿy
S 1 �M �CP2�  ���incl

Lÿy
S 1 �M � �DV ; rel SV��

�CP2

x??? f

???yincl

Lÿy
S 1 �M� ���!�P

Lÿy
S 1 �M � P�

�2����!
where the map f ®rst restricts to the closed stratum CP2 HP and then forgets the
strati®cation structure CP2 IS2. The two triangles are commutative by the geometric
meaning of the operations.

In [14], LuÈck and Ranicki showed that �CP2 depends only on the S1-equivariant
signature of CP2. Since S1 acts homotopically trivially on CP2, the equivariant sig-
nature is in fact the nonequivariant one, which is 1: ZnZ! Z. As a result, the map
�CP2 is an equivalence.

The horizontal inclusion induces an isomorphism p1�M �DV�G p1�M �CP2�.
Since S1 acts freely on the products, we have p1��M �DV�=S1�G p1��M �CP2�=
S1�. Therefore the horizontal inclusion induces an equivalence on the surgery ob-
structions.

The vertical inclusion ®ts into a ®bration

LÿyS 1 �M � �DV ; rel SV�� �!incl
LÿyS 1 �M � P� �!rest

LÿyS 1 �M � �D3 IS2��; �3�

where by writing D3 IS2 we mean the strati®cation structure in D3. By the p-p
theorem, Lÿy

S1 �M � �D3 IS2�� is trivial. Therefore the inclusion is an equivalence.
Combining the above equivalences we proved the equivalence between surgery

obstructions.

Now we move on to the general case. A small gap condition is needed.

Lemma 6. Suppose the nonfree part of an S1-action on M has codimensionX 3. Then

(1) induces equivalences

LÿyS 1 �M�FLÿyS 1 �M � P�FLÿyS 1 �M � �DV ; rel SV��:

Proof. Since S1 acts semifreely on P, for any f1g0H HS1 we have

�M � P�H �M H � PS 1 �M H � 0
a

D3
� �

:

Denote by Ms �6
g AS 1 M g the part of M on which S1 acts nonfreely. Then Ms is a

manifold S1-strati®ed space.
As in the proof of the previous lemma, the ®bration (3) and the p-p theorem implies

that the inclusion is an equivalence.
To prove that �P is an equivalence, we compare two ®brations:
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Lÿy
S 1 �M ÿMs� ���!incl

Lÿy
S 1 �M� ���!rest

Lÿy
S 1 �Ms�???y ???y�P

???y�P S 1

Lÿy
S 1 �M � PÿMs � PS 1� ���!incl

Lÿy
S 1 �M � P� ���!rest

Lÿy
S 1 �Ms � PS 1�:

�4�

By the p-p theorem, we have

LÿyS 1 �Ms � PS 1� � LÿyS 1 �Ms � 0� � LÿyS 1 �Ms � �D3 IS2��
FLÿyS 1 �Ms � 0�:

Thus the map on the right of (4) is an equivalence. Therefore in order to show that
the middle of (4) is an equivalence, it su½ces to show that the left is an equivalence.
We note that the left side is the composition

LÿyS 1 �M ÿMs� �!�P
LÿyS 1 ��M ÿMs� � P� �!incl

LÿyS 1 �M � PÿMs � PS 1�:

The map �P is an equivalence by Lemma 5. The inclusion can be considered as a
gluing

M � PÿMs � PS 1 � ��M ÿMs� � P� U�MÿMs���PÿPS 1 � �M � �Pÿ PS 1��:

We claim that the gluing neither introduces new S1-strata, nor changes the con-
nectivity and the fundamental groups of isovariant components inside each G-stra-
tum. This would imply that the inclusion is an isovariant p1-equivalence, so that it
induces an equivalence on the surgery obstructions.

First, both �M ÿMs� � �Pÿ PS 1� and M � �Pÿ PS 1� are parts of an S1-stratum
M � �DV ÿ SV� of M � P. Hence the gluing is merely an extension of the existing
S1-strata, so that no new S1-strata are introduced. Second, S1 acts freely on the ex-
tended part M � �Pÿ PS 1�. Therefore the extension happens only in the free part of
M � �DV ÿ SV�, so that no new ®xed points are introduced. Finally the assumption

sMs Ms Ms

Ms � 0 CP1

0

S1
Ms � P

Ms �D D

M M
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that Ms has codimensionX 3 implies that the inclusion �M ÿMs� � �Pÿ PS 1� !
M � �Pÿ PS 1� is an isovariant p1-equivalence. By Van Kampen's theorem, this
implies that the inclusion �M ÿMs� � P!M � PÿMs � PS 1

is an S1-strati®ed
isovariant p1-equivalence. In particular, the inclusion induces an equivalence on
stable surgery obstructions. This completes the proof of the lemma.

4 Periodicity of stable S1-surgery theory

In this section we prove the stable version of Theorem 1. We also include a naturality
property of the stable periodicity. The property will be needed in deriving unstable
periodicity later on.

The operations (1) may be applied to Sÿy
S 1 . Omitting the R i-factor, an element of

Sÿy
S 1 �M� is represented by a stable isovariant homotopy equivalence N !M. ``�P''

takes the element to N � P!M � P. An element of Sÿy
S 1 �M � �DV ; rel SV�� is

represented by a homotopy equivalence �W ; qW� !M � �DV ;SV� such that the
restriction qW !M � SV is a homeomorphism. The inclusion operation simply
glues M � �D3 IS2� to the homotopy equivalence by making use of the homeo-
morphism on the boundary.

Unlike surgery obstructions, the operations (1) do not induce equivalences on
Sÿy

S 1 . However, our stable periodicity will be compatible with these operations. We
summarise the stable version of Theorem 1 and the compatibility in the following
theorem.

Theorem 7. Let V � C2 be twice of the natural representation of S1. Suppose that M is
a homotopically strati®ed S1-manifold such that the nonfree part has codimensionX 3.
Then there is periodicity equivalence and commutative diagram

Sÿy
S 1 �M� F

per
Sÿy

S 1 �M � �DV ; rel SV��

Sÿy
S 1 �M � P�:

 ���  ����P incl

Proof. SÿyG may be computed by the following ®bration (see the Stable Classi®cation
Theorem on page 134 of [25]):

SÿyG �M� ! H�M=G; LÿyG �loc M�� ! LÿyG �M�: �5�

Lemma 6 says that (1) induces natural equivalences of functors:

LÿyS 1 �?�F�P
LÿyS 1 �?� P� Fincl

LÿyS 1 �?� �DV ; rel SV��:

Applying homology, we obtain homotopy equivalent assembly maps:
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H�M=S1; Lÿy
S 1 �loc M�� ���! Lÿy

S 1 �M�
F

???y�P F

???y�P

H�M=S1; Lÿy
S 1 ��loc M� � P�� ���! Lÿy

S 1 �M � P�
F

x???incl F

x???incl

H�M=S1; Lÿy
S 1 ��loc M� � �DV ; rel SV��� ���! Lÿy

S 1 �M � �DV ; rel SV��:

�6�

By the stable surgery ®bration (5), the homotopy ®bre of the top map is Sÿy
S 1 �M�. If

we can identify the bottom map with the assembly map of Lÿy
S1 over M �DV , then

the homotopy ®bre of the bottom map is Sÿy
S 1 �M � �DV ; rel SV�� and stable peri-

odicity follows.
By applying the ``Fubini equivalence'' (proven exactly the same way as the Leray

spectral sequence of a map in a generalized homology theory) associated to the strati-
®ed system of ®brations DV=Gx ! �M �DV�=S1 !M=S1 (Gx � isotropy group of
x A M; this strati®ed system is entirely analogous to the strati®cation of the quotient
of a smooth G-vector bundle, see [24] for example), we may compare the assembly
map of the functor Lÿy

S1 �?� �DV ; rel SV�� over M=S1 and the assembly map of the

functor Lÿy
S 1 �?� over �M �DV�=S1:

H�M �DV=S1; Lÿy
S 1 �loc�M �DV���

F

???yFubini

H�M=S1; H�DV=Gx; Lÿy
S 1 �loc�M �DV���� Lÿy

S 1 �M � �DV ; rel SV��???ya

H�M=S1; Lÿy
S 1 ��loc M� � �DV ; rel SV���:

�7�

 ���
 ���

We note that loc�M �DV� means the local S1-structure of the product space
M �DV , while �loc M� �DV means the product of the local G-structure of M

with the whole G-space DV . Moreover, the map a is the ``partial assembly map''
obtained in the following way: The assembly map of the functor Lÿy

S 1 ��loc M� � ?�
over DV

a0 : H�DV=Gx; LÿyS 1 �loc�M �DV��� ! LÿyS 1 ��loc M� �DV�

may be considered as a natural transformation between functors of the variable
loc M. Then a is obtained by applying the homology functor to a0. The naturality of
the assembly map with respect to the Fubini equivalence (see Section 8 of [19], and
[27]) shows that the diagram (7) is commutative.

The proof of stable periodicity is thus reduced to showing that a is a homotopy
equivalence. This is a consequence of a0 being a homotopy equivalence. Note that
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DV=Gx is the cone of the strati®ed space SV=Gx, with the cone point as an ad-
ditional stratum. The assembly map over such a space is always a homotopy equiva-
lence (see Lemma 3.21 on page 1038 of [27]). This proves that a0 is a homotopy
equivalence.

To show that the diagram in the lemma is commutative, we consider the following
diagram.

H�M=S1; Lÿy
S 1 �loc M�� ���! Lÿy

S 1 �M�???y�P F

???y�P

H��M � P�=S1; Lÿy
S 1 �loc�M � P�� ���! Lÿy

S 1 �M � P�x???incl F

x???incl

H��M �DV�=S1; Lÿy
S 1 �loc�M �DV�� ���! Lÿy

S 1 �M � �DV ; rel SV��

�8�

The inclusion map on the left side is the usual map in homology theory. The map �P

on the left side has the following geometrical interpretation: As pointed out on page
134 and explained in Section 8.3 of [25], the homology H�M=S1; Lÿy

S 1 �loc M��
may be interpreted as the normal invariants (� isovariant surgery problems) over
M. By taking the product of a normal invariant with the strati®ed space P, we have a
normal invariant over the strati®ed space M � P, which belongs to the homology
H��M � P�=S1; Lÿy

S 1 �loc�M � P��. A purely algebraic interpretation would involve
a canonical controlled strati®ed visible Sullivan class for P, as an element in the
homology H��P=G; VLS 1�loc P��. But this is not needed here.

The ®bres of the assembly maps in (8) are the stable structures Sÿy
S 1 �M�,

Sÿy
S 1 �M � P�, Sÿy

S 1 �M � �DV ; rel SV��, and the induced maps on the stable struc-
tures are �P and inclusion.

The left side of (8) has a natural map to the left side of (6). The map over M is the
identity. The map over M �DV is the Fubini equivalence followed by partial assem-
bly (left side of (6)). The map over M � P is the similar Fubini equivalence followed
by partial assembly (except the partial assembly is over P=Gx, instead of over the
cone DV=Gx. So the partial assembly is not a homotopy equivalence). The natural
map from (8) to (6) induces natural maps on the homotopy ®bres of the assemblies.
The induced diagram is the commutative diagram in the theorem.

We end this section by remarking that Theorem 7 also applies to other abelian
groups. In fact, the proofs in the last three sections are still valid if we replace S1 by
G. Perhaps the only thing worth mentioning is that CP2 still represents an invertible
element of the Euler ring of G after localizing at 2. Theorem 3 (the stable version) is
obtained by writing W as a direct sum of several characters (one dimensional com-
plex representations) and then repeatedly applying the Theorem 2 (the stable version).
The same isotropy everywhere condition implies that at each stage, the conditions of
the Theorem 2 are satis®ed.
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5 Destabilization

The proof of destabilization overall follows from the same strategies employed in the
analysis of the stable structure set. However, the details seems to be irreducibly more
complicated.

The stable and unstable structures are related by the generalized Rothenberg ®bra-
tion (see the Destabilization Theorem on page 135 of [25])

SG�M� ! SÿyG �M� ! Ĥ�Z2; Wh
top;W0
G �M��: �9�

The same operations (1) used on Sÿy
S 1 can be compatibly de®ned on Wh

top;W0
G , which

by Theorem 7 are compatible with the periodicity equivalence on Sÿy
S 1 . Therefore the

periodicity equivalence is compatible with the operations (1) on Ĥ�Z2; Wh
top;W0
S 1 �. As

a result, if the operations (1) induce equivalences on Ĥ�Z2; Wh
top;W0
S 1 �, then by (9) we

obtain the periodicity equivalence on the unstable structure SS1 .
One can almost repeat the proof for the periodicity on the surgery obstructions, as

was done in [28]. However, some technical di½culties (taking Tate cohomology does
not commute with truncating the involutive spectrum) add more complications to the
argument. In this paper, we use a more direct approach.

Our proof will be presented in terms of the isovariant topological Whitehead

group Wh
Top
G � p0Wh

top;W0
G (this corresponds to, and for the strati®ed case, gen-

eralizes Wh
Top; Iso
G of [23]). Because pÿkWh

top;W0
G �Wh

top

G;Rk-bounded
�Rk � X�, the

bounded version of the proof will also show that (1) induces equivalences on all
Ĥ�Z2; pÿkWh

top;W0
G �, k X 0. By decomposing the Rothenberg ®bration (9) into many

®brations

Sÿk
G �M� ! Sÿkÿ1

G �M� ! Ĥ�Z2; pÿkWh
top;W0
G �M��;

and by making use of the isomorphism SÿyG �M�G limk!y Sÿk
G �M�, we inductively

deduce the periodicity on SG from the periodicity on SÿyG .
For a G-manifold M with codimensionX 3 gap, we may describe the group

Wh
Top
G �M� as the homeomorphism classes of (equivariant or isovariant, which are

the same in the presence of codimensionX 3 gap) G-h-cobordisms over M. The upside

down operation describes the involution on Wh
Top
G �M�. This description (including

that of the involution) holds as well for manifold G-homotopically strati®ed spaces.

In particular, this enables us to de®ne the maps such as Wh
Top
S 1 �M � �DV ; rel SV�� �!incl

Wh
Top
S 1 �M � �CP2; rel S2�� �!incl

Wh
Top
S 1 �M � P�  ��P

Wh
Top
S1 �M� in the most natural

way. These maps are clearly compatible with the operations (1) on Sÿy
S 1 .

We will need the following property of Wh
Top
G : Suppose X is a homotopically

strati®ed space and Y HX is a closed union of strata of X. Then there is a natural
exact sequence

0 �!Wh
Top
G �X ; rel Y � �!incl

Wh
Top
G �X � �!rest

Wh
Top
G �Y� �! 0: �10�

Equivariant periodicity for abelian group actions 61



Moreover, in case X is a manifold strati®ed space, the inclusion and restriction maps
preserve the involutions.

Suppose M is a homotopically strati®ed G-manifold with codimensionX 3 gap.
Then it was shown in [23] that Wh

Top
G �M� may be identi®ed with a subgroup

Wh
Top;Equi
G;r �M� of the equivariant topological Whitehead group Wh

Top;Equi
G �M� (in

[23], these are denoted as Wh
Top;r
G �M�HWh

Top
G �M�). In fact, for any locally compact

G-ANR X, Steinberger de®ned Wh
Top;Equi
G �X� as the equivalence classes of G-ANR

strong deformation retracts �Y ;X�, where the equivalence relation can either be given
by G-CE maps or by stable G-homeomorphisms after crossing with the equivariant
Hilbert cube. As a consequence of this description, Wh

Top;Equi
G �X � is an equivar-

iant homotopy functor ( f : X ! X 0 takes �Y ;X� to �Y UX X 0;X 0�). Moreover,

crossing with any G-ANR Z gives rise to a homomorphism �Z : Wh
Top;Equi
G �X � !

Wh
Top;Equi
G �X � Z�, which can be further projected down to Wh

Top;Equi
G �X� by the G-

equivariant map X � Z ! X .
The subgroup Wh

Top;Equi
G;r �X � consists of elements of Wh

Top;Equi
G �X� represented

by G-ANR strong deformation retracts �Y ;X� such that the inclusion X ! Y is an
isovariant p0-equivalence. In particular, if a certain operation does not change this
property, then the operation induces a homomorphism on Wh

Top;Equi
G;r . Speci®cally,

this observation will be applied to the operations of products with CP2 and DV , and
the operations induced by the maps M �CP2 !M, M �DV !M, and M �M �
0!M �DV . If M has codimensionX 3 gap, then these operations induce maps on

Wh
Top;Equi
G and restrict to maps on Wh

Top;Equi
G;r .

The next lemma reduces the proof that (1) induces equivalences on Ĥ�Z2; Wh
Top
S 1 �

to an algebraic problem.

Lemma 8. Suppose M is a homotopically strati®ed S1-manifold with codimensionX 3
gap. Let A �Wh

Top
S 1 �M� and � be the usual involution on A. Then after localizing at

2, we have

(i) Wh
Top
S 1 �M � P�GAlAlA, with involution given by

�a; b; g�� � �ÿa� � b �; b�; g 0 � l�b��;
where 0 is another involution on A ( possibly di¨erent from �), and l : A! A is a

homomorphism satisfying l2 � 0;

(ii) Wh
Top
S 1 �M � �DV ; rel SV��GA, with the inclusion Wh

Top
S 1 �M � �DV ; rel SV�� !

Wh
Top
S 1 �M � P� given by a! �0; 0; a�;

(iii) �P : Wh
Top
S 1 �M� !Wh

Top
S 1 �M � P� is given by a! �a; 2a; a�.

Proof. First we claim that the inclusion induces an isomorphism

Wh
Top
S 1 �M � �DV ; rel SV��GWh

Top
S 1 �M � �CP2; rel S2��: �11�

This is because the di¨erence between the two topological Whitehead torsions is the
possible ``leaking'' along M � S2; that is, we have an exact sequence
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H0��M � S2�=S1; WhPL�holink�� !Wh
Top
S 1 �M � �DV ; rel SV��

!Wh
Top
S 1 �M � �CP2; rel S2�� ! Hÿ1��M � S2�=S1; WhPL�holink��:

We note that the link of �M � S2�=S1 in �M �CP2�=S1 is S1=Gx, which is either a
circle or a point. The fundamental group of the link is then Z or trivial. In either case,
the piecewise linear K-theory WhPL�holink� is trivial at dimensionW 1. Therefore the
homologies in the exact sequence vanish, and the inclusion is an equivalence.

By (10), we have the following natural involutive short exact sequence

0 �!Wh
Top
S1 �M � �CP2; rel S2�� �!incl

Wh
Top
S 1 �M � P�

�!rest
Wh

Top
S1 �M � �D3 IS2�� �! 0:

The inclusion Wh
Top
S 1 �M � �DV ; rel SV�� !Wh

Top
S 1 �M � P� clearly factors through

Wh
Top
S 1 �M � �CP2; rel S2��. By making use of the isomorphism (11), we see that the

top row in the following diagram is exact.

0!Wh
Top
S 1 �M��DV; rel SV�� ��!incl

Wh
Top
S 1 �M�P� ��!rest

Wh
Top
S 1 �M��D3IS2��!0



 incl

???yrest �P

x???��D3IS 2�

Wh
Top;Equi
S 1;r

�M��DV; rel SV�� Wh
Top
S 1 �M�CP2�  ���CP2

Wh
Top
S 1 �M�

proj

???y incl





 




Wh

Top;Equi
S1;r

�M�  ��proj
Wh

Top;Equi
S 1;r

�M�CP2�  ���CP2

Wh
Top;Equi
S 1;r

�M�
�12�

 ��� ���!

 ���

In the diagram, the equations Wh
Top
S1 �Wh

Top;Equi
S 1;r

are applied to M, M � �DV ;

rel SV�, and M �CP2, which are all S1-manifolds with codimensionX 3 gaps. The
commutativity of the diagram follows from the geometric meaning of the maps.

The projection M �DV !M and the inclusion M �M � 0!M �DV are
equivariant homotopy inverse to each other. Therefore they induce an isomorphism

between Wh
Top;Equi
S 1 �M � �DV ; rel SV�� and Wh

Top;Equi
S1 �M�. Since M has codimen-

sionX 3 gap, the two maps restrict to an isomorphism between Wh
Top;Equi
S 1;r

. Conse-
quently, the vertical projection in (12) is an isomorphism, and the composition

Wh
Top
S 1 �M � P� �!rest

Wh
Top
S 1 �M �CP2� �Wh

Top;Equi
S 1;r

�M �CP2� �!proj
Wh

Top;Equi
S 1;r

�M�

G
proj

Wh
Top;Equi
S 1;r

�M � �DV ; rel SV�� �Wh
Top
S 1 �M � �DV ; rel SV��

is a splitting to the inclusion
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Wh
Top
S 1 �M � �DV ; rel SV�� !Wh

Top
S 1 �M � P�:

Thus the splitting induces a decomposition

Wh
Top
S 1 �M � P�GWh

Top
S 1 �M � �D3 IS2��lWh

Top
S 1 �M � �DV ; rel SV��; �13�

such that the projection to the ®rst summand is involutive. Note that we are asserting
nothing about the commutation of the second projection with the involution.

By making use of the collar of M � S2 in M �D3, we have a decomposition

Wh
Top
S 1 �M � �D3 IS2�� �Wh

Top
S 1 �M � �D3; rel S2��lWh

Top
S 1 �M � S2�: �14�

The situation (especially the involution) is then similar to the Whitehead torsion of
a manifold with boundary. As above, since M �D3 and M � S2 have codimen-
sionX 3 gaps, their topological Whitehead torsion groups may be identi®ed with

Wh
Top;Equi
S 1;r

. Since the projections M � S2 !M and M �D3 !M are isovariant
p1-equivalences, the projections induce isomorphisms of both summands with

Wh
Top;Equi
S 1;r

�M�. By identifying Wh
Top;Equi
S 1;r

�M� with Wh
Top
S 1 �M�, (14) then becomes

Wh
Top
S1 �M � �D3 IS2��GWh

Top
S 1 �M�lWh

Top
S 1 �M�: �15�

The isomorphism (the left of (12))

Wh
Top
S 1 �M � �DV ; rel SV�� �Wh

Top;Equi
S 1;r

�M � �DV ; rel SV��

G
proj

Wh
Top;Equi
S 1;r

�M� �Wh
Top
S 1 �M�;

may be combined with (13) and (15) to give rise to a decomposition

Wh
Top
S 1 �M � P�GWh

Top
S 1 �M�lWh

Top
S 1 �M�lWh

Top
S 1 �M�:

However, this is not what we want, because the map �P : Wh
Top
S 1 �M� !Wh

Top
S1 �M �

P� will not become a! �a; 2a; a� under such a decomposition.
What we really want is to show that the composition proj � ��CP2� at the bottom

of (12) is an isomorphism after localizing at 2. As a result, we have an isomorphism

Wh
Top
S 1 �M � �DV ; rel SV���2� �Wh

Top;Equi
S 1;r

�M � �DV ; rel SV���2�

G
proj

Wh
Top;Equi
S1;r

�M��2� G
proj���CP2�

Wh
Top;Equi
S1;r

�M��2� �Wh
Top
S 1 �M��2� �16�

by ®rst following the left and then following the bottom of (12). Then we will com-
bine (13), (15), and (16) to form a decomposition
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Wh
Top
S 1 �M � P��2�GWh

Top
S 1 �M��2�lWh

Top
S1 �M��2�lWh

Top
S 1 �M��2�

� AlAlA: �17�

The composition proj � ��CP2� may be extended to a natural map of the
following exact sequence (see [23]) relating topological and piecewise linear K-theo-
retical obstructions:

Wh
PL;Equi
S 1;r

�M�c !Wh
PL;Equi
S1;r

�M� !Wh
Top;Equi
S 1;r

�M� ! ~KPL;Equi
0;S 1;r

�M�c

! ~KPL;Equi
0;S 1;r

�M� �18�

where the subscript c means controlled K-theory. It was explained in Sections 7 and
14 of [12] that, as a categorical nonsense, the e¨ect of proj � ��CP2� on the equiv-
ariant piecewise linear Whitehead torsion and ®niteness obstructions comes from the
module structure on the relevant obstruction groups over the Euler ring of S1. Since
the argument of [12] is a categorical one, the conclusion also applies to controlled
equivariant piecewise linear Whitehead torsion and ®niteness obstructions. Now the
Euler numbers of CP2=S1 and �CP2�S 1

are 1 and 3, which implies that CP2 repre-
sents an invertible element of the Euler ring after localizing at 2. Consequently, the
composition proj � ��CP2� is an equivalence on the PL-terms in (18) after localizing
at 2. By the Five Lemma, this implies that the composition at the bottom of (12) is an
isomorphism after localizing at 2.

To describe the involution in (17), we observe that the projection to the ®rst two
factors, being the restriction from M � P to M � �D3 IS2�), is involutive. As in the
case of manifolds with boundary, the involution on the two factors is given by
�a; b�� � ��ÿ1�3a� � �ÿ1�2b�; b�� � �ÿa� � b�; b��.

Although we feel that the isomorphism (16) is likely to be involutive, the proof is
not immediately obvious. Since we will not need this fact anyway, we denote by 0 the
involution on A induced from the natural involution on Wh

Top
S 1 �M �DV ; rel SV��2�

via (16). The fact that the inclusion Wh
Top
S1 �M �DV ; rel SV� !Wh

Top
S1 �M � P� is

involutive then implies that �0; 0; g�� � �0; 0; g 0�.
Thus to complete the description of the involution in (17), it remains to consider

the third coordinate of �a; b; 0��. Geometrically, this is the transfer of b along the
projection M � SV !M � S2:

Wh
Top
S 1 �M � S2� �!trf Wh

Top
S 1 �M � SV� �!incl

Wh
Top
S1 �M �DV ; rel SV�: �19�

When the two ends of (19) are identi®ed with A by projection and (16), this transfer is
our homomorphism l.

To see l2 � 0, we translate (19) to an equivalent map on Wh
Top;Equi
S 1;r

, which be-
comes the left side of the following diagram.
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Wh
Top;Equi
S 1;r

�M��2�
proj

x???G

Wh
Top;Equi
S1;r

�M � S2��2�
trf

???y
Wh

Top;Equi
S 1;r

�M � SV��2�  ���incl1
Wh

Top;Equi
S 1;r

��M ÿMs� � SV��2�
proj

???y ???yproj

Wh
Top;Equi
S 1;r

�M��2�  ���incl2
Wh

Top;Equi
S 1;r

�M ÿMs��2�
proj���CP2�

x???G G

x???proj���CP2�

Wh
Top;Equi
S 1;r

�M��2�  ���incl3
Wh

Top;Equi
S 1;r

�M ÿMs��2�

�20�

Since S1 acts freely on SV , M � SV and �M ÿMs� � SV are free S1-spaces. There-
fore Wh

Top;Equi
S1;r

is the classical Whitehead group of the quotient space for these
spaces. Since the classical Whitehead group depends only on the fundamental group,
and the inclusion �M ÿMs� � SV !M � SV is an isomorphism on p1, we conclude
that incl1 is an isomorphism. It then follows from the commutativity of (20) that the
image of l lies inside Wh

Top;Equi
S 1;r

�M; rel Ms��2�. On the other hand, if we start from an

element of Wh
Top;Equi
S 1;r

�M��2� that comes from Wh
Top;Equi
S 1;r

�M; rel Ms��2�, then the ele-

ment is nontrivial only over the free part of M. However, the ®bre of �M � SV�=
S1 ! �M � S2�=S1 is S1 over the free part ��M ÿMs� � S2�=S1. This implies that

the transfer is trivial, so that l vanishes on Wh
Top;Equi
S 1;r

�M; rel Ms��2�. Consequently,
l2 � 0.

It remains to show that �P sends a to �a; 2a; a� under the natural identi®cations.
Since G acts trivially on �D3 IS2�, the commutative diagram (12) shows that the
®rst two coordinates of �P are simply given by multiplying Euler numbers. This

gives rise to �a; 2a�. Since the third coordinate of Wh
Top
S 1 �M � P� is given by the iso-

morphism (16), the third coordinate of �P is by the very construction sending a to a.
This completes the proof of the lemma.

Since localization at 2 does not change Tate cohomologies, Lemma 8 reduces the
destabilization of the periodicity to the following algebraic computation.

Lemma 9. Suppose A is an abelian group, and �, 0 are two involutions on A. Suppose

l : A! A is a homomorphism, such that

(i) l2 � 0;

(ii) �a; b; g�� � �ÿa� � b �; b�; g 0 � l�b�� is an involution on AlAlA;

(iii) f�a� � �a; 2a; a�, �A; �� ! AlAlA is an involutive homomorphism.
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Then the induced map f� : Ĥ�Z2; A� ! Ĥ�Z2; AlAlA� is an isomorphism. More-

over, the inclusion c�a� � �0; 0; a�; �A; 0 � ! AlAlA also induces an isomorphism
on the Tate cohomology.

Although the lemma is not trivial, the proof is rather straightforward and is
therefore omitted here.

Finally, let us note that the remark made at the end of last section also applies to
the discussions in this section. Therefore the Periodicity Theorem 1 also applies to
other abelian groups. As a result, Theorem 2 is proved.

6 Naturality under the restriction to ®xed sets and subgroups

In this last section we prove Theorem 4.
The naturality in Theorem 4 means the commutativity of the following diagram

SWH�M H�  ���rest1
SG�M� ���!rest2

SH�M�����o�V H ;WH�
����o�V ;G� ����o�V ;H�

SWH�M H �DV H�  ���rest1
SG�M �DV� ���!rest2

SH�M �DV�

�21�

where V � C2 is the representation from k : G ! S1, and the vertical maps are
periodicity equivalences corresponding to di¨erent groups and representations. The
commutativity of (21) will follow from the relation between the two restrictions (to
®xed points and to actions by subgroups) in (21) and the whole proof of Theorems
1 and 2.

The restriction of the stable structure to ®xed points of subgroups comes as the
®bre of two compatible assembly maps

H�M=G; LÿyG �loc M�� ���! LÿyG �M�???yrest1

???yrest1

H�M=G; LÿyWH��loc M�H�� ���! LÿyWH�M H�



 




H�M H=WH; LÿyWH�loc�M H��� ���! LÿyWH�M H�

�22�

The commutativity of the diagram comes from the obvious naturality of restriction
for the functor Lÿy.

The e¨ect of the restriction to the actions of subgroups on the assembly map is
more complicated. First we have the usual natural transformation
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H�M=G; LÿyG �locG M�� ���! LÿyG �M�???yrest2

???yrest2

H�M=G; LÿyH �locG M�� ���! LÿyH �M�
�23�

Note that we use locG M to denote the local G-equivariant structure. If we restrict the
action to the subgroup H, then we have locG M � Gx�H locH M. Now we apply the
Fubini equivalence (constructed by induction on orbit type) to the strati®ed system of
®brations Gx=H !M=H !M=G and obtain

H�M=G; LÿyH �locG M��




H�M=G; LÿyH �Gx�H locH M��

F

x???a

H�M=G; H�Gx=H; LÿyH �locH M���



Fubini

H�M=H; LÿyH �locH M��

�)assemblies
LÿyH �M� �24�

where �) means the natural assembly maps from the four homologies on the left
to the stable surgery obstruction. Moreover, a is the ``partial assembly map'' ob-
tained by applying the homology to the assembly map (considered as a natural
transformation):

a0 : H�Gx=H; LÿyH �locH M�� ! LÿyH �Gx�H locH M�:
Since both sides are products of Gx=H copies of LÿyH �locH M�, a0 is an equivalence.
The naturality of the assembly map with respect to the Fubini equivalence (see Sec-
tion 8 of [19], and [27]) shows that the diagram (24) is commutative.

The ®bre of the top of (23) is SÿyG �M�. The ®bre of the bottom of (24) is SÿyH �M�.
Combining the diagrams (23) and (24) together we get a diagram whose induced map
on the ®bre is the restriction map SÿyG ! SÿyH .

In both restriction cases, the discussion above shows that the naturality problem for
the stable structure (i.e., the commutativity of (21) with Sÿy in place of S) is reduced to
the naturality problem for the stable surgery obstruction. Upon closer inspection, we
see that besides the natural properties of the homology theory described in [20] and
[27], each of the commutative squares involved is one of the two types: First, the
``�Z'' operation (Z is a G-strati®ed space) is natural with respect to the restrictions:

LÿyWH�M H�  ��� LÿyG �M� ���! LÿyH �M�???y�Z H

???y�Z

???y�Z

LÿyWH�M H � Z H�  ��� LÿyG �M � Z� ���! LÿyH �M � Z�:
�25�
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Second, the inclusion operation is natural with respect to the restrictions (M is a G-
transverse subspace of N ):

LÿyWH�M H�  ��� LÿyG �M� ���! LÿyH �M�???yincl

???yincl

???yincl

LÿyWH�N H�  ��� LÿyG �N� ���! LÿyH �N�:
�26�

Such naturalities are obvious from the geometrical meaning of the operations. This
completes the proof of the stable version of the theorem 4.

The naturality of the destabilization process is more direct. This follows from the
commutativity of the naturality of the operations (1) with respect to the restrictions
on Whtop;W0 (i.e., the commutativity of the diagrams (25) and (26) with Whtop;W0 in
place of Lÿy).

In conclusion, we see the periodicity in Theorem 2 is natural with respect to the
restriction to ®xed points of subgroups and the restriction to the action of subgroups.
Since the periodicity in Theorem 3 is obtained by repeatedly applying Theorem 2, its
naturality with respect to the two restrictions is also true.
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