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Abstract. How much of the combinatorial structure of a pointed polyhedron is contained in its
vertex-facet incidences? Not too much, in general, as we demonstrate by examples. However,
one can tell from the incidence data whether the polyhedron is bounded. In the case of a poly-
hedron that is simple and ``simplicial,'' i.e., a d-dimensional polyhedron that has d facets
through each vertex and d vertices on each facet, we derive from the structure of the vertex-
facet incidence matrix that the polyhedron is necessarily bounded. In particular, this yields a
characterization of those polyhedra that have circulants as vertex-facet incidence matrices.

1 Introduction

Every (proper) face of a polytope (i.e., a bounded convex polyhedron) is the convex
hull of the vertices it contains, and it is also the intersection of the facets that contain
it. Thus, the combinatorial structure of a polytope (i.e., its face lattice) is entirely
determined by its (matrix of ) vertex-facet incidences. Such a vertex-facet incidence
matrix is a useful encoding of the combinatorial structure of a polytope. The software
package polymake [5, 6], for instance, represents this matrix rather compactly, in a
section called VERTICES IN FACETS, while the face lattice of a polytope is not
stored, but generated ``on demand'' only if this is really necessary, because typically
the entire face lattice is ``much too large.''

But how about not necessarily bounded convex polyhedra? The combinatorics of
unbounded polyhedra has received only little attention up to now (for some excep-
tions see Klee [7], Billera & Lee [3], Barnette, Kleinschmidt & Lee [2], and Lee [8]).
One can, of course, reduce the study of geometrically given unbounded polyhedra to
the situation of ``a polytope with a distinguished face (at in®nity).'' But what if only
the combinatorics of vertices versus facets is given, and not any data about the situa-
tion ``at in®nity?'' In other words, how much can really be said/detected/reconstructed
if only a matrix of the vertex-facet incidences is given?

As one observes easily from the example of polyhedral cones, in general the com-
binatorial structure of an unbounded polyhedron is not determined by its vertex-facet
incidences. A d-dimensional cone may have any possible combinatorial structure of
a �d ÿ 1�-dimensional polytope (via homogenization); but from its vertex-facet inci-



dences one can read o¨ only its number of facets. The point is that for unbounded
polyhedra the combinatorial information is based not only on the vertex-facet inci-
dences, but also on the incidences of extremal rays and facets. For cones, nearly the
entire information is contained in the latter incidences. The lattice-theoretic inter-
pretation for such ambiguities is that the face lattice of an unbounded polyhedron is
only co-atomic, but not atomic.

One might, however, suspect that cones are (extreme) examples of rather exotic
unbounded polyhedra for which one obviously does not have any chance to recon-
struct the combinatorial structure from their vertex-facet incidences, while this might
be possible for all ``reasonable'' polyhedra. For instance, a cone is a quite degenerate
polyhedron with respect to several criteria: (i) all its facets have the same set of ver-
tices, (ii) its set of vertices does not have the same dimension as the whole poly-
hedron, and (iii) it does not have any bounded facet. However, the ®rst main point of
this paper (in Section 3) is the construction of more convincing examples of unbounded
polyhedra whose face-lattices cannot be reconstructed from their vertex-facet inci-
dence matrices; they have the property that the sets of vertices of distinct facets are
distinct, and they even form an anti-chain in the Boolean lattice (a clutter); they have
bounded facets, and their sets of vertices are full-dimensional.

The second main result (in Section 4) will be that one can, however, detect from the
vertex-facet matrix whether the polyhedron under consideration is bounded or not.

Thirdly (in Section 5), we discuss the ``unbounded version'' of a very basic lemma
about polytopes. Indeed, Exercise 0.1 of [13] asks one to prove that any d-polytope
that is both simplicial (every facet has d vertices) and simple (every vertex is on d

facets) must either be a simplex, or a polygon (d � 2). But how about unbounded
polyhedra? We prove that a polyhedron that is both simple and simplicial (with the
de®nitions as given here) cannot be unbounded. As a byproduct, we obtain a char-
acterization of those polyhedra that have circulant vertex-facet incidence matrices.

In particular, this paper answers a series of questions that arose in Amaldi, Pfetsch,
and Trotter [1], where the structure of certain independence systems is related to the
combinatorics of (possibly unbounded) polyhedra.

2 Basic facts

Let P be a d-polyhedron (i.e., the intersection of a ®nite number of a½ne halfspaces
with dim�P� � d) with m facets and n vertices. We will always assume that P is pointed
(i.e., it has at least one vertex) and that d X 1. In particular, these conditions imply
nX 1 and mX d X 1. For the basic de®nitions and facts of polyhedral theory we refer
to [13].

A 0=1-matrix A � �afv� A f0; 1gm�n is a vertex-facet incidence matrix of P if the
vertices and facets of P can be numbered by f1; . . . ; ng and f1; . . . ;mg, respectively,
such that afv � 1 if and only if the vertex with number v is contained in the facet with
number f.

By P we denote any polytope which is projectively equivalent to P. If P is un-
bounded, then there is a unique maximal element Fy (the far face) among the faces of
P that are not images of faces of P under the projective transformation mapping P
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to P. If P is bounded, then we de®ne Fy �q. Figure 1 illustrates a three-dimen-
sional example.

We denote by F�P� the face poset of P, i.e., the set of non-trivial faces of P (ex-
cluding q and P itself ), ordered by inclusion. The face poset F�P� arises from the
face poset F�P� by removing the far face Fy (and all its faces). While F�P� is inde-
pendent of the actual choice of P, in general it depends on the geometry of P, not only
on its combinatorial structure.

The poset V�P� � fvert�F�jF non-trivial face of Pg (where vert�F� is the set of
vertices of F ) will play an important role. It can be computed from any vertex-facet
incidence matrix A A f0; 1gm�n of P, since it is the set of all non-empty intersections
of subsets of f1; . . . ; ng de®ned by subsets of the rows of A. Figure 2 shows the three
posets F�P�, F�P�, and V�P� for the example given in Figure 1.

Let the graph GP of P be the graph on the vertices of P de®ned by the bounded
one-dimensional faces of P (the edges), i.e., GP is the subgraph of the graph of P that
is induced by those vertices of P that are not contained in Fy. Two vertices of P are
connected by an edge of P if and only if there is a face of P which contains exactly
these two vertices. Moreover, we can compute V�P� from any vertex-facet incidence
matrix of P. In particular, we can ®nd GP from the vertex-facet incidences of P.

We will use the following fact, which is a consequence of the correctness of the
Simplex-Algorithm for Linear Programming.

Figure 1: Left: 1-skeleton (i.e., 0- and 1-dimensional faces) of a 3-polyhedron P. The arrows
indicate extremal rays, which are assumed to be parallel. Right: Projectively transformed into
P. The far face Fy is the vertex 6.

Figure 2: Left: Face poset of F�P� for the example given in Figure 1, where the solid part is
F�P�. Right: The poset V�P�. In general, V�P� is not graded (although it is in this example).
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Lemma 2.1. For every polyhedron P, the graph GP is connected. Moreover, all faces of

P induce connected subgraphs of GP.

Let P be a pointed d-polyhedron (d X 1). Then, P is called simple if every vertex of
P is contained in precisely d facets (or, equivalently, if precisely d edges and extremal
rays are incident to each vertex), and P is called simplicial if every facet of P has
precisely d vertices. These notions generalize the well-known notions simple and sim-

plicial for polytopes. While this generalization is standard for simple polyhedra, it is
not common for simplicial polyhedra. Thus, it seems to be worth to mention that
simplicial unbounded polyhedra form a non-trivial class of polyhedra. For instance,
by a modi®cation of the construction of a prism, one easily sees that every simplicial
d-polytope can occur as the far face of a simplicial unbounded �d � 1�-polyhedron.

3 Reconstructing polyhedra from vertex-facet incidences

In this section, we consider conditions under which it is possible to compute F�P�
from the vertex-facet incidences of an (unbounded) d-polyhedron P. Obviously, given
any vertex-facet incidence matrix of a pointed d-polyhedron P it is easy to decide
whether d A f1; 2g. Furthermore, if d A f1; 2g, one can immediately read o¨ F�P�
from the vertex-facet incidences. Thus, for the rest of this section we restrict our
attention to d-polyhedra with d X 3.

The example of cones shows that reconstructing F�P� from the vertex-facet inci-
dences of a d-polyhedron P with d X 4 is impossible in general, even if additionally
the dimension d is speci®ed. Furthermore, the same example demonstrates that it is,
in general, impossible to detect the dimension of a d-polyhedron from its vertex-facet
incidences for d X 3. However, for d � 3 these dimensional ambiguities occur for
cones only.

Proposition 3.1. Given a vertex-facet incidence matrix of a d-polyhedron P with d X 3,
it is possible to decide whether d � 3 or d X 4, unless P is a cone with more than three

facets.

Proof. If P is a cone with three facets (i.e., n � 1 and m � 3) then clearly d � 3 holds.
If P is not a cone, then it must have at least two vertices. Thus (by Lemma 2.1) P has
at least one edge (which we can tell from the vertex-facet incidences of P). This edge
is contained in precisely two facets of P if d � 3; otherwise, it is contained in more
than two facets.

In dimensions larger than three, cones are not the only polyhedra for which one
cannot tell the dimension from the vertex-facet incidences. For instance, let Q be
some d 0-polytope and let C be a d 00-dimensional polyhedral cone with mX 4 facets.
Then P � Q� C will be a �d 0 � d 00�-dimensional polyhedron whose vertex-facet
incidences only depend on Q and m, while its dimension can be any number be-
tween d 0 � 3 and d 0 �m. In particular, dimensional ambiguities already occur for 4-
polyhedra not being cones.
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However, the cartesian products constructed above are also ``cone-like'' in the
sense that they do not have any bounded facet.

Proposition 3.2. Given a vertex-facet incidence matrix of a d-polyhedron P that has a

bounded facet, one can determine d. Furthermore, one can decide from the vertex-facet

incidences of P whether it has a bounded facet or not.

Proof. If P has a bounded facet, then the maximum length of a chain in V�P� is
d ÿ 1, thus one can compute d from V�P� in this case. Corollary 4.6 proves the
second statement of the proposition.

Propositions 3.1 and 3.2 might suggest to ask if the entire combinatorial structure
of a d-polyhedron can be reconstructed from its vertex-facet incidences if d � 3 or
if P has a bounded facet. However, the example given in Figure 3 shows that both
answers are ``no''. The crucial feature of the example is that one can re¯ect the
``lower'' parts in the drawings without a¨ecting the vertex-facet incidences while
changing the face poset (e.g., in contrast to the left polyhedron the right one has two
adjacent unbounded facets that have three vertices each). For three-dimensional
polyhedra this is the only kind of ambiguity that can arise.

Proposition 3.3. Given the vertex-facet incidences of a 3-polyhedron P for which GP is

2-connected, one can determine F�P�.

Proof. One can compute GP from the vertex-facet incidences of P, and thus, one ®nds
the graph of each facet of P. If all these graphs of facets are cycles then P is bounded
and the statement is clear. Otherwise, due to the 2-connectedness of GP, there is a
unique (up to reorientation) way to arrange the paths that are the graphs of the un-
bounded facets of P as a cycle. From this cycle, it is easy to determine the incidences
of extremal rays and facets of P, which then allow to reconstruct the entire combi-
natorial structure of P.

In larger dimensions, however, it is not true that higher connectedness of the graph
of a polyhedron is a su½cient condition for the possibility to reconstruct its combi-

Figure 3: An example of two combinatorially di¨erent 3-polyhedra with isomorphic vertex-
facet incidences. The ®gures indicate the 1-skeleta of the polyhedra.
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natorial structure from its vertex-facet incidences. Figure 4 shows Schlegel-diagrams
of (truncations of ) two unbounded 4-polyhedra. These two polyhedra have the same
vertex-facet incidences and a 3-connected graph, although their face posets are dif-
ferent (e.g., the right polyhedron has an extremal ray more than the left one)1.

The examples illustrated in Figures 3 and 4 show that ``cone-like'' polyhedra are
not the only ones that cannot be reconstructed from their vertex-facet incidences
(not even in dimensions three and four). The polyhedra in both examples are quite
di¨erent from cones; each of them has a full-dimensional vertex set, bounded facets,
and the property that no two facets have the same vertex set. Furthermore, in the
four-dimensional example, the vertex sets of the facets even form an anti-chain (as
promised in the introduction).

Nevertheless, any ambiguities in reconstructing the face poset of an unbounded
polyhedron from its vertex-facet incidences arise from some degeneracy of P.

Theorem 3.4. Given the vertex-facet incidences of a simple polyhedron P, one can

determine F�P�.

Proof. Let v be a vertex of a simple d-polyhedron P and let F1; . . . ;Fd be the facets of
P that contain v. Then the edges and extremal rays containing v are precisely

7
i A f1;...;dgnfi0g

Fi �i0 � 1; . . . ; d�:

Since we can compute the edges of P from a vertex-facet incidence matrix, we can
thus also deduce (combinatorially) the extremal rays of P and the information which
ray is contained in which facets. From that, we can deduce the entire face poset of P.

Again, the example of cones shows that without dimension information one can (in
general) not decide from the vertex-facet incidences of a polyhedron if it is simple.

1The data of these polyhedra as well as explanations on their construction can be
found as Electronic Geometry Model No. 2000.05.001 in the EG-Models archive at: http://
www.eg-models.de.

Figure 4: Schlegel diagrams (produced using polymake [5, 6] and javaview [10, 9]) illus-
trating two 4-polyhedra P1 and P2 that have the same vertex-facet incidences, but di¨erent
face posets.
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All algorithms described in this section can be implemented such that their running
time is bounded by a polynomial in jV�P�j.

To summarize the results in this section: we presented large classes of (unbounded)
polyhedra for which the combinatorial structures can be reconstructed from their
vertex-facet incidences as well as several examples of polyhedra, for which this is not
possible. Unfortunately, these results do not yield a characterization of the class of
those polyhedra that allow such reconstructions.

4 Detecting boundedness

In this section, we show that one can decide from the vertex-facet incidences of a
pointed polyhedron P whether it is bounded or not. It turns out that this only depends
on the Euler characteristic of (the order complex of ) V�P�. Thus, it can be read o¨
from the MoÈbius function of V�P�.

We recall some basic facts from topological combinatorics (see BjoÈrner [4]). Let P
be a ®nite poset. The order complex D�P� of P is the ®nite simplicial complex of all
chains in P. We will use terminology from topology in the context of ®nite posets
such as P. Throughout, this is meant to refer to kD�P�k (i.e., any geometric realiza-
tion of D�P�, endowed with its standard topology).

It is well-known that the order complex D�F�P�� of a bounded d-polytope P is
isomorphic (as a simplicial complex) to the barycentric subdivision of the boundary
qP of P. In particular, the topological type of V�P� is known in this case.

Lemma 4.1. If P is a d-polytope, then F�P� is homeomorphic to the �d ÿ 1�-sphere.

If P is an unbounded (pointed) polyhedron, then we can consider F�P� as the
sub-poset of F�P� that consists of all faces of P that are not contained in Fy.
Thus, we will identify D�F�P�� with the sub-complex of D�F�P�� of all chains
F0 HF1 H � � �HFk, where Fk is a face of P with Fk PFy.

Lemma 4.2. If P is an unbounded ( pointed ) polyhedron, then F�P� is contractible.

Proof. By Lemma 4.1, kD�F�P��k is homeomorphic to a sphere. The induced sub-
complexes A � D�F�P�� and B � D�F�Fy�� cover all vertices of D�F�P��. Notice
that the vertices of D�F�P�� are the one-element chains of F�P�. Using barycentric
coordinates, it is seen that kD�F�P��knkBk retracts onto kAk. Thus, kAk has the same
homotopy-type as kD�F�P��knkBk, where the latter is a simplicial sphere minus an
induced ball. Hence, F�P� is contractible.

The two lemmas allow one to distinguish between the face posets of bounded and
unbounded polyhedra. Of course, there are simpler ways to decide whether a face
poset belongs to a bounded or to an unbounded polyhedron (e.g., checking if every
rank one element is a join). However, in general we cannot reconstruct the face poset
of a polyhedron P from its vertex-facet incidences (see Section 3). Instead, we need
criteria allowing to distinguish between bounded and unbounded polyhedra that can
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be computed from V�P�. It turns out that the topological criteria provided by
Lemmas 4.1 and 4.2 can be exploited for this.

Consider the poset maps f : F�P� !V�P�, mapping a face F of a pointed poly-
hedron P to vert�F�, and c : V�P� !F�P�, mapping the vertex set S of a face to the
minimal face containing S. Both f and c are order preserving. Moreover, f�c�S�� �
S and c�f�F��WF .

Lemma 4.3. Let P be a pointed polyhedron. Then the face poset F�P� is homotopy-

equivalent to the poset V�P�.

Proof. Setting f �F � � c�f�F �� de®nes an order preserving map from F�P� into itself
such that each face F is comparable with its image f �F�. From the Order Homotopy
Theorem [4, Corollary 10.12], we infer that F�P� is homotopy-equivalent to the im-
age f �F�P��. In fact, f � f �F�� � f �F�, and hence f �F�P�� is a strong deformation
retract of F�P�. This proves the lemma, since c is a poset isomorphism from V�P�
onto c�V�P�� � f �F�P��.

The reduced Euler characteristic of (the order complex of ) a poset P is denoted by
~w�P�, i.e.,

~w�P� �
XD

i�ÿ1

�ÿ1� ifi�D�P��

(where fi�D�P�� is the number of i-faces of D�P�, and D is the dimension of D�P�).
The following result in particular shows that a polytope and an unbounded poly-
hedron cannot have isomorphic vertex-facet incidences.

Theorem 4.4. Let P be a pointed polyhedron. Then P is bounded if and only if
~w�V�P��0 0.

Proof. The reduced Euler characteristic of a �d ÿ 1�-sphere equals �ÿ1�dÿ1, while the
reduced Euler characteristic of a contractible space vanishes. Thus the claim follows
from Lemma 4.1, Lemma 4.2, and Lemma 4.3.

As an example consider the case where the unbounded polyhedron P has a face F

which contains all vertices of P. Then D�V�P�� is a cone over F (in the sense of
simplicial topology); in particular, it is contractible and thus ~w�V�P�� � 0.

The reduced Euler characteristic of the poset V�P� can be computed e½ciently as
follows. By adjoining an arti®cial top element 1̂ and an arti®cial bottom element 0̂,
the poset V�P� becomes a lattice V̂�P�. Note that we adjoin 1̂ also in the case where
V�P� already has a top element corresponding to a face containing all vertices of P.

For every element S A V̂�P� we de®ne the MoÈbius function, see Rota [11] and
Stanley [12],
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m�S� �
1 if S � 0̂,

ÿ
X

S 0PS

m�S 0� otherwise.

8<:
The MoÈbius number m�V�P�� � m�1̂� of V�P� can be computed in time bounded
polynomially in jV�P�j. Since it is well-known (see Stanley [12, 3.8.6]) that

m�V�P�� � ~w�V�P��; �1�

this proves the following complexity result.

Corollary 4.5. There is an algorithm that decides for every vertex-facet incidence ma-

trix of a polyhedron P if P is bounded. Its running time is bounded by a polynomial

in jV�P�j.

Actually, Theorem 4.4 allows to decide even more from the vertex-facet incidences
of a polyhedron P. Once we have computed V�P� we clearly can also determine
V̂�F � for every facet F of P (since we know vert�F� for every facet F of P). This is the
interval between 0̂ and vert�F � in the lattice V̂�P�, where we have to add an addi-
tional top element 1̂ if there is some other facet F 0 of P containing vert�F �.

Corollary 4.6. There is an algorithm that tells from a vertex-facet incidence matrix of

a polyhedron P which facets of P are bounded. Its running time is bounded by a poly-

nomial in jV�P�j.

5 Simple and simplicial polyhedra

It is a well-known fact [13, Exerc. 0.1] that a d-polytope which is both simple and
simplicial is a simplex or a polygon. Both properties (simplicity as well as sim-
pliciality) can be viewed as properties of vertex-facet incidences (see Section 2). In
this section, we generalize the known result on polytopes to not necessarily bounded
d-polyhedra with d X 2.

Theorem 5.1. For d X 2, every simple and simplicial d-polyhedron is a simplex or a

polygon. In other words, unbounded simple and simplicial polyhedra do not exist.

Our proof of Theorem 5.1 is organized into two parts. The ®rst part shows that the
graph GP of a simple and simplicial polyhedron P is either a complete graph or a
cycle. In the second part, we further deduce that a simple and simplicial polyhedron
has a circulant vertex-facet incidence matrix. The proof of Theorem 5.1 is then com-
pleted by showing that no unbounded d-polyhedron (with d X 2) can have a circulant
vertex-facet incidence matrix. Furthermore, Propositions 5.8 and 5.10 yield charac-
terizations of those polyhedra that have circulant vertex-facet incidence matrices.

5.1 Graphs of simple and simplicial polyhedra. Throughout this section, let P be a
pointed simple and simplicial d-polyhedron with n vertices and d X 2. Double count-
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ing yields that P must also have n facets. In particular, we have n > d (since other-
wise P would be a cone, which is simple and simplicial only for d � 1). We denote by
VP � vert�P� the set of vertices of P. For S JVP let Y�S� be the set of all facets of
P that contain S. Recall that (since P is simple) two vertices v and w of P form an
edge if and only if jY�fv;wg�j � d ÿ 1.

Lemma 5.2. Two di¨erent facets of P cannot have the same set of vertices.

Proof. Suppose that there are two facets F1 and F2 of P (F1 0F2) with vert�F1� �
vert�F2� �: S. Since n > d, and since GP is connected, there must be a vertex v B S
that is a neighbor of some vertex w A S. Hence, we have jY�fv;wg�j � d ÿ 1. Because
of jY�fwg�j � d and F1;F2 A Y�fwg�KY�fv;wg� this implies F1 A Y�fv;wg� or F2 A
Y�fv;wg�, which in both cases yields a contradiction to v B S.

For S JVP, de®ne W�S� to be the set of those facets of P that have non-empty
intersection with S.

Lemma 5.3. Let S JVP with jSj > 0. Then jW�S�jXminfn; d � jSj ÿ 1g.

Proof. If jW�S�j � n, then the claim obviously is correct. Therefore, assume
jW�S�j < n. Since GP is connected, the vertices in VPnS � fz1; . . . ; zrg �r � nÿ jSj�
can be ordered such that zi�1 is adjacent to some vertex of Si � S U fz1; . . . ; zig for
each i A f0; . . . ; rÿ 1g (additionally, de®ne Sr � S U fz1; . . . ; zrg). Clearly jW�Si�jW
jW�Siÿ1�j � 1, since vertex zi has d ÿ 1 facets in common with some vertex in Siÿ1.

De®ne l to be the last i, such that jW�Si�j � jW�Siÿ1�j � 1, i.e., l is the last index,
where we encounter a new facet (l is well-de®ned due to jW�S�j < n). Since this facet
must contain d ÿ 1 vertices from VPnSl , we have rÿ l X d ÿ 1, which yields nÿ l X
d � jSj ÿ 1.

Furthermore, we have jW�S�j � l X n, since Sl intersects all facets. It follows
jW�S�jX nÿ l X d � jSj ÿ 1.

For S JVP let GP�S� be the subgraph of GP induced by S.

Lemma 5.4. Let S HVP with 0 < jSjW d, such that GP�S� is connected. Then
jY�S�j � d ÿ jSj � 1 holds.

Proof. Since GP�S� is a connected subgraph of the connected graph GP (which has
n > d vertices), there is a chain qPS1 PS2 P � � � PSd with SjSj � S, such that
jSij � i and GP�Si� is connected for all i.

For every 1 < i W d, the vertex v with SinSiÿ1 � fvg is connected to some vertex
w A Siÿ1. From jY�fwg�nY�fvg�j � 1 we infer jY�Siÿ1�nY�fvg�jW 1, and thus,
jY�Si�jX jY�Siÿ1�j ÿ 1. Together with jY�S1�j � d (since P is simple) and jY�Sd�j
W 1 (by Lemma 5.2), this implies jY�Si�j � d ÿ i � 1 for all 1W i W d.

The next three lemmas show that GP has a very special structure.
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Lemma 5.5. If GP contains a cycle C of size k > d, then GP is the cycle C or a complete

graph on n � d � 1 nodes.

Proof. Let C � �v0; . . . ; vkÿ1; v0� be a cycle of size k > d in GP. In the following, all
indices are taken modulo k. For 0W iW k ÿ 1 de®ne the set Ci � fvi; . . . ; vi�dÿ1g of
size d. Clearly, GP�Ci� is connected, and, by Lemma 5.4, there exists exactly one facet
Fi with Y�Ci� � fFig. Due to k > d, the facets F0; . . . ;Fkÿ1 are pairwise distinct. This
means that Y�fvig� � fFiÿd�1; . . . ;Fig (since P is simple) and vert�Fi� � Ci (since P

is simplicial). Hence, every vertex that is adjacent to one of the nodes v0; . . . ; vkÿ1

must be contained in at least one (more precisely, in d ÿ 1 > 0) of the facets F0; . . . ;
Fkÿ1, and thus it lies in fv0; . . . ; vkÿ1g.

Since GP is connected, this means that n � k. For n � d � 1 this immediately yields
that GP is a complete graph on n � d � 1 nodes, while for n > d � 1 one ®nds that GP

is the cycle C (since, in this case, jY�fvig�VY�fvjg�j � d ÿ 1 if and only if j 1 iG 1
mod k).

Lemma 5.6. If GP contains a cycle of length k W d, then GP is a complete graph on

n � d � 1 nodes.

Proof. Let ~C � �v0; . . . ; vkÿ1; v0� be a cycle in GP of size k W d. For each i A
f0; . . . ; k ÿ 1g de®ne ~Ci � fv0; . . . ; vig. Taking all indices modulo k, we have
jY�fvi; vi�1g�j � d ÿ 1 for each i, and hence, there are facets Fi and Gi with

Y�fvig�nY�fvi�1g� � fFig and Y�fvi�1g�nY�fvig� � fGig:

It follows that

Y� ~Ckÿ1� � Y� ~C0�nfF0; . . . ;Fkÿ1g: �2�

If GP is not complete, then n > d � 1 holds, and we infer from Lemma 5.3 that
jW� ~C2�jX d � 2, which implies G0;G1 B Y� ~C0� (with G0 0G1). Due to fF0; . . . ;
Fkÿ1g � fG0; . . . ;Gkÿ1g, Equation (2) implies

jY� ~Ckÿ1�jX jY� ~C0�j ÿ �k ÿ 2� � d ÿ k � 2;

contradicting Lemma 5.4.

By the above two lemmas, GP cannot contain any cycles, unless it is complete or a
cycle itself. Thus, we are left with the case of GP not containing any cycles at all.

Lemma 5.7. GP is not a tree.

Proof. Assume GP is a tree. Let v A VP be a leaf of GP with u being the unique vertex of
GP adjacent to v. Due to jY�fvg�nY�fv; ug�j � 1, there is one facet that induces a sub-
graph of GP in which v is isolated. This, however, is a contradiction to Lemma 2.1.
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Altogether this proves the following.

Proposition 5.8. Let P be a simple and simplicial d-polyhedron (d X 2) with n vertices.
Then GP is an n-cycle or a complete graph on n � d � 1 nodes.

It is worth to mention that one can generalize Proposition 5.8 in the following way.
Let A be a 0=1-matrix of size n� n with row and column sums d. De®ne a graph GA

on the columns of A, such that two columns are adjacent if and only if they have
exactly d ÿ 1 ones in common rows. Then, by the same arguments as above, one can
show that the connectedness of GA already implies that GA is a cycle or a complete
graph. The only di¨erence in the proof arises in Lemma 5.7. Here one has to prove
additionally that, for each row, the subgraph of GA that is induced by the ones in that
row is connected (if GA is connected).

5.2 Circulant matrices. We will now exploit Proposition 5.8 to show that every
simple and simplicial polyhedron has a very special vertex-facet incidence matrix.

Let n; d be integers satisfying 1W d W n. The �n; d�-circulant M�n; d� is the n� n-
matrix with 0=1 entries whose coe½cients mij �i; j A f0; . . . ; nÿ 1g� are de®ned as
follows:

mij � 1 if j A fi; i � 1 mod n; . . . ; i � d ÿ 1 mod ng,
0 otherwise.

�
For d X 1, the �d � 1; d�-circulant is an incidence matrix of the d-simplex, and for

nX 3, the �n; 2�-circulant is an incidence matrix of the (2-dimensional) n-gon.

Proposition 5.9. A polyhedron P is simple and simplicial if and only if it has a circulant

M�n; d� as a vertex-facet incidence matrix. In this case, dim�P� � d.

Proof. For the ``if ''-direction of the proof, let P be a polyhedron with a vertex-facet
incidence matrix M�n; d� �1W d W n�. The cases d � 1 (implying n A f1; 2g) as well
as d � n (implying d � n � 1) are trivial. Therefore, let 2W d < n. Obviously, it suf-
®ces to show dim�P� � d. To each row i A f0; . . . ; nÿ 1g of M�n; d� there corre-
sponds a facet Fi of P. For 0W j W d ÿ 1 de®ne Gj � F0 V � � � VFj. Clearly, Gj K
Gj�1 holds for 0W j < d ÿ 1. Due to vert�Gj� � vert�F0�V � � � V vert�Fj� it follows
vert�Gj�Q vert�Gj�1� and therefore Gj QGj�1. Now F0 � G0 QG1 Q � � � QGdÿ1 is a
(decreasing) chain of length d ÿ 1 in the face poset of P. Hence we have dim PX d.
Since each vertex must be contained in at least dim P facets it follows that dim PW d

(because each vertex of P is contained in precisely d facets).
Conversely, let P be a simple and simplicial d-polyhedron (d X 1) with n vertices.

The case d � 1 is checked easily. Thus, assume d X 2. By Proposition 5.8, GP either is
a complete graph on n � d � 1 nodes or it is a cycle. In the ®rst case, every vertex-
facet incidence matrix of P is the complement of a permutation matrix, which can be
transformed to M�n; d� by a suitable permutation of its rows. In the second case,
consider any vertex-facet incidence matrix A of P, where the columns are assumed to
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be ordered according to the cycle GP. Call two positions �i; j� and �i; k� in A � �afv�
� f ; v A f0; . . . ; nÿ 1g� mates if k 1 j � 1 �mod n� and aij � aik � 1. Walking around
the cycle GP, we ®nd that the total number of mates in A is precisely n�d ÿ 1� (be-
cause every edge is contained in precisely d ÿ 1 facets). But then, since every row of A

has only d ones (because P is simplicial), it follows that in each row the ones must
appear consecutively (modulo n). Denote by s�i� the starting position of the block of
ones in row i. Because there are no equal rows in A (by Lemma 5.2) we deduce that s

de®nes a permutation of the rows of A which tells us how to transform A to M�n; d�.

The following result ®nishes the proof of Theorem 5.1 (via Proposition 5.9).

Proposition 5.10. If a polyhedron P has M�n; d� �2W d < n� as a vertex-facet inci-

dence matrix, then n � d � 1 (P is a d-simplex) or d � 2 (P is an n-gon).

Proof. If n � d � 1, then M�n; d� is a vertex-facet incidence matrix of a d-simplex.
Hence, by Theorem 4.4, P cannot be unbounded, and thus it must be a d-simplex as
well. Therefore, in the following we will assume n > d � 1.

Let us ®rst treat the case d � 1 < n < 2d ÿ 1. Consider the facets F and F 0 corre-
sponding to rows 0 and nÿ d � 1, respectively. If we identify the vertices of P with
the column indices f0; . . . ; nÿ 1g of M�n; d�, then the vertex set of the face G �
F VF 0 is f0gU fnÿ d � 1; . . . ; d ÿ 1g, where fnÿ d � 1; . . . ; d ÿ 1g0q (due to
n < 2d ÿ 1). By Propositions 5.9 and 5.8, GP is an n-cycle (due to n > d � 1). Since
neither vertex 1 nor vertex nÿ 1, which are the only neighbors of 0 in GP, are con-
tained in G, we conclude that the subgraph of GP induced by G is disconnected, which
is a contradiction to Lemma 2.1.

Hence, we can assume nX 2d ÿ 1. This implies

V�P� � ffi; . . . ; i � sÿ 1g j i A f0; . . . ; nÿ 1g; s A f1; . . . ; dgg

(where, again, all indices are to be taken modulo n), i.e., V�P� consists of all (cyclic)
intervals of f0; . . . ; nÿ 1g with at least one and at most d elements. We will compute
the MoÈbius function m (see Section 4) on the lattice V̂�P� (which arises by adding
arti®cial top and bottom elements 1̂ and 0̂ to V�P�). For each s A f1; . . . ; dg let
m�s� � m�f0; . . . ; sÿ 1g�. Obviously, for every F A V�P� with jF j � s we have m�F� �
m�s�. In particular, one readily deduces m�1� � ÿ1 and m�2� � ÿ�1� 2 � �ÿ1�� � 1.
For 3W sW d we then infer (by induction) m�s� � ÿ�1� s � �ÿ1� � �sÿ 1� � ��1�� �
0. Thus, we ®nally calculate

m�V�P�� � m�1̂� � ÿ�1� n � �ÿ1� � n � ��1�� � ÿ1;

which by (1) and Theorem 4.4 implies that P is bounded (and, hence, an n-gon).
(Alternatively, one could derive from the Nerve Lemma [4, Theorem 10.7] that

V�P� is homotopy-equivalent to a circle for nX 2d ÿ 1, and thus, P must be a
polygon.)
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