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[Philosophical Transactions of the Royal Society, part I for 1835, pp. 95–144.]

Introductory Remarks.

The former Essay* contained a general method for reducing all the most important prob-
lems of dynamics to the study of one characteristic function, one central or radical relation.
It was remarked at the close of that Essay, that many eliminations required by this method
in its first conception, might be avoided by a general transformation, introducing the time
explicitly into a part S of the whole characteristic function V ; and it is now proposed to fix
the attention chiefly on this part S, and to call it the Principal Function. The properties
of this part or function S, which were noticed briefly in the former Essay, are now more
fully set forth; and especially its uses in questions of perturbation, in which it dispenses with
many laborious and circuitous processes, and enables us to express accurately the disturbed
configuration of a system by the rules of undisturbed motion, if only the initial components
of velocities be changed in a suitable manner. Another manner of extending rigorously to
disturbed motion the rules of undisturbed, by the gradual variation of elements, in number
double the number of coordinates or other marks of position of the system, which was first
invented by Lagrange, and was afterwards improved by Poisson, is considered in this Sec-
ond Essay under a form perhaps a little more general; and the general method of calculation
which has already been applied to other analogous questions in optics and in dynamics by
the author of the present Essay, is now applied to the integration of the equations which
determine these elements. This general method is founded chiefly on a combination of the
principles of variations with those of partial differentials, and may furnish, when it shall be
matured by the labours of other analysts, a separate branch of algebra, which may be called
perhaps the Calculus of Principal Functions; because, in all the chief applications of algebra
to physics, and in a very extensive class of purely mathematical questions, it reduces the
determination of many mutually connected functions to the search and study of one principal
or central relation. When applied to the integration of the equations of varying elements, it
suggests, as is now shown, the consideration of a certain Function of Elements, which may be
variously chosen, and may either be rigorously determined, or at least approached to, with
an indefinite accuracy, by a corollary of the general method. And to illustrate all these new

* Philosophical Transactions for the year 1834, Second Part.

1



general processes, but especially those which are connected with problems of perturbation,
they are applied in this Essay to a very simple example, suggested by the motions of projec-
tiles, the parabolic path being treated as the undisturbed. As a more important example,
the problem of determining the motions of a ternary or multiple system, with any laws of
attraction or repulsion, and with one predominant mass, which was touched on in the former
Essay, is here resumed in a new way, by forming and integrating the differential equations of
a new set of varying elements, entirely distinct in theory (though little differing in practice)
from the elements conceived by Lagrange, and having this advantage, that the differentials
of all the new elements for both the disturbed and disturbing masses may be expressed by
the coefficients of one disturbing function.
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Transformations of the Differential Equations of Motion of an Attracting or Repelling System.

1. It is well known to mathematicians, that the differential equations of motion of any
system of free points, attracting or repelling one another according to any functions of their
distances, and not disturbed by any foreign force, may be comprised in the following formula:

Σ .m(x′′δx+ y′′δy + z′′δz) = δU : (1.)

the sign of summation Σ extending to all the points of the system; m being, for any one
such point, the constant called its mass, and x y z being its rectangular coordinates; while
x′′ y′′ z′′ are the accelerations, or second differential coefficients taken with respect to the
time, and δx, δy, δz are any arbitrary infinitesimal variations of those coordinates, and U is
a certain force-function, introduced into dynamics by Lagrange, and involving the masses
and mutual distances of the several points of the system. If the number of those points be
n, the formula (1.) may be decomposed into 3n ordinary differential equations of the second
order, between the coordinates and the time,

mix
′′
i =

∂U

∂xi
; miy

′′
i =

∂U

∂yi
; miz

′′
i =

∂U

∂zi
: (2.)

and to integrate these differential equations of motion of an attracting or repelling system,
or some transformations of these, is the chief and perhaps ultimately the only problem of
mathematical dynamics.

2. To facilitate and generalize the solution of this problem, it is useful to express previ-
ously the 3n rectangular coordinates x y z as functions of 3n other and more general marks
of position η1 η2 . . . η3n; and then the differential equations of motion take this more general
form, discovered by Lagrange,

d

dt

δT

δη′i
− δT

δηi
=
δU

δηi
, (3.)

in which
T = 1

2 Σ .m(x′2 + y′2 + z′2). (4.)

For, from the equations (2.) or (1.),

δU

δηi
= Σ .m

(
x′′

δx

δηi
+ y′′

δy

δηi
+ z′′

δz

δηi

)
=

d

dt
Σ .m

(
x′
δx

δηi
+ y′

δy

δηi
+ z′

δz

δηi

)
− Σ .m

(
x′
d

dt

δx

δηi
+ y′

d

dt

δy

δηi
+ z′

d

dt

δz

δηi

)
;


(5.)

in which

Σ .m

(
x′
δx

δηi
+ y′

δy

δηi
+ z′

δz

δηi

)
= Σ .m

(
x′
δx′

δη′i
+ y′

δy′

δη′i
+ z′

δz′

δη′i

)
=
δT

δη′i
,

 (6.)
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and

Σ .m

(
x′
d

dt

δx

δηi
+ y′

d

dt

δy

δηi
+ z′

d

dt

δz

δηi

)
= Σ .m

(
x′
δx′

δηi
+ y′

δy′

δηi
+ z′

δz′

δηi

)
=
δT

δηi
,

 (7.)

T being here considered as a function of the 6n quantities of the forms η′ and η, obtained by
introducing into its definition (4.), the values

x′ = η′1
δx

δη1
+ η′2

δx

δη2
+ · · ·+ η′3n

δx

δη3n
, &c. (8.)

A different proof of this important transformation (3.) is given in the Mécanique Ana-
lytique.

3. The function T , being homogeneous of the second dimension with respect to the
quantities η′, must satisfy the condition

2T = Σ .η′
δT

δη′
; (9.)

and since the variation of the same function T may evidently be expressed as follows,

δT = Σ

(
δT

δη′
δη′ +

δT

δη
δη

)
, (10.)

we see that this variation may be expressed in this other way,

δT = Σ

(
η′δ

δT

δη′
− δT

δη
δη

)
. (11.)

If then we put, for abridgement,

δT

δη′1
= $1, . . .

δT

δη′3n
= $3n, (12.)

and consider T (as we may) as a function of the following form,

T = F ($1, $2, . . . $3n, η1, η2, . . . η3n), (13.)

we see that
δF

δ$1
= η′1, . . .

δF

δ$3n
= η′3n, (14.)

and
δF

δη1
= − δT

δη1
, . . .

δF

δη3n
= − δT

δη3n
; (15.)
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and therefore that the general equation (3.) may receive this new transformation,

d$i

dt
=
δ(U − F )

δηi
. (16.)

If then we introduce, for abridgement, the following expression H,

H = F − U = F ($1, $2, . . . $3n, η1, η2, . . . η3n)− U(η1, η2, . . . η3n), (17.)

we are conducted to this new manner of presenting the differential equations of motion of a
system of n points, attracting or repelling one another:

dη1

dt
=

δH

δ$1
;

d$1

dt
= − δH

δη1
;

dη2

dt
=

δH

δ$2
;

d$2

dt
= − δH

δη2
;

.........

dη3n

dt
=

δH

δ$3n
;

d$3n

dt
= − δH

δη3n
.


(A.)

In this view, the problem of mathematical dynamics, for a system of n points, is to integrate
a system (A.) of 6n ordinary differential equations of the first order, between the 6n variables
ηi $i and the time t; and the solution of the problem must consist in assigning these 6n
variables as functions of the time, and of their own initial values, which we may call ei pi.
And all these 6n functions, or 6n relations to determine them, may be expressed, with perfect
generality and rigour, by the method of the former Essay, or by the following simplified
process.

Integration of the Equations of Motion, by means of one Principal Function.

4. If we take the variation of the definite integral

S =

∫ t

0

(
Σ .$

δH

δ$
−H

)
dt (18.)

without varying t or dt, we find, by the Calculus of Variations,

δS =

∫ t

0

δS′ . dt, (19.)

in which

S′ = Σ .$
δH

δ$
−H, (20.)

and therefore

δS′ = Σ

(
$ δ

δH

δ$
− δH

δη
δη

)
, (21.)
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that is, by the equations of motion (A.),

δS′ = Σ

(
$ δ

dη

dt
+
d$

dt
δη

)
=

d

dt
Σ .$ δη; (22.)

the variation of the integral S is therefore

δS = Σ($δη − p δe), (23.)

(p and e being still initial values,) and it decomposes itself into the following 6n expressions,
when S is considered as a function of the 6n quantities ηi ei, (involving also the time,)

$1 =
δS

δη1
; p1 = − δS

δe1
;

$2 =
δS

δη2
; p2 = − δS

δe2
;

.........

$3n =
δS

δη3n
; p3n = − δS

δe3n
;


(B.)

which are evidently forms for the sought integrals of the 6n differential equations of motion
(A.), containing only one unknown function S. The difficulty of mathematical dynamics is
therefore reduced to the search and study of this one function S, which may for that reason
be called the Principal Function of motion of a system.

This function S was introduced in the first Essay under the form

S =

∫ t

0

(T + U) dt,

the symbols T and U having in this form their recent meanings; and it is worth observing, that
when S is expressed by this definite integral, the conditions for its variation vanishing (if the
final and initial coordinates and the time be given) are precisely the differential equations of
motion (3.), under the forms assigned by Lagrange. The variation of this definite integral S
has therefore the double property, of giving the differential equations of motion for any
transformed coordinates when the extreme positions are regarded as fixed, and of giving the
integrals of those differential equations when the extreme positions are treated as varying.

5. Although the function S seems to deserve the name here given it of Principal Function,
as serving to express, in what appears the simplest way, the integrals of the equations of
motion, and the differential equations themselves; yet the same analysis conducts to other
functions, which also may be used to express the integrals of the same equations. Thus if we
put

Q =

∫ t

0

(
−Σ .η

δH

δη
+H

)
dt, (24.)
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and take the variation of this integral Q without varying t or dt, we find, by a similar process,

δQ = Σ(η δ$ − e δp); (25.)

so that if we consider Q as a function of the 6n quantities $i pi and of the time, we shall
have 6n expressions

ηi = +
δQ

δ$i
, ei = − δQ

δpi
, (26.)

which are other forms of the integrals of the equations of motion (A.), involving the functionQ
instead of S. We might also employ the integral

V =

∫ t

0
Σ .$

δH

δ$
dt = Σ

∫ η

e

$dη, (27.)

which was called the Characteristic Function in the former Essay, and of which, when con-
sidered as a function of the 6n+ 1 quantities ηi ei H, the variation is

δV = Σ($ δη − p δe) + t δH. (28.)

And all these functions S, Q, V , are connected in such a way, that the forms and properties
of any one may be deduced from those of any other.

Investigation of a Pair of Partial Differential Equations of the first Order, which the Principal
Function must satisfy.

6. In forming the variation (23.), or the partial differential coefficients (B.) of the Princi-
pal Function S, the variation of the time was omitted; but it is easy to calculate the coefficient
δS

δt
corresponding to this variation, since the evident equation

dS

dt
=
δS

δt
+ Σ

δS

δη

dη

dt
(29.)

gives, by (20.), and by (A.), (B.),

δS

δt
= S′ − Σ .$

δH

δ$
= −H. (30.)

It is evident also that this coefficient, or the quantity −H, is constant, so as not to alter
during the motion of the system; because the differential equations of motion (A.) give

dH

dt
= Σ

(
δH

δη

dη

dt
+
δH

δ$

d$

dt

)
= 0. (31.)

If, therefore, we attend to the equation (17.), and observe that the function F is necessarily
rational and integer and homogeneous of the second dimension with respect to the quantities
$i, we shall perceive that the principal function S must satisfy the two following equations
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between its partial differential coefficients of the first order, which offer the chief means of
discovering its form:

δS

δt
+ F

(
δS

δη1
,
δS

δη2
, . . .

δS

δη3n
, η1, η2, . . . η3n

)
= U(η1, η2, . . . η3n),

δS

δt
+ F

(
δS

δe1
,
δS

δe2
, . . .

δS

δe3n
, e1, e2, . . . e3n

)
= U(e1, e2, . . . e3n).

 (C.)

Reciprocally, if the form of S be known, the forms of these equations (C.) can be deduced
from it, by elimination of the quantities e or η between the expressions of its partial differential
coefficients; and thus we can return from the principal function S to the functions F and U ,
and consequently to the expression H, and the equations of motion (A.)

Analogous remarks apply to the functions Q and V , which must satisfy the partial
differential equations,

−δQ
δt

+ F

(
$1, $2, . . . , $3n,

δQ

δ$1
,
δQ

δ$2
, . . .

δQ

δ$3n

)
= U

(
δQ

δ$1
,
δQ

δ$2
, . . .

δQ

δ$3n

)
,

−δQ
δt

+ F

(
p1, p2, . . . , p3n,−

δQ

δp1
,− δQ

δp2
, . . . − δQ

δp3n

)
= U

(
− δQ
δp1

,− δQ
δp2

, . . . − δQ

δp3n

)
,


(32.)

and

F

(
δV

δη1
,
δV

δη2
, . . .

δV

δη3n
, η1, η2, . . . η3n

)
= H + U(η1, η2, . . . η3n),

F

(
δV

δe1
,
δV

δe2
, . . .

δV

δe3n
, e1, e2, . . . e3n

)
= H + U(e1, e2, . . . e3n).

 (33.)

General Method of improving an approximate Expression for the Principal Function in any
Problem of Dynamics.

7. If we separate the principal function S into any two parts,

S1 + S2 = S, (34.)

and substitute their sum for S in the first equation (C.), the function F , from its rational
and integer and homogeneous form and dimension, may be expressed in this new way,

F

(
δS

δη1
, . . .

δS

δη3n
, η1, . . . η3n

)
= F

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)
+ F ′

(
δS1

δη1

)
δS2

δη1
+ · · ·+ F ′

(
δS1

δη3n

)
δS2

δη3n
+ F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
= F

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)
− F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
+ F ′

(
δS

δη1

)
δS2

δη1
+ · · ·+ F ′

(
δS

δη3n

)
δS2

δη3n
,


(35.)
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because

F ′
(
δS1

δηi

)
= F ′

(
δS

δηi

)
− F ′

(
δS2

δηi

)
, (36.)

and

Σ .F ′
(
δS2

δη

)
δS2

δη
= 2F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
; (37.)

and since, by (A.) and (B.),

F ′
(
δS

δηi

)
= F ′($i) =

δH

δ$i
=
dηi
dt
, (38.)

we easily transform the first equation (C.) to the following,

dS2

dt
= −δS1

δt
+ U(η1, . . . η3n)− F

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)
+ F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
,

 (D.)

which gives rigorously

S2 =

∫ t

0

{
−δS1

δt
+ U(η1, . . . η3n)− F

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)}
dt

+

∫ t

0

F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
dt,

 (E.)

supposing only that the two parts S1, S2, like the whole principal function S, are chosen so
as to vanish with the time.

This general and rigorous transformation offers a general method of improving an ap-
proximate expression for the principal function S, in any problem of dynamics. For if the
part S1 be such an approximate expression, then the remaining part S2 will be small; and the
homogeneous function F involving the squares and products of the coefficients of this small
part, in the second definite integral (E.), will be in general also small, and of a higher order
of smallness; we may therefore in general neglect this second definite integral, in passing to
a second approximation, and may in general improve a first approximate expresssion S1 by
adding to it the following correction,

∆S1 =

∫ t

0

{
−δS1

δt
+ U(η1, . . . η3n)− F

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)}
dt; (F.)

in calculating which definite integral we may employ the following approximate forms for the
integrals of the equations of motion,

p1 = −δS1

δe1
, p2 = −δS1

δe2
, . . . p3n = − δS1

δe3n
, (39.)
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expressing first, by these, the variables ηi as functions of the time and of the 6n constants ei pi,
and then eliminating, after the integration, the 3n quantities pi, by the same approximate
forms. And when an improved expression, or second approximate value S1 + ∆S1, for the
principal function S, has been thus obtained, it may be substituted in like manner for the
first approximate value S1, so as to obtain a still closer approximation, and the process may
be repeated indefinitely.

An analogous process applies to the indefinite improvement of a first approximate ex-
pression for the function Q or V .

Rigorous Theory of Perturbations, founded on the Properties of the Disturbing Part of the
whole Principal Function.

8. If we separate the expression H (17.) into any two parts of the same kind,

H1 +H2 = H, (40.)

in which
H1 = F1($1, $2, . . . $3n, η1, η2, . . . η3n)− U1(η1, η2, . . . η3n), (41.)

and
H2 = F2($1, $2, . . . $3n, η1, η2, . . . η3n)− U2(η1, η2, . . . η3n), (42.)

the functions F1 F2 U1 U2 being such that

F1 + F2 = F, U1 + U2 = U ; (43.)

the differential equations of motion (A.) will take this form,

dηi
dt

=
δH1

δ$i
+
δH2

δ$i
,

d$i

dt
= −δH1

δηi
− δH2

δηi
, (G.)

and if the part H2 and its coefficients be small, they will not differ much from these other
differential equations,

dηi
dt

=
δH1

δ$i
,

d$i

dt
= −δH1

δηi
; (H.)

so that the rigorous integrals of the latter system will be approximate integrals of the former.
Whenever then, by a proper choice of the predominant term H1, a system of 6n equations such
as (H.) has been formed and rigorously integrated, giving expressions for the 6n variables ηi $i

as functions of the time t, and of their own initial values ei pi, which may be thus denoted:

ηi = φi(t, e1, e2, . . . e3n, p1, p2, . . . p3n), (44.)

and
$i = ψi(t, e1, e2, . . . e3n, p1, p2, . . . p3n); (45.)

the simpler motion thus defined by the rigorous integrals of (H.) may be called the undisturbed
motion of the proposed system of n points, and the more complex motion expressed by the
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rigorous integrals of (G.) may be called by contrast the disturbed motion of that system; and
to pass from one to the other, may be called a Problem of Perturbation.

9. To accomplish this passage, let us observe that the differential equations of undis-
turbed motion (H.), being of the same form as the original equations (A.), may have their
integrals similarly expressed, that is, as follows:

$i =
δS1

δηi
, pi = −δS1

δei
, (I.)

S1 being here the principal function of undisturbed motion, or the definite integral

S1 =

∫ t

0

(
Σ .$

δH1

δ$
−H1

)
dt, (46.)

considered as a function of the time and of the quantities ηi ei. In like manner if we represent
by S1 + S2 the whole principal function of disturbed motion, the rigorous integrals of (G.)
may be expressed by (B.), as follows:

$i =
δS1

δηi
+
δS2

δηi
, pi = −δS1

δei
− δS2

δei
. (K.)

Comparing the forms (44.) with the second set of equations (I.) for the integrals of undis-
turbed motion, we find that the following relations between the functions φi S1 must be
rigorously and identically true:

ηi = φi

(
t, e1, e2, . . . e3n,−

δS1

δe1
,−δS1

δe2
, . . . − δS1

δe3n

)
; (47.)

and therefore, by (K.), that the integrals of disturbed motion may be put under the following
forms,

ηi = φi

(
t, e1, e2, . . . e3n, p1 +

δS2

δe1
, p2 +

δS2

δe2
, . . . p3n +

δS2

δe3n

)
. (L.)

We may therefore calculate rigorously the disturbed variables ηi by the rules of undisturbed
motion (44.), if without altering the time t, or the initial values ei of those variables, which
determine the initial configuration, we alter (in general) the initial velocities and directions,
by adding to the elements pi the following perturbational terms,

∆p1 =
δS2

δe1
, ∆p2 =

δS2

δe2
, . . . ∆p3n =

δS2

δe3n
: (M.)

a remarkable result, which includes the whole theory of perturbation. We might deduce
from it the differential coefficients η′i, or the connected quantities $i, which determine the
disturbed directions and velocities of motion at any time t; but a similar reasoning gives at
once the general expression,

$i =
δS2

δηi
+ ψi

(
t, e1, e2, . . . e3n, p1 +

δS2

δe1
, p2 +

δS2

δe2
, . . . p3n +

δS2

δe3n

)
, (N.)
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implying, that after altering the initial velocities and directions or the elements pi as before,
by the perturbational terms (M.), we may then employ the rules of undisturbed motion (45.)
to calulate the velocities and directions at the time t, or the varying quantities $i, if we finally
apply to these quantities thus calculated the following new corrections for perturbation:

∆$1 =
δS2

δη1
, ∆$2 =

δS2

δη2
, . . . ∆$3n =

δS2

δη3n
. (O.)

Approximate expressions deduced from the foregoing rigorous Theory.

10. The foregoing theory gives indeed rigorous expressions for the perturbations, in
passing from the simpler motion (H.) or (I.) to the more complex motion (G.) or (K.):
but it may seem that these expressions are of little use, because they involve an unknown
disturbing function S2, (namely, the perturbational part of the whole principal function S,)
and also unknown or disturbed coordinates or marks of position ηi. However, it was lately
shown that whenever a first approximate form for the principal function S, such as here
the principal function S1 of undisturbed motion, has been found, the correction S2 can in
general be assigned, with an indefinitely increasing accuracy; and since the perturbations (M.)
and (O.) involve the disturbed coordinates ηi only as they enter into the coefficients of this
small disturbing function S2, it is evidently permitted to substitute for these coordinates, at
first, their undisturbed values, and then to correct the results by substituting more accurate
expressions.

11. The function S1 of undisturbed motion must satisfy rigorously two partial differential
equations of the form (C.), namely,

δS1

δt
+ F1

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)
= U1(η1, . . . η3n),

δS1

δt
+ F1

(
δS1

δe1
, . . .

δS1

δe3n
, e1, . . . e3n

)
= U1(e1, . . . e3n);

 (P.)

and therefore, by (D.), the disturbing function S2 must satisfy rigorously the following other
condition:

dS2

dt
= U2(η1, . . . η3n)− F2

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)
+ F

(
δS2

δη1
, . . .

δS2

δη3n
, η1, . . . η3n

)
,

 (Q.)

and may, on account of the homogeneity and dimension of F , be approximately expressed as
follows:

S2 =

∫ t

0

{
U2(η1, . . . η3n)− F2

(
δS1

δη1
, . . .

δS1

δη3n
, η1, . . . η3n

)}
dt, (R.)

or thus, by (I.),

S2 =

∫ t

0

{U2(η1, . . . η3n)− F2 ($1, . . . $3n, η1, . . . η3n)} dt, (S.)

12



that is, by (42.),

S2 = −
∫ t

0

H2 dt. (T.)

In this expression, H2 is given immediately as a function of the varying quantities ηi $i, but
it may be considered in the same order of approximation as a known function of their initial
values ei pi and of the time t, obtained by substituting for ηi $i their undisturbed values
(44.), (45.) as functions of those quantities; its variation may therefore be expressed in either
of the two following ways:

δH2 = Σ

(
δH2

δη
δη +

δH2

δ$
δ$

)
, (48.)

or

δH2 = Σ

(
δH2

δe
δe+

δH2

δp
δp

)
+
δH2

δt
δt. (49.)

Adopting the latter view, and effecting the integration (T.) with respect to the time, by
treating the elements ei pi as constant, we are afterwards to substitute for the quantities pi
their undisturbed expressions (39.) or (I.), and then we find for the variation of the disturbing
function S2 the expression

δS2 = −H2 δt+ Σ

(
−δe .

∫ t

0

δH2

δe
dt+ δ

δS1

δe
.

∫ t

0

δH2

δp
dt

)
, (50.)

which enables us to transform the perturbational terms (M.), (O.) into the following approx-
imate forms:

∆pi = −
∫ t

0

δH2

δei
dt+ Σ .

δ2S1

δe δei

∫ t

0

δH2

δp
dt, (U.)

and

∆$i = Σ .
δ2S1

δe δηi

∫ t

0

δH2

δp
dt, (V.)

containing only functions and quantities which may be regarded as given, by the theory of
undisturbed motion.

12. In the same order of approximation, if the variation of the expression (44.) for an
undisturbed coordinate ηi be thus denoted,

δηi =
δηi
δt
δt+ Σ

(
δηi
δe
δe+

δηi
δp
δp

)
, (51.)

the perturbation of that coordinate may be expressed as follows:

∆ηi = Σ .
δηi
δp

∆p; (W.)

13



that is, by (U.),

∆ηi = − δηi
δp1

∫ t

0

δH2

δe1
dt− δηi

δp2

∫ t

0

δH2

δe2
dt− · · · − δηi

δp3n

∫ t

0

δH2

δe3n
dt

+

(
δηi
δp1

δ2S1

δe2
1

+
δηi
δp2

δ2S1

δe1 δe2
+ · · ·+ δηi

δp3n

δ2S1

δe1 δe3n

)∫ t

0

δH2

δp1
dt

+ . . . . . .

+

(
δηi
δp1

δ2S1

δe3n δe1
+
δηi
δp2

δ2S1

δe3n δe2
+ · · ·+ δηi

δp3n

δ2S1

δe2
3n

)∫ t

0

δH2

δp3n
dt.


(52.)

Besides, the identical equation (47.) gives

δηi
δek

=
δηi
δp1

δ2S1

δek δe1
+
δηi
δp2

δ2S1

δek δe2
+ · · ·+ δηi

δp3n

δ2S1

δek δe3n
; (53.)

the expression (52.) may therefore be thus abridged,

∆ηi = − δηi
δp1

∫ t

0

δH2

δe1
dt− · · · − δηi

δp3n

∫ t

0

δH2

δe3n
dt

+
δηi
δe1

∫ t

0

δH2

δp1
dt+ · · ·+ δηi

δe3n

∫ t

0

δH2

δp3n
dt,

 (X.)

and shows that instead of the rigorous perturbational terms (M.) we may approximately
employ the following,

∆pi = −
∫ t

0

δH2

δei
dt, (Y.)

in order to calculate the disturbed configuration at any time t by the rules of undisturbed
motion, provided that besides thus altering the initial velocities and directions we alter also
the initial configuration, by the formula

∆ei =

∫ t

0

δH2

δpi
dt. (Z.)

It would not be difficult to calculate, in like manner, approximate expressions for the disturbed
directions and velocities at any time t; but it is better to resume, in another way, the rigorous
problem of perturbation.

Other Rigorous Theory of Perturbation, founded on the properties of the disturbing part of
the constant of living force, and giving formulæ for the Variation of Elements more analogous
to those already known.

13. Suppose that the theory of undisturbed motion has given the 6n constants ei pi or
any combinations of these, κ1, κ2, . . . , κ6n, as functions of the 6n variables ηi $i, and of the
time t, which may be thus denoted:

κi = χi(t, η1, η2, . . . η3n, $1, $2, . . . $3n), (54.)
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and which give reciprocally expressions for the variables ηi $i in terms of these elements and
of the time, analogous to (44.) and (45.), and capable of being denoted similarly,

ηi = φi(t, κ1, κ2, . . . κ6n), $i = ψi(t, κ1, κ2, . . . κ6n); (55.)

then, the total differential coefficient of every such element or function κi, taken with respect
to the time, (both as it enters explicitly and implicitly into the expressions (54.),) must
vanish in the undisturbed motion; so that, by the differential equations of such motion (H.),
the following general relation must be rigorously and identically true:

0 =
δκi
δt

+ Σ

(
δκi
δη

δH1

δ$
− δκi
δ$

δH1

δη

)
. (56.)

In passing to disturbed motion, if we retain the equation (54.) as a definition of the
quantity κi, that quantity will no longer be constant, but it will continue to satisfy the
inverse relations (55.), and may be called, by analogy, a varying element of the motion; and
its total differential coefficient, taken with respect to the time, may, by the identical equation
(56.), and by the differential equations of disturbed motion (G.), be rigorously expressed as
follows:

dκi
dt

= Σ

(
δκi
δη

δH2

δ$
− δκi
δ$

δH2

δη

)
. (A1.)

14. This result (A1.) contains the whole theory of the gradual variation of the elements
of disturbed motion of a system; but it may receive an advantageous transformation, by the
substitution of the expressions (55.) for the variables ηi $i as functions of the time and of
the elements; since it will thus conduct to a system of 6n rigorous and ordinary differential
equations of the first order between those varying elements and the time. Expressing, there-
fore, the quantity H2 as a function of these latter variables, its variation δH2 takes this new
form,

δH2 = Σ .
δH2

δκ
δκ+

δH2

δt
δt, (57.)

and gives, by comparison with the form (48.), and by (54.),

δH2

δηr
= Σ .

δH2

δκ

δκ

δηr
;

δH2

δ$r
= Σ .

δH2

δκ

δκ

δ$r
; (58.)

and thus the general equation (A1.) is transformed to the following,

dκi
dt

= ai,1
δH2

δκ1
+ ai,2

δH2

δκ2
+ · · ·+ ai,6n

δH2

δκ6n
, (B1.)

in which

ai,s = Σ

(
δκi
δη

δκs
δ$
− δκi
δ$

δκs
δη

)
: (C1.)

so that it only remains to eliminate the variables η $ from the expressions of these latter
coefficients. Now it is remarkable that this elimination removes the symbol t also, and leaves
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the coefficients ai,s expressed as functions of the elements κ alone, not explicitly involving
the time. This general theorem of dynamics, which is, perhaps, a little more extensive than
the analogous results discovered by Lagrange and by Poisson, since it does not limit the
disturbing terms in the differential equations of motion to depend on the configuration only,
may be investigated in the following way.

15. The sign of summation Σ in (C1.), like the same sign in those other analogous
equations in which it has already occurred without an index in this Essay, refers not to the
expressed indices, such as here i, s, in the quantity to be summed, but to an index which is
not expressed and which may be here called r; so that if we introduce for greater clearness
this variable index and its limits, the expression (C1.) becomes

ai,s = Σ (r) 1

3n
(
δκi
δηr

δκs
δ$r

− δκi
δ$r

δκs
δηr

)
: (59.)

and its total differential coefficient, taken with respect to time, may be separated into the
two following parts,

d

dt
ai,s = Σ (r) 1

3n
(
δκi
δηr

d

dt

δκs
δ$r

− δκs
δηr

d

dt

δκi
δ$r

)
+ Σ (r) 1

3n
(
δκs
δ$r

d

dt

δκi
δηr
− δκi
δ$r

d

dt

δκs
δηr

)
,

 (60.)

which we shall proceed to calculate separately, and then to add them together. By the
definition (54.), and the differential equations of disturbed motion (G.),

d

dt

δκi
δ$r

=
δ2κi
δt δ$r

+ Σ (u) 1

3n
{

δ2κi
δηu δ$r

(
δH1

δ$u
+
δH2

δ$u

)
− δ2κi
δ$u δ$r

(
δH1

δηu
+
δH2

δηu

)}
, (61.)

in which, by the identical equation (56.),

δ2κi
δt δ$r

= − δ

δ$r
Σ (u) 1

3n
(
δκi
δηu

δH1

δ$u
− δκi
δ$u

δH1

δηu

)
; (62.)

we have therefore

d

dt

δκi
δ$r

= Σ (u) 1

3n
(

δ2κi
δηu δ$r

δH2

δ$u
− δ2κi
δ$u δ$r

δH2

δηu
+

δκi
δ$u

δ2H1

δηuδ$r
− δκi
δηu

δ2H1

δ$uδ$r

)
, (63.)

and
d

dt

δκs
δ$r

may be found from this, by merely changing i to s: so that

Σ (r) 1

3n
(
δκi
δηr

d

dt

δκs
δ$r

− δκs
δηr

d

dt

δκi
δ$r

)
= Σ (r,u) 1,1

3n,3n
{(

δκs
δηr

δ2κi
δ$u δ$r

− δκi
δηr

δ2κs
δ$u δ$r

)
δH2

δηu

+

(
δκi
δηr

δ2κs
δηu δ$r

− δκs
δηr

δ2κi
δηu δ$r

)
δH2

δ$u

+

(
δκi
δηr

δκs
δ$u

− δκs
δηr

δκi
δ$u

)
δ2H1

δηu δ$r
+

(
δκs
δηr

δκi
δηu
− δκi
δηr

δκs
δηu

)
δ2H1

δ$u δ$r

}
,


(64.)
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and similarly,

Σ (r) 1

3n
(
δκs
δ$r

d

dt

δκi
δηr
− δκi
δ$r

d

dt

δκs
δηr

)
= Σ (r,u) 1,1

3n,3n
{(

δκs
δ$r

δ2κi
δηu δηr

− δκi
δ$r

δ2κs
δηu δηr

)
δH2

δ$u

+

(
δκi
δ$r

δ2κs
δ$u δηr

− δκs
δ$r

δ2κi
δ$u δηr

)
δH2

δηu

+

(
δκi
δ$r

δκs
δηu
− δκs
δ$r

δκi
δηu

)
δ2H1

δ$u δηr
+

(
δκs
δ$r

δκi
δ$u

− δκi
δ$r

δκs
δ$u

)
δ2H1

δηu δηr

}
.


(65.)

Adding, therefore, the two last expressions, and making the reductions which present them-
selves, we find, by (60.),

d

dt
ai,s = Σ (u) 1

3n
(
A

(u)
i,s

δH2

δηu
+B

(u)
i,s

δH2

δ$u

)
, (D1.)

in which

A
(u)
i,s = Σ (r) 1

3n
(
δκs
δηr

δ2κi
δ$u δ$r

− δκi
δηr

δ2κs
δ$u δ$r

+
δκi
δ$r

δ2κs
δ$u δηr

− δκs
δ$r

δ2κi
δ$u δηr

)
,

B
(u)
i,s = Σ (r) 1

3n
(
δκs
δ$r

δ2κi
δηu δηr

− δκi
δ$r

δ2κs
δηu δηr

+
δκi
δηr

δ2κs
δηu δ$r

− δκs
δηr

δ2κi
δηu δ$r

)
;

 (66.)

and since this general form (D1.) for
d

dt
ai,s contains no term independent of the disturbing

quantities
δH2

δη
,
δH2

δ$
, it is easy to infer from it the important consequence already mentioned,

namely, that the coefficients ai,s, in the differentials (B1.) of the elements, may be expressed
as functions of those elements alone, not explicitly involving the time.

It is evident also, that these coefficients ai,s have the property

as,i = −ai,s (67.)

and
ai,i = 0; (68.)

the term proportional to
δH2

δκi
disappears therefore from the expression (B1.) for

dκi
dt

; and

the term
δH2

δκi
. ai,s .

δH2

δκs
in

δH2

δκi

dκi
dt
,

destroys the term
δH2

δκs
. as,i .

δH2

δκi
in

δH2

δκs

dκs
dt

,
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when these terms are added together; we have, therefore,

Σ .
δH2

δκ

dκ

dt
= 0, (E1.)

or
dH2

dt
=
δH2

δt
; (F1.)

that is, in taking the first total differential coefficient of the disturbing expression H2 with
respect to the time, the elements may be treated as constant.

Simplification of the differential equations which determine these gradually varying elements,
in any problem of Perturbation; and Integration of the simplified equations by means of certain
Functions of Elements.

16. The most natural choice of these elements is that which makes them correspond,
in undisturbed motion, to the initial quantities ei pi. These quantities, by the differential
equations (H.), may be expressed in undisturbed motion as follows,

ei = ηi −
∫ t

0

δH1

δ$i
dt, pi = $i +

∫ t

0

δH1

δηi
dt; (69.)

and if we suppose them found, by elimination, under the forms

ei = ηi + Φi(t, η1, η2, . . . η3n, $1, $2, . . . $3n),

pi = $i + Ψi(t, η1, η2, . . . η3n, $1, $2, . . . $3n),

}
(70.)

it is easy to see that the following equations must be rigorously and identically true, for all
values of ηi $i,

0 = Φi(0, η1, η2, . . . η3n, $1, $2, . . . $3n),

0 = Ψi(0, η1, η2, . . . η3n, $1, $2, . . . $3n).

}
(71.)

When, therefore, in passing to disturbed motion, we establish the equations of definition,

κi = ηi + Φi(t, η1, η2, . . . η3n, $1, $2, . . . $3n),

λi = $i + Ψi(t, η1, η2, . . . η3n, $1, $2, . . . $3n),

}
(72.)

introducing 6n varying elements κi λi, of which the set λi would have been represented in
our recent notation as follows:

λi = κ3n+i; (73.)

we see that all the partial differential coefficients of the forms
δκi
δηr

,
δκi
δ$r

,
δλi
δηr

,
δλi
δ$r

, vanish

when t = 0, except the following:

δκi
δηi

= 1,
δλi
δ$i

= 1; (74.)
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and, therefore, that when t is made = 0, in the coefficients ai,s, (59.), all those coefficients
vanish, except the following:

ar,3n+r = 1, a3n+r,r = −1. (75.)

But it has been proved that these coefficients ai,s, when expressed as functions of the
elements, do not contain the time explicitly; and the supposition t = 0 introduces no relation
between those 6n elements κi λi, which still remain independent: the coefficients ai,s, there-
fore, could not acquire the values 1, 0, −1, by the supposition t = 0, unless they had those
values constantly, and independently of that supposition. The differential equations of the
forms (B1.) may therefore be expressed, for the present system of varying elements, in the
following simpler way:

dκi
dt

=
δH2

δλi
;

dλi
dt

= −δH2

δκi
; (G1.)

and an easy verification of these expressions is offered by the formula (E1.), which takes now
this form,

Σ

(
δH2

δκ

dκ

dt
+
δH2

δλ

dλ

dt

)
= 0. (H1.)

17. The initial values of the varying elements κi λi are evidently ei pi, by the definitions
(72.), and by the identical equations (71.); the problem of integrating rigorously the equations
of disturbed motion (G.), between the variables ηi $i and the time, or of determining these
variables as functions of the time and of their own initial values ei pi, is therefore rigorously
transformed into the problem of integrating the equations (G1.), or of determining the 6n
elements κi λi as functions of the time and of the same initial values. The chief advantage
of this transformation is, that if the perturbations be small, the new variables (namely the
elements,) alter but little: and that, since the new differential equations are of the same form
as the old, they may be integrated by a similar method. Considering, therefore, the definite
integral

E =

∫ t

0

(
Σ .λ

δH2

δλ
−H2

)
dt, (76.)

as a function of the time and of the 6n quantities κ1, κ2, . . . κ3n, e1, e2, . . . en, and observing
that its variation, taken with respect to the latter quantities, may be shown by a process
similar to that of the fourth number of this Essay to be

δE = Σ(λ δκ− p δe), (I1.)

we find that the rigorous integrals of the differential equations (G1.) may be expressed in the
following manner:

λi =
δE

δκi
, pi = −δE

δei
, (K1.)

in which there enters only one unknown function of elements E, to the search and study of
which single function the problem of perturbation is reduced by this new method.
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We might also have put

C =

∫ t

0

(
−Σ .κ

δH2

δκ
+H2

)
dt, (77.)

and considered this definite integral C as a function of the time and of the 6n quantities λi pi;
and then we should have found the following other forms for the integrals of the differential
equations of varying elements,

κi = +
δC

δλi
, ei = − δC

δpi
, (L1.)

And each of these functions of elements, C and E, must satisfy a certain partial differential
equation, analogous to the first equation of each pair mentioned in the sixth number of this
Essay, and deduced on similar principles.

18. Thus, it is evident, by the form of the function E, and by the equations (K1.), (G1.),
and (76.), that the partial differential coefficient of this function, taken with respect to the
time, is

δE

δt
=
dE

dt
− Σ .

δE

δκ

dκ

dt
= −H2; (M1.)

and therefore that if we separate this function E into any two parts

E1 +E2 = E, (N1.)

and if, for greater clearness, we put the expression H2 under the form

H2 = H2(t, κ1, κ2, . . . κ3n, λ1, λ2, . . . λ3n), (O1.)

we shall have rigorously the partial differential equation

0 =
δE1

δt
+
δE2

δt
+H2

(
t, κ1, . . . κ3n,

δE1

δκ1
+
δE2

δκ1
, . . .

δE1

δκ3n
+
δE2

δκ3n

)
: (P1.)

which gives, approximately, by (G1.) and (K1), when the part E2 is small, and when we
neglect the squares and products of its partial differential coefficients,

0 =
dE2

dt
+
δE1

δt
+H2

(
t, κ1, . . . κ3n,

δE1

δκ1
, . . .

δE1

δκ3n

)
. (Q1.)

Hence, in the same order of approximation, if the part E1, like the whole function E, be
chosen so as to vanish with the time, we shall have

E2 = −
∫ t

0

{
δE1

δt
+H2

(
t, κ1, . . . κ3n,

δE1

δκ1
, . . .

δE1

δκ3n

)}
dt : (R1.)

and thus a first approximate expression E1 can be successively and indefinitely corrected.
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Again, by (L1.) and (G1.), and by the definition (77.),

δC

δt
=
dC

dt
− Σ .

δC

δλ

dλ

dt
= H2; (S1.)

the function C must therefore satisfy rigorously the partial differential equation,

δC

δt
= H2

(
t,
δC

δλ1
, . . .

δC

δλ3n
, λ1, . . . λ3n

)
: (T1.)

and if we put

C = C1 + C2, (U1.)

and suppose that the part C2 is small, then the rigorous equation

δC1

δt
+
δC2

δt
= H2

(
t,
δC1

δλ1
+
δC2

δλ1
, . . .

δC1

δλ3n
+

δC2

δλ3n
, λ1, . . . λ3n

)
(V1.)

becomes approximately, by (G1.) and (L1.),

dC2

dt
= −δC1

δt
+H2

(
t,
δC1

δλ1
, . . .

δC1

δλ3n
, λ1, . . . λ3n

)
, (W1.)

and gives by integration,

C2 =

∫ t

0

{
−δC1

δt
+H2

(
t,
δC1

δλ1
, . . .

δC1

δλ3n
, λ1, . . . λ3n

)}
dt, (X1.)

the parts C1 and C2 being supposed to vanish separately when t = 0, like the whole function
of elements C.

And to obtain such a first approximation, E1 or C1, to either of these two functions of
elements E, C, we may change, in the definitions (76.), (77.), the varying elements κ λ, to
their initial values e p, and then eliminate one set of these initial values by the corresponding
set of the following approximate equations, deduced from the formulæ (G1.):

κi = ei +

∫ t

0

δH2

δpi
dt; (Y1.)

and

λi = pi −
∫ t

0

δH2

δei
dt. (Z1.)

It is easy also to see that these two functions of elements C and E are connected with
each other, and with the disturbing function S2, so that the form of any one may be deduced
from that of any other, when the function S1 of undisturbed motion is known.
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Analogous formulæ for the motion of a Single Point.

19. Our general method in dynamics, though intended chiefly for the study of attracting
and repelling systems, is not confined to such, but may be used in all questions to which the
law of living forces applies. And all the analysis of this Essay, but especially the theory of
perturbations, may usefully be illustrated by the following analogous reasonings and results
respecting the motion of a single point.

Imagine then such a point, having for its three rectangular coordinates x y z, and moving
in an orbit determined by three ordinary differential equations of the second order of forms
analogous to the equations (2.), namely,

x′′ =
δU

δx
; y′′ =

δU

δy
; z′′ =

δU

δz
; (78.)

U being any given function of the coordinates not expressly involving the time: and let us
establish the following definition, analogous to (4.),

T = 1
2 (x′2 + y′2 + z′2), (79.)

x′ y′ z′ being the first, and x′′ y′′ z′′ being the second differential coefficients of the coordinates,
considered as functions of the time t. If we express, for greater generality or facility, the
rectangular coordinates x y z as functions of three other marks of position η1 η2 η3, T will
become a homogeneous function of the second dimension of their first differential coefficients
η′1 η

′
2 η
′
3 taken with respect to time; and if we put, for abridgement,

$1 =
δT

δη′1
, $2 =

δT

δη′2
, $3 =

δT

δη′3
, (80.)

T may considered also as a function of the form

T = F ($1, $2, $3, η1, η2, η3), (81.)

which will be homogeneous of the second dimension with respect to $1 $2 $3. We may also
put, for abridgement,

T = F ($1, $2, $3, η1, η2, η3)− U(η1, η2, η3) = H; (82.)

and then, instead of the three differential equations of the second order (78.), we may employ
the six following of the first order, analogous to the equations (A.), and obtained by a similar
reasoning,

dη1

dt
= +

δH

δ$1
,

dη2

dt
= +

δH

δ$2
,

dη3

dt
= +

δH

δ$3
,

d$1

dt
= − δH

δη1
,

d$2

dt
= − δH

δη2
,

d$3

dt
= − δH

δη3
,

 (83.)
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20. The rigorous integrals of these six differential equations may be expressed under the
following forms, analogous to (B.),

$1 =
δS

δη1
, $2 =

δS

δη2
, $3 =

δS

δη3
,

p1 = − δS
δe1

, p2 = − δS
δe2

, p3 = − δS
δe3

,

 (84.)

in which e1 e2 e3 p1 p2 p3 are the initial values, or values at the time 0, of η1 η2 η3 $1 $2 $3;
and S is the definite integral

S =

∫ t

0

(
$1

δH

δ$1
+$2

δH

δ$2
+$3

δH

δ$3
−H

)
dt, (85.)

considered as a function of η1 η2 η3 e1 e2 e3 and t. The quantity H does not change in the
course of the motion, and the function S must satisfy the following pair of partial differential
equations of the first order, analogous to the pair (C.),

δS

δt
+ F

(
δS

δη1
,
δS

δη2
,
δS

δη3
, η1, η2, η3

)
= U(η1, η2, η3);

δS

δt
+ F

(
δS

δe1
,
δS

δe2
,
δS

δe3
, e1, e2, e3

)
= U(e1, e2, e3).

 (86.)

This important function S, which may be called the principal function of the motion, may
hence be rigorously expressed under the following form, obtained by reasonings analogous to
those of the seventh number of this Essay:

S = S1 +

∫ t

0

{
−δS1

δt
+ U(η1, η2, η3)− F

(
δS1

δη1
,
δS1

δη2
,
δS1

δη3
, η1, η2, η3

)}
dt

+

∫ t

0

F

(
δS

δη1
− δS1

δη1
,
δS

δη2
− δS1

δη2
,
δS

δη3
− δS1

δη3
, η1, η2, η3

)
dt;

 (87.)

S1 being any arbitrary function of the same quantities η1 η2 η3 e1 e2 e3 t, so chosen as
to vanish with the time. And if this arbitrary function S1 be chosen so as to be a first
approximate value of the principal function S, we may neglect, in a second approximation,
the second definite integral in (87.).

21. A first approximation of this kind can be obtained, whenever, by separating the
expression H, (82.) into a predominant and a smaller part, H1 and H2, and by neglecting
the part H2, we have changed the differential equations (83.) to others, namely,

dη1

dt
=
δH1

δ$1
,

dη2

dt
=
δH1

δ$2
,

dη3

dt
=
δH1

δ$3
,

d$1

dt
= −δH1

δη1
,

d$2

dt
= −δH1

δη2
,

d$3

dt
= −δH1

δη3
,

 (88.)
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and have succeeded in integrating rigorously these simplified equations, belonging to a simpler
motion, which may be called the undisturbed motion of the point. For the principal function
of such undisturbed motion, namely, the definite integral

S1 =

∫ t

0

(
$1

δH1

δ$1
+$2

δH1

δ$2
+$3

δH1

δ$3
−H1

)
dt, (89.)

considered as a function of η1 η2 η3 e1 e2 e3 t, will then be an approximate value for the
original function of disturbed motion S, which original function corresponds to the more
complex differential equations,

dη1

dt
=
δH1

δ$1
+
δH2

δ$1
,

dη2

dt
=
δH1

δ$2
+
δH2

δ$2
,

dη3

dt
=
δH1

δ$3
+
δH2

δ$3
,

d$1

dt
= −δH1

δη1
− δH2

δη1
,

d$2

dt
= −δH1

δη2
− δH2

δη2
,

d$3

dt
= −δH1

δη3
− δH2

δη3
.

 (90.)

The function S1 of undisturbed motion must satisfy a pair of partial differential equations of
the first order, analogous to the pair (86.); and the integrals of undisturbed motion may be
represented thus,

$1 =
δS1

δη1
, $2 =

δS1

δη2
, $3 =

δS1

δη3
,

p1 = −δS1

δe1
, p2 = −δS1

δe2
, p3 = −δS1

δe3
:

 (91.)

while the integrals of disturbed motion may be expressed with equal rigour under the following
analogous forms,

$1 =
δS1

δη1
+
δS2

δη1
, $2 =

δS1

δη2
+
δS2

δη2
, $3 =

δS1

δη3
+
δS2

δη3
,

p1 = −δS1

δe1
− δS2

δe1
, p2 = −δS1

δe2
− δS2

δe2
, p3 = −δS1

δe3
− δS2

δe3
,

 (92.)

if S1 denote the rigorous correction of S1, or the disturbing part of the whole principal
function S. And by the foregoing general theory of approximation, this disturbing part or
function S2 may be approximately represented by the definite integral (T.),

S2 = −
∫ t

0

H2 dt; (93.)

in calculating which definite integral the equations (91.) may be employed.

22. If the integrals of undisturbed motion (91.) have given

η1 = φ1(t, e1, e2, e3, p1, p2, p3),

η2 = φ2(t, e1, e2, e3, p1, p2, p3),

η3 = φ3(t, e1, e2, e3, p1, p2, p3),

 (94.)
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and
$1 = ψ1(t, e1, e2, e3, p1, p2, p3),

$2 = ψ2(t, e1, e2, e3, p1, p2, p3),

$3 = ψ3(t, e1, e2, e3, p1, p2, p3),

 (95.)

then the integrals of disturbed motion (92.) may be rigorously transformed as follows,

η1 = φ1

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,

η2 = φ2

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,

η3 = φ3

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,


(96.)

and

$1 =
δS2

δη1
+ ψ1

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,

$2 =
δS2

δη2
+ ψ2

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,

$3 =
δS2

δη3
+ ψ3

(
t, e1, e2, e3, p1 +

δS2

δe1
, p2 +

δS2

δe2
, p3 +

δS2

δe3

)
,


(97.)

S2 being here the rigorous disturbing function. And the perturbations of position, at any
time t, may be approximately expressed by the following formula,

∆η1 =
δη1

δe1

∫ t

0

δH2

δp1
dt+

δη1

δe2

∫ t

0

δH2

δp2
dt+

δη1

δe3

∫ t

0

δH2

δp3
dt

− δη1

δp1

∫ t

0

δH2

δe1
dt− δη1

δp2

∫ t

0

δH2

δe2
dt− δη1

δp3

∫ t

0

δH2

δe3
dt,

 (98.)

together with two similar formulæ for the perturbations of the two other coordinates, or marks
of position η2, η3. In these formulæ, the coordinates and H2 are supposed to be expressed,
by the theory of undisturbed motion, as functions of the time t, and of the constants e1 e2 e3

p1 p2 p3.

23. Again, if the integrals of undisturbed motion have given, by elimination, expressions
for these constants, of the forms

e1 = η1 + Φ1(t, η1, η2, η3, $1, $2, $3),

e2 = η2 + Φ2(t, η1, η2, η3, $1, $2, $3),

e3 = η3 + Φ3(t, η1, η2, η3, $1, $2, $3),

 (99.)

and
p1 = $1 + Ψ1(t, η1, η2, η3, $1, $2, $3),

p2 = $2 + Ψ2(t, η1, η2, η3, $1, $2, $3),

p3 = $3 + Ψ3(t, η1, η2, η3, $1, $2, $3);

 (100.)

25



and if, for disturbed motion, we establish the definitions

κ1 = η1 + Φ1(t, η1, η2, η3, $1, $2, $3),

κ2 = η2 + Φ2(t, η1, η2, η3, $1, $2, $3),

κ3 = η3 + Φ3(t, η1, η2, η3, $1, $2, $3),

 (101.)

and
λ1 = $1 + Ψ1(t, η1, η2, η3, $1, $2, $3),

λ2 = $2 + Ψ2(t, η1, η2, η3, $1, $2, $3),

λ3 = $3 + Ψ3(t, η1, η2, η3, $1, $2, $3);

 (102.)

we shall have, for such disturbed motion, the following rigorous equations, of the forms (94.)
and (95.),

η1 = φ1(t, κ1, κ2, κ3, λ1, λ2, λ3),

η2 = φ2(t, κ1, κ2, κ3, λ1, λ2, λ3),

η3 = φ3(t, κ1, κ2, κ3, λ1, λ2, λ3),

 (103.)

and
$1 = ψ1(t, κ1, κ2, κ3, λ1, λ2, λ3),

$2 = ψ2(t, κ1, κ2, κ3, λ1, λ2, λ3),

$3 = ψ3(t, κ1, κ2, κ3, λ1, λ2, λ3);

 (104.)

and may call the quantities κ1 κ2 κ3 λ1 λ2 λ3 the 6 varying elements of the motion. To
determine these six varying elements, we may employ the six following rigorous equations in
ordinary differentials of the first order, in which H2 is supposed to have been expressed by
(103.) and (104.) as a function of the elements and of the time:

dκ1

dt
=
δH2

δλ1
,

dκ2

dt
=
δH2

δλ2
,

dκ3

dt
=
δH2

δλ3
,

dλ1

dt
= −δH2

δκ1
,

dλ2

dt
= −δH2

δκ2
,

dλ3

dt
= −δH2

δκ3
;

 (105.)

and the rigorous integrals of these 6 equations may be expressed in the following manner,

λ1 =
δE

δκ1
, λ2 =

δE

δκ2
, λ3 =

δE

δκ3
,

p1 = − δE
δe1

, p2 = − δE
δe2

, p3 = − δE
δe3

,

 (106.)

the constants e1 e2 e3 p1 p2 p3 retaining their recent meanings, and being therefore the initial
values of the elements κ1 κ2 κ3 λ1 λ2 λ3; while the function E, which may be called the
function of elements, because its form determines the laws of their variations, is the definite
integral

E =

∫ t

0

(
λ1
δH2

δλ1
+ λ2

δH2

δλ2
+ λ3

δH2

δλ3
−H2

)
dt, (107.)
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considered as depending on κ1 κ2 κ3 e1 e2 e3 and t. The integrals of the equations (105.)
may also be expressed in this other way,

κ1 = +
δC

δλ1
, κ2 = +

δC

δλ2
, κ3 = +

δC

δλ3
,

e1 = − δC
δp1

, e2 = − δC
δp2

, e3 = − δC
δp3

,

 (108.)

C being the definite integral

C = −
∫ t

0

(
κ1
δH2

δκ1
+ κ2

δH2

δκ2
+ κ3

δH2

δκ3
−H2

)
dt, (109.)

regarded as a function of λ1 λ2 λ3 p1 p2 p3 and t: and it is easy to prove that each of these
two functions of elements, C and E, must satisfy a partial differential equation of the first
order, which can be previously assigned, and which may assist in discovering the forms of
these two functions, and especially in improving an approximate expression for either. All
these results for the motion of a single point, are analogous to the results already deduced in
this Essay, for an attracting or repelling system.

Mathematical Example, suggested by the motion of Projectiles.

24. If the three marks of position η1 η2 η3 of the moving point are the rectangular
coordinates themselves, and if the function U has the form

U = −gη3 − 1
2{µ

2(η2
1 + η2

2) + ν2η2
3}, (110.)

g, µ, ν being constants; then the expression

H = 1
2 ($2

1 +$2
2 +$2

3) + gη3 + 1
2{µ

2(η2
1 + η2

2) + ν2η2
3} (111.)

is that which must be substituted in the general forms (83.), in order to form the 6 differential
equations of motion of the first order, namely,

dη1

dt
= $1,

dη2

dt
= $2,

dη3

dt
= $3,

d$1

dt
= −µ2η1,

d$2

dt
= −µ2η2,

d$3

dt
= −g − ν2η3.

 (112.)

These differential equations have for their rigorous integrals the six following,

η1 = e1 cosµt+
p1

µ
sinµt,

η2 = e2 cosµt+
p2

µ
sinµt,

η3 = e3 cos νt+
p3

ν
sin νt− g

ν2
vers νt,


(113.)
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and
$1 = p1 cosµt− µe1 sinµt,

$2 = p2 cosµt− µe2 sinµt,

$3 = p3 cos νt−
(
νe3 +

g

ν

)
sin νt;

 (114.)

e1 e2 e3 p1 p2 p3 being still the initial values of η1 η2 η3 $1 $2 $3.
Employing these rigorous integral equations to calculate the function S, that is, by (85.)

and (110.) (111.), the definite integral

S =

∫ t

0

(
$2

1 +$2
2 +$2

3

2
+ U

)
dt, (115.)

we find

1
2
($2

1 +$2
2 +$2

3) = 1
4

{
p2

1 + p2
2 + p2

3 + µ2(e2
1 + e2

2) +
(
νe3 +

g

ν

)2
}

+ 1
4{p

2
1 + p2

2 − µ2(e2
1 + e2

2)} cos 2µt− 1
2µ(e1p1 + e2p2) sin 2µt

+ 1
4

{
p2

3 −
(
νe3 +

g

ν

)2
}

cos 2νt− 1
2

(
νe3 +

g

ν

)
p3 sin 2νt,


(116.)

and

U =
g2

2ν2
− 1

4

{
p2

1 + p2
2 + p2

3 + µ2(e2
1 + e2

2) +
(
νe3 +

g

ν

)2
}

+ 1
4{p

2
1 + p2

2 − µ2(e2
1 + e2

2)} cos 2µt− 1
2µ(e1p1 + e2p2) sin 2µt

+ 1
4

{
p2

3 −
(
νe3 +

g

ν

)2
}

cos 2νt− 1
2

(
νe3 +

g

ν

)
p3 sin 2νt,


(117.)

and therefore,

S =
g2t

2ν2
+ {p2

1 + p2
2 − µ2(e2

1 + e2
2)} sin 2µt

4µ
− 1

2 (e1p1 + e2p2) vers 2µt

+

{
p2

3 −
(
νe3 +

g

ν

)2
}

sin 2νt

4ν
− 1

2p3

(
e3 +

g

ν2

)
vers 2νt.

 (118.)

In order, however, to express this function S, as supposed by our general method, in terms
of the final and initial coordinates and of the time, we must employ the analogous expressions
for the constants p1 p2 p3, deduced from the integrals (113.), namely, the following:

p1 =
µη1 − µe1 cosµt

sinµt
,

p2 =
µη2 − µe2 cosµt

sinµt
,

p3 =
νη3 +

g

ν
−
(
νe3 +

g

ν

)
cos νt

sin νt
;


(119.)
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and then we find

S =
g2t

2ν2
+
µ

2
.

(η1 − e1)2 + (η2 − e2)2

tanµt
+
ν

2
.

(η3 − e3)2

tan νt

− µ(η1e1 + η2e2) tan
µt

2
− ν

(
η3 +

g

ν2

)(
e3 +

g

ν2

)
tan

νt

2
.

 (120.)

This principal function S satisfies the following pair of partial differential equations of
the first order, of the kind (86.),

δS

δt
+

1

2

{(
δS

δη1

)2

+

(
δS

δη2

)2

+

(
δS

δη3

)2
}

= −gη3 −
µ2

2
(η2

1 + η2
2)− ν2

2
η2

3 ,

δS

δt
+

1

2

{(
δS

δe1

)2

+

(
δS

δe2

)2

+

(
δS

δe3

)2
}

= −ge3 −
µ2

2
(e2

1 + e2
2)− ν2

2
e2

3,

 (121.)

and if its form had been previously found, by the help of this pair, or in any other way, the
integrals of the equations of motion might (by our general method) have been deduced from it,
under the forms,

$1 =
δS

δη1
= µ(η1 − e1) cotanµt− µe1 tan

µt

2
,

$2 =
δS

δη2
= µ(η2 − e2) cotanµt− µe2 tan

µt

2
,

$3 =
δS

δη3
= ν(η3 − e3) cotan νt−

(
νe3 +

g

ν

)
tan

νt

2
,


(122.)

and

p1 = − δS
δe1

= µ(η1 − e1) cotanµt+ µη1 tan
µt

2
,

p2 = − δS
δe2

= µ(η2 − e2) cotanµt+ µη2 tan
µt

2
,

p3 = − δS
δe3

= ν(η3 − e3) cotan νt+
(
νη3 +

g

ν

)
tan

νt

2
:


(123.)

the last of these two sets of equations coinciding with the set (119.), or (113.), and conducting,
when combined with the first set, (122.), to the other former set of integrals, (114.).

25. Suppose now, to illustrate the theory of perturbation, that the constants µ, ν are
small, and that, after separating the expression (111.) for H into two parts,

H1 = 1
2($2

1 +$2
2 +$2

3) + gη3, (124.)

and
H2 = 1

2{µ
2(η2

1 + η2
2) + ν2η2

3}, (125.)
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we suppress at first the small part H2, and so form, by (88.), these other and simpler differ-
ential equations of a motion which we shall call undisturbed :

dη1

dt
= $1,

dη2

dt
= $2,

dη3

dt
= $3,

d$1

dt
= 0,

d$2

dt
= 0,

d$3

dt
= −g.

 (126.)

These new equations have for their rigorous integrals, of the forms (94.) and (95.),

η1 = e1 + p1t, η2 = e2 + p2t, η3 = e3 + p3t− 1
2
gt2, (127.)

and
$1 = p1, $2 = p2, $3 = p3 − gt; (128.)

and the principal function S1 of the same undisturbed motion is, by (89.),

S1 =

∫ t

0

(
$2

1 +$2
2 +$2

3

2
− gη3

)
dt

=

∫ t

0

(
p2

1 + p2
2 + p2

3

2
− ge3 − 2gp3t+ g2t2

)
dt

=

(
p2

1 + p2
2 + p2

3

2
− ge3

)
t− gp3t

2 + 1
3g

2t3,


(129.)

or finally, by (127.),

S1 =
(η1 − e1)2 + (η2 − e2)2 + (η3 − e3)2

2t
− 1

2
gt(η3 + e3)− 1

24
g2t3. (130.)

This function satisfies, as it ought, the following pair of partial differential equations,

δS1

δt
+

1

2

{(
δS1

δη1

)2

+

(
δS1

δη2

)2

+

(
δS1

δη3

)2
}

= −gη3,

δS1

δt
+

1

2

{(
δS1

δe1

)2

+

(
δS1

δe2

)2

+

(
δS1

δe3

)2
}

= −ge3.

 (131.)

And if, by the help of this pair, or in any other way, the form (130.) of this principal function
S1 had been found, the integral equations (127.) and (128.) might have been deduced from
it, by our general method, as follows:

$1 =
δS1

δη1
=
η1 − e1

t
,

$2 =
δS1

δη2
=
η2 − e2

t
,

$3 =
δS1

δη3
=
η3 − e3

t
− 1

2gt,


(132.)
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and

p1 = −δS1

δe1
=
η1 − e1

t
,

p2 = −δS1

δe2
=
η2 − e2

t
,

p3 = −δS1

δe3
=
η3 − e3

t
+ 1

2
gt,


(133.)

the latter of these two sets coinciding with (127.), and the former set conducting to (128.).

26. Returning now from this simpler motion to the more complex motion first mentioned,
and denoting by S2 the disturbing part or function which must be added to S1 in order to
make up the whole principal function S of that more complex motion; we have, by applying
our general method, the following rigorous expression for this disturbing function,

S2 = −
∫ t

0

H2 dt+

∫ t

0

1

2

{(
δS2

δη1

)2

+

(
δS2

δη2

)2

+

(
δS2

δη3

)2
}
dt, (134.)

in which we may, approximately, neglect the second definite integral, and calculate the first
by the help of the equations of undisturbed motion. In this manner we find, approximately,
by (125.), (127.),

−H2 = −µ
2

2
{(e1 + p1t)

2 + (e2 + p2t)
2} − ν2

2
(e3 + p3t− 1

2gt
2)2, (135.)

and therefore, by integration,

S2 = −1
2{µ

2(e2
1 + e2

2) + ν2e2
3}t− 1

2{µ
2(e1p1 + e2p2) + ν2e3p3}t2

− 1
6
{µ2(p2

1 + p2
2) + ν2(p2

3 − ge3)}t3 + 1
8
ν2gp3t

4 − 1
40
ν2g2t5,

}
(136.)

or, by (133.),

S2 = −µ
2t

6
(η2

1 + e1η1 + e2
1 + η2

2 + e2η2 + e2
2)

− ν2t

6
{η2

3 + e3η3 + e2
3 + 1

4
g(η3 + e3)t2 + 1

40
g2t4} :

 (137.)

the error being of the fourth order, with respect to the small quantities µ, ν. And neglecting
this small error, we can deduce, by our general method, approximate forms for the integrals
of the equations of disturbed motion, from the corrected function S1 + S2, as follows:

$1 =
δS1

δη1
+
δS2

δη1
=
η1 − e1

t
− µ2t

3
(η1 + 1

2e1),

$2 =
δS1

δη2
+
δS2

δη2
=
η2 − e2

t
− µ2t

3
(η2 + 1

2e2),

$3 =
δS1

δη3
+
δS2

δη3
=
η3 − e3

t
− 1

2gt−
ν2t

3
(η3 + 1

2e3 + 1
8gt

2);


(138.)
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and

p1 = −δS1

δe1
− δS2

δe1
=
η1 − e1

t
+
µ2t

3
(e1 + 1

2
η1),

p2 = −δS1

δe2
− δS2

δe2
=
η2 − e2

t
+
µ2t

3
(e2 + 1

2η2),

p3 = −δS1

δe3
− δS2

δe3
=
η3 − e3

t
+ 1

2gt+
ν2t

3
(e3 + 1

2η3 + 1
8gt

2);


(139.)

or, in the same order of approximation,

η1 = e1 + p1t− 1
2
µ2t2(e1 + 1

3
p1t),

η2 = e2 + p2t− 1
2µ

2t2(e2 + 1
3p2t),

η3 = e3 + p3t− 1
2gt

2 − 1
2ν

2t2(e3 + 1
3p3t− 1

12gt
2),

 (140.)

and
$1 = p1 − µ2t(e1 + 1

2p1t),

$2 = p2 − µ2t(e2 + 1
2p2t),

$3 = p3 − gt− ν2t(e3 + 1
2p3t− 1

6gt
2).

 (141.)

Accordingly, if we develope the rigorous integrals of disturbed motion, (113.) and (114.),
as far as the squares (inclusive) of the small quantities µ and ν, we are conducted to these
approximate integrals; and if we develope the rigorous expression (120.) for the principal
function of such motion, to the same degree of accuracy, we obtain the sum of the two
expressions (130.) and (137.).

27. To illustrate still further, in the present example, our general method of successive
approximation, let S3 denote the small unknown correction of the approximate expression
(137.), so that we shall now have, rigorously, for the present disturbed motion,

S = S1 + S2 + S3, (142.)

S1 and S2 being here determined rigorously by (130.) and (137). Then, substituting S1 +S2

for S1 in the general transformation (87.), we find, rigorously, in the present question,

S3 = −
∫ t

0

1

2

{(
δS2

δη1

)2

+

(
δS2

δη2

)2

+

(
δS2

δη3

)2
}
dt

+

∫ t

0

1

2

{(
δS3

δη1

)2

+

(
δS3

δη2

)2

+

(
δS3

δη3

)2
}
dt :

 (143.)

and if we neglect only terms of the eighth and higher dimensions with respect to the small
quantities µ, ν, we may confine ourselves to the first of these two definite integrals, and may
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employ, in calculating it, the approximate expressions (140.) for the coordinates of disturbed
motion. In this manner we obtain the very approximate expression,

S3 = −µ
4

18

∫ t

0

t2{(η1 + 1
2
e1)2 + (η2 + 1

2
e2)2}dt

− ν4

18

∫ t

0

t2(η3 + 1
2e3 + 1

8gt
2)2dt

= −µ
4t3

360
(4η2

1 + 7η1e1 + 4e2
1 + 4η2

2 + 7η2e2 + 4e2
2)

− ν4t3

360
(4η2

3 + 7η3e3 + 4e2
3)− ν4gt5

240
(η3 + e3)− 17ν4g2t7

40320

− µ6t5

945
(η2

1 + 31
16
η1e1 + e2

1 + η2
2 + 31

16
η2e2 + e2

2)

− ν6t5

945
(η2

3 + 31
16η3e3 + e2

3)− 17ν6gt7

40320
(η3 + e3)− 31ν6g2t9

725760
;



(144.)

which is accordingly the sum of the tems of the fourth and sixth dimensions in the devel-
opment of the rigorous expression (120.), and gives, by our general method, correspondingly
approximate expressions for the integrals of disturbed motion, under the forms

$1 =
δS1

δη1
+
δS2

δη1
+
δS3

δη1
,

$2 =
δS1

δη2
+
δS2

δη2
+
δS3

δη2
,

$3 =
δS1

δη3
+
δS2

δη3
+
δS3

δη3
,


(145.)

and

p1 = −δS1

δe1
− δS2

δe1
− δS3

δe1
,

p2 = −δS1

δe2
− δS2

δe2
− δS3

δe2
,

p3 = −δS1

δe3
− δS2

δe3
− δS3

δe3
.


(146.)

28. To illustrate by the same example the theory of gradually varying elements, let us
establish the following definitions, for the present disturbed motion,

κ1 = η1 −$1t, κ2 = η2 −$2t, κ3 = η3 −$3t− 1
2
gt2,

λ1 = $1, λ2 = $2, λ3 = $3 + gt,

}
(147.)

and let us call these six quantities κ1 κ2 κ3 λ1 λ2 λ3 the varying elements of that motion,
by analogy to the six constant quantities e1 e2 e3 p1 p2 p3, which may, for the undisturbed
motion, be represented in a similar way, namely, by (127.) and (128.),

e1 = η1 −$1t, e2 = η2 −$2t, e3 = η3 −$3t− 1
2gt

2,

p1 = $1, p2 = $2, p3 = $3 + gt.

}
(148.)
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We shall then have rigorously, for the six disturbed variables η1 η2 η3 $1 $2 $3, expressions
of the same forms as in the integrals (127.) and (128.) of undisturbed motion, but with
variable instead of constant elements, namely, the following:

η1 = κ1 + λ1t, η2 = κ2 + λ2t, η3 = κ3 + λ3t− 1
2gt

2,

$1 = λ1, $2 = λ2, $3 = λ3 − gt;

}
(149.)

and the rigorous determination of the six varying elements κ1 κ2 κ3 λ1 λ2 λ3, as functions of
the time and of their own initial values e1 e2 e3 p1 p2 p3, depends on the integration of the
6 following equations, in ordinary differentials of the first order, of the forms (105.):

dκ1

dt
=
δH2

δλ1
= µ2t(κ1 + λ1t),

dκ2

dt
=
δH2

δλ2
= µ2t(κ2 + λ2t),

dκ3

dt
=
δH2

δλ3
= ν2t(κ3 + λ3t− 1

2
gt2),


(150.)

and
dλ1

dt
= −δH2

δκ1
= −µ2(κ1 + λ1t),

dλ2

dt
= −δH2

δκ2
= −µ2(κ2 + λ2t),

dλ3

dt
= −δH2

δκ3
= −ν2(κ3 + λ3t− 1

2gt
2),


(151.)

H2 being here the expression

H2 =
µ2

2
{(κ1 + λ1t)

2 + (κ2 + λ2t)
2}+

ν2

2
(κ3 + λ3t− 1

2gt
2)2, (152.)

which is obtained from (125.) by substituting for the disturbed coordinates η1 η2 η3 their
values (149.), as functions of the varying elements and of the time. It is not difficult to
integrate rigorously this system of equations (150.) and (151.); and we shall soon have
occasion to state their complete and accurate integrals: but we shall continue for a while to
treat these rigorous integrals as unknown, that we may take this oppportunity to exemplify
our general method of indefinite approximation, for all such dynamical systems, founded on
the properties of the functions of elements C and E. Of these two functions either may be
employed, and we shall use here the function C.

29. This function, by (109.) and (152.), may rigorously be expressed as follows:

C =
µ2

2

∫ t

0

(λ2
1t

2 − κ2
1 + λ2

2t
2 − κ2

2) dt+
ν2

2

∫ t

0

{(λ3t− 1
2gt

2)2 − κ2
3} dt; (153.)
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and has therefore the following for a first approximate value, obtained by treating the elements
κ1 κ2 κ3 λ1 λ2 λ3 as constant and equal to their initial values e1 e2 e3 p1 p2 p3,

C = − t
2
{µ2(e2

1 + e2
2) + ν2e2

3}+
t3

6
{µ2(p2

1 + p2
2) + ν2p2

3}

− t4

8
ν2gp3 +

t5

40
ν2g2.

 (154.)

In like manner we have, as first approximations, of the kind expressed by the general formula
(Z1.), the following results deduced from the equations (151.),

λ1 = p1 − µ2(e1t+ 1
2p1t

2),

λ2 = p2 − µ2(e2t+ 1
2p2t

2),

λ3 = p3 − ν2(e3t+ 1
2
p3t

2 − 1
6
gt3),

 (155.)

and therefore, as approximations of the same kind,

e1 = −1
2p1t−

λ1 − p1

µ2t
,

e2 = −1
2p2t−

λ2 − p2

µ2t
,

e3 = −1
2
p3t+ 1

6
gt2 − λ3 − p3

ν2t
.


(156.)

Substituting these values for the initial constants e1 e2 e3 in the approximate value (154.)
for the function of elements C, we obtain the following approximate expression C1 for that
function, of the form supposed by our theory:

C1 = − 1

2t

{
(λ1 − p1)2 + (λ2 − p2)2

µ2
+

(λ3 − p3)2

ν2

}
− t

2
{(λ1 − p1)p1 + (λ2 − p2)p2 + (λ3 − p3)(p3 − 1

3gt)}

+
t3

24
{µ2(p2

1 + p2
2) + ν2p2

3} −
t4

24
ν2gp3 +

t5

90
ν2g2.


(157.)

The rigorous function C must satisfy, in the present question, by the principles of the eigh-
teenth number, the partial differential equation,

δC

δt
=
µ2

2

{(
δC

δλ1
+ λ1t

)2

+

(
δC

δλ2
+ λ2t

)2
}

+
ν2

2

(
δC

δλ3
+ λ3t− 1

2gt
2

)2

; (158.)

and if it be put under the form (U1.),

C = C1 + C2,
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C1 being a first approximation, supposed to vanish with the time, then the correction C2

must satisfy rigorously the condition

C2 =

∫ t

0

{
−δC1

δt
+
µ2

2

(
δC1

δλ1
+ λ1t

)2

+
µ2

2

(
δC1

δλ2
+ λ2t

)2

+
ν2

2

(
δC1

δλ3
+ λ3t− 1

2
gt2
)2}

dt

− 1

2

∫ t

0

{
µ2

(
δC2

δλ1

)2

+ µ2

(
δC2

δλ2

)2

+ ν2

(
δC2

δλ3

)2
}
dt.


(159.)

In passing to a second approximation we may neglect the second definite integral, and
may calculate the first with the help of the approximate equations (155.); which give, in this
manner,

C2 = −
∫ t

0

{(λ1 − p1)2 + (λ2 − p2)2 + (λ3 − p3)2} dt

+
µ2

2

∫ t

0

{λ1(λ1 − p1) + λ2(λ2 − p2)} t2 dt

+
ν2

2

∫ t

0

(λ3 − 2
3gt)(λ3 − p3) t2 dt

= − t
3
{(λ1 − p1)2 + (λ2 − p2)2 + (λ3 − p3)2}

+
t3

24
{µ2p1(λ1 − p1) + µ2p2(λ2 − p2) + ν2p3(λ3 − p3)}

− t4

45
ν2g(λ3 − p3) +

t5

240
(µ4p2

1 + µ4p2
2 + ν4p2

3)

− t6

240
ν4gp3 +

t7

945
ν4g2.



(160.)

We might improve this second approximation in like manner, by calculating a new definite
integral C3, with the help of the following more approximate forms for the relations between
the varying elements λ1 λ2 λ3 and the initial constants, deduced by our general method:

e1 = −δC1

δp1
− δC2

δp1
= −λ1 − p1

µ2t

(
1 +

µ2t2

6
+
µ4t4

24

)
− tp1

2

(
1 +

µ2t2

12
+
µ4t4

60

)
,

e2 = −δC1

δp2
− δC2

δp2
= −λ2 − p2

µ2t

(
1 +

µ2t2

6
+
µ4t4

24

)
− tp2

2

(
1 +

µ2t2

12
+
µ4t4

60

)
,

e3 = −δC1

δp3
− δC2

δp3
= −λ3 − p3

ν2t

(
1 +

ν2t2

6
+
ν4t4

24

)
− tp3

2

(
1 +

ν2t2

12
+
ν4t4

60

)
+
gt2

6

(
1 +

7ν2t2

60
+
ν4t4

40

)
;


(161.)

in which we can only depend on the terms as far as the second order, but which acquire a
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correctness of the fourth order when cleared of the small divisors, and give then

λ1 = p1 − µ2t(e1 + 1
2
p1t) + 1

6
µ4t3(e1 + 1

4
p1t),

λ2 = p2 − µ2t(e2 + 1
2p2t) + 1

6µ
4t3(e2 + 1

4p2t),

λ3 = p3 − ν2t(e3 + 1
2p3t− 1

6gt
2) + 1

6ν
4t3(e3 + 1

4p3t− 1
20gt

2).

 (162.)

But a little attention to the nature of this process shows that all the successive corrections to
which it conducts can be only rational and integer and homogeneous functions, of the second
dimension, of the quantities λ1 λ2 λ3 p1 p2 p3 g, and that they may all be put under the
following form, which is therefore the form of their sum, or of the whole sought function C;

C = µ−2aµ(λ1 − p1)2 + bµp1(λ1 − p1) + µ2cµp
2
1

+ µ−2aµ(λ2 − p2)2 + bµp2(λ2 − p2) + µ2cµp
2
2

+ ν−2aν(λ3 − p3)2 + bνp3(λ3 − p3) + ν2cνp
2
3

+ fνg(λ3 − p3) + ν2hνgp3 + ν2iνg
2,

 (163.)

the cofficients aµ aν , &c. being functions of the small quantities µ, ν, and also of the time,
of which it remains to discover the forms. Denoting therefore their differentials, taken with
respect to the time, as follows,

daµ = a′µ dt, daν = a′νdt, &c., (164.)

and substituting the expression (163.) in the rigorous partial differential equation (158.), we
are conducted to the six following equations in ordinary differentials of the first order:

2a′ν = (2aν + ν2t)2; b′ν = (2aν + ν2t)(bν + t); c′ν = 1
2
(bν + t)2;

f ′ν = (2aν + ν2t)(fν − 1
2 t

2); h′ν = (bν + t)(fν − 1
2 t

2); i′ν = 1
2(fν − 1

2 t
2)2;

}
(165.)

along with the 6 following conditions, to determine the 6 arbitrary constants introduced by
integration,

a0 = − 1

2t
; b0 = − t

2
; f0 =

t2

6
; c0 =

t3

24
; h0 = − t

4

24
; i0 =

t5

90
. (166.)

In this manner we find, without difficulty, observing that aµ bµ cµ may be formed from
aν bν cν by changing ν to µ,

aν = −1
2
ν2t− 1

2
ν cotan νt, aµ = −1

2
µ2t− 1

2
µ cotanµt,

bν = −t+
1

ν
tan

νt

2
, bµ = −t+

1

µ
tan

µt

2
,

cν = − t

2ν2
+

1

ν3
tan

νt

2
, cµ = − t

2µ2
+

1

µ3
tan

µt

2
,

fν = 1
2 t

2 − 1

ν2
+
t

ν
cotan νt,

hν =
t2

2ν2
− t

ν3
tan

νt

2
,

iν =
t

2ν4
− t3

6ν2
− t2

2ν3
cotan νt.



(167.)
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The form of the function C is therefore entirely known, and we have for this function of
elements the following rigorous expression,

C = −(λ1 − p1)2 + (λ2 − p2)2

2µ tanµt
− (λ3 − p3)2

2ν tan νt

− t

2
{(λ1 − p1)2 + (λ2 − p2)2 + (λ3 − p3)2}

− t{p1(λ1 − p1) + p2(λ2 − p2) + p3(λ3 − p3)}

+
1

µ
{p1(λ1 − p1) + p2(λ2 − p2)} tan

µt

2
+

1

ν
p3(λ3 − p3) tan

νt

2

− t

2
(p2

1 + p2
2 + p2

3) +
1

µ
(p2

1 + p2
2) tan

µt

2
+

1

ν
p2

3 tan
νt

2

+

(
t2

2
− 1

ν2
+
t

ν
cotan νt

)
g(λ3 − p3) +

(
t2

2
− t

ν
tan

νt

2

)
gp3

+

(
t

2ν2
− t2

6
− t2

2ν
cotan νt

)
g2,



(168.)

which may be variously transformed, and gives by our general method the following systems
of rigorous integrals of the differential equations of varying elements, (150.), (151.):

e1 = − δC
δp1

= −λ1 − p1

µ sinµt
− p1

µ
tan

µt

2
,

e2 = − δC
δp2

= −λ2 − p2

µ sinµt
− p2

µ
tan

µt

2
,

e3 = − δC
δp3

= −λ3 − p3

ν sin νt
− p3

ν
tan

νt

2
+
g

ν

(
t

sin νt
− 1

ν

)
,


(169.)

and

κ1 =
δC

δλ1
= −(λ1 − p1)

(
t+

1

µ
cotanµt

)
+ p1

(
−t+

1

µ
tan

µt

2

)
,

κ2 =
δC

δλ2
= −(λ2 − p2)

(
t+

1

µ
cotanµt

)
+ p2

(
−t+

1

µ
tan

µt

2

)
,

κ3 =
δC

δλ3
= −(λ3 − p3)

(
t+

1

ν
cotan νt

)
+ p3

(
−t+

1

ν
tan

νt

2

)
+ g

(
t2

2
− 1

ν2
+
t

ν
cotan νt

)
;


(170.)

that is,
λ1 = p1 cosµt− e1µ sinµt,

λ2 = p2 cosµt− e2µ sinµt,

λ3 = p3 cos νt− e3ν sin νt+ g

(
t− 1

ν
sin νt

)
,

 (171.)
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and

κ1 = e1(cosµt+ µt sinµt) + p1

(
1

µ
sinµt− t cosµt

)
,

κ2 = e2(cosµt+ µt sinµt) + p2

(
1

µ
sinµt− t cosµt

)
,

κ3 = e3(cos νt+ νt sin νt) + p3

(
1

ν
sin νt− t cos νt

)
− g

(
vers νt

ν2
− t

ν
sin νt+

t2

2

)
.


(172.)

Accordingly, these rigorous expressions for the 6 varying elements, in the present dynam-
ical question, agree with the results obtained by the ordinary methods of integration from the
6 ordinary differential equations (150.) and (151.), and with those obtained by elimination
from the equations (113.), (114.), (147.).

Remarks on the foregoing Example.

30. The example which has occupied us in the last six numbers is not altogether ideal,
but is realised to some extent by the motion of a projectile in a void. For if we consider the
earth as a sphere, of radius R, and suppose the accelerating force of gravity to vary inversely
as the square of the distance r from the centre, and to be = g at the surface, this force will

be represented generally by
gR2

r2
; and to adapt the differential equations (78.) to the motion

of a projectile in a void, it will be sufficient to make

U = gR2

(
1

r
− 1

R

)
(173.)

If we place the origin of rectangular coordinates at the earth’s surface, and suppose the
semiaxis of +z to be directed vertically upwards, we shall have

r =
√

(R+ z)2 + x2 + y2, (174.)

and

U = −gz +
gz2

R
− g(x2 + y2)

2R
, (175.)

neglecting only those very small terms which have the square of the earth’s radius for a
divisor: neglecting therefore such terms, the force-function U in this question is of that form
(110.) on which all the reasonings of the example have been founded; the small constants

µ, ν, being the real and imaginary quantities

√
g

R
,

√
−2g

R
, respectively. We may therefore

apply the results of the recent numbers to the motions of projectiles in a void, by substituting
these values for the constants, and altering, where necessary, trigonometric to exponential
functions. But besides the theoretical facility and the little practical importance of researches
respecting such projectiles, the results would only be accurate as far as the first negative
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power (inclusive) of the earth’s radius, because the expression (110.) for the force-function
U is only accurate only so far; and therefore the rigorous and approximate investigations
of the six preceding numbers, founded on that expression, are offered only as mathematical
illustrations of a general method, extending to all problems of dynamics, at least to all those
to which the law of living forces applies.

Attracting Systems resumed: Differential Equations of internal or Relative Motion; Integra-
tion by the Principal Function.

31. Returning now from this digression on the motion of a single point, to the more
important study of an attracting or repelling system, let us resume the differential equations
(A.), which may be thus summed up:

dt δH = Σ(dη δ$ − d$δη); (A2.)

and in order to separate the absolute motion of the whole system in space from the motions
of its points among themselves, let us choose the following marks of position:

x′′ =
Σ .mx

Σm
, y′′ =

Σ .my

Σm
, z′′ =

Σ .mz

Σm
, (176.)

and
ξi = xi − xn, ηi = yi − yn, ζi = zi − zn; (177.)

that is, the 3 rectangular coordinates of the centre of gravity of the system, referred to an ori-
gin fixed in space, and the 3n−3 rectangular coordinates of the n−1 masses m1, m2, . . . mn−1,
referred to the nth mass mn, as an internal and moveable origin, but to axes parallel to the
former. We then find, as in the former Essay,

T = 1
2 (x′2′′ + y′2′′ + z′2′′ ) Σm+ 1

2 Σ′ .m(ξ′2 + η′2 + ζ ′2)

− 1

2 Σm

{
(Σ′ .mξ

′)
2

+ (Σ′ .mη
′)

2
+ (Σ′ .mζ

′)
2
}
,

 (178.)

the sign of summation Σ′ referring to the first n− 1 masses only; and therefore,

T =
1

2 Σm

{(
δT

δx′′′

)2

+

(
δT

δy′′′

)2

+

(
δT

δz′′′

)2
}

+ 1
2 Σ′ .

1

m

{(
δT

δξ′

)2

+

(
δT

δη′

)2

+

(
δT

δζ ′

)2
}

+
1

2mn

{(
Σ′

δT

δξ′

)2

+

(
Σ′

δT

δη′

)2

+

(
Σ′

δT

δζ ′

)2
}
.


(179.)

If then we put for abridgement,

x′′ =
1

m

δT

δξ′
= ξ′ − Σ′ .mξ

′

Σm
,

y′′ =
1

m

δT

δη′
= η′ − Σ′ .mη

′

Σm
,

z′′ =
1

m

δT

δζ ′
= ζ ′ − Σ′ .mζ

′

Σm
,


(180.)
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we shall have the expression

H = 1
2 (x′2′′ + y2

′′ + z′2′′ ) Σm+ 1
2 Σ′ .m(x′2′ + y′2′ + z′2′ )

+
1

2mn

{
(Σ′ .mx

′
′)

2
+ (Σ′ .my

′
′)

2
+ (Σ′ .mz

′
′)

2
}
− U,

 (B2.)

of which the variation is to be compared with the following form of (A2.),

dt δH = (dx′′ δx
′
′′ − dx′′′ δx′′ + dy′′ δy

′
′′ − dy′′′ δy′′ + dz′′ δz

′
′′ − dz′′′ δz′′) Σm

+ Σ′ .m(dξ δx′′ − dx′′ δξ + dη δy′′ − dy′′ δη + dζ δz′′ − dz′′ δζ),

}
(C2.)

in order to form, by our general process, 6n differential equations of the first order, between
the 6n quantities x′′ y′′ z′′ x

′
′′ y
′
′′ z
′
′′ ξ η ζ x

′
′ y
′
′ z
′
′ and the time t. In thus taking the variation

of H, we are to remember that the force-function U depends only on the 3n − 3 internal
coordinates ξ η ζ, being of the form

U = mn(m1f1 +m2f2 + · · ·+mn−1fn−1)

+m1m2f1,2 +m1m3f1,3 + · · ·+mn−2mn−1fn−2,n−1,

}
(D2.)

in which fi is a function of the distance of mi from mn, and fi,k is a function of the distance
of mi from mk, such that their derived functions or first differential coefficients, taken with
respect to the distances, express that laws of mutual repulsion, being negative in the case
of attraction; and then we obtain, as we desired, two separate groups of equations, for the
motion of the whole system of points in space, and for the motions of those points among
themselves; namely, first, the group

dx′′ = x′′′ dt, dx′′′ = 0,

dy′′ = y′′′ dt, dy′′′ = 0,

dz′′ = z′′′ dt, dz′′′ = 0,

 (181.)

and secondly the group

dξ =

(
x′′ +

1

mn
Σ′ .mx

′
′

)
dt, dx′′ =

1

m

δU

δξ
dt,

dη =

(
y′′ +

1

mn
Σ′ .my

′
′

)
dt, dy′′ =

1

m

δU

δη
dt,

dζ =

(
z′′ +

1

mn
Σ′ .mz

′
′

)
dt, dz′′ =

1

m

δU

δζ
dt.


(182.)

The six differential equations of the first order (181.), between x′′ y′′ z′′, x
′
′′ y
′
′′ z
′
′′ and t,

contain the law of rectilinear and uniform motion of the centre of gravity of the system; and
the 6n−6 equations of the same order, (182.), between the 6n−6 variables ξ η ζ x′′ y

′
′ z
′
′ and

the time, are forms for the differential equations of internal or relative motion. We might
eliminate the 3n− 3 auxiliary variables x′′ y

′
′ z
′
′ between these last equations, and so obtain
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the following other group of 3n− 3 equations of the second order, involving only the relative
coordinates and the time,

ξ′′ =
1

m

δU

δξ
+

1

mn
Σ′
δU

δξ
,

η′′ =
1

m

δU

δη
+

1

mn
Σ′
δU

δη
,

ζ ′′ =
1

m

δU

δζ
+

1

mn
Σ′
δU

δζ
;


(183.)

but it is better for many purposes to retain them under the forms (182.), omitting, however,
for simplicity, the lower accents of the auxiliary variables x′′ y

′
′ z
′
′ , because it is easy to prove

that these auxiliary variables (180.) are the components of centrobaric velocity, and because,
in investigating the properties of internal or relative motion, we are a liberty to suppose that
the centre of gravity of the system is fixed in space, at the origin of x y z. We may also, for
simplicity, omit the lower accent of Σ′, understanding that the summations are to fall only
on the first n − 1 masses, and denoting for greater distinctness the nth mass by a separate
symbol M ; and then we may comprise the differential equations of relative motion in the
following simplified formula,

dt δH = Σ .m(dξ δx′ − dx′ δξ + dη δy′ − dy′ δη + dζ δz′ − dz′ δζ), (E2.)

in which

H = 1
2 Σ .m(x′2 + y′2 + z′2) +

1

2M

{
(Σ .mx′)

2
+ (Σ .my′)

2
+ (Σ .mz′)

2
}
− U, (F2.)

And the integrals of these equations of relative motion are contained (by our general
method) in the formula

δS = Σ .m(x′ δξ − a′δα+ y′ δη − b′δβ + z′ δζ − c′δγ), (G2.)

in which α β γ a′ b′ c′ denote the initial values of ξ η ζ x′ y′ z′, and S is the principal function
of relative motion of the system; that is, the former function S, simplified by the omission
of the part which vanishes when the centre of gravity is fixed, and which gives in general the
laws of motion of that centre, or the integrals of the equations (181.).

Second Example: Case of a Ternary or Multiple System with one Predominant Mass; Equa-
tions of the undisturbed motions of the other masses about this, in their several Binary Sys-
tems; Differentials of all their Elements, expressed by the coefficients of one Disturbing Func-
tion.

32. Let us now suppose that the n− 1 masses m are small in comparision with the nth
mass M ; and let us separate the expression (F2.) for H into the two following parts,

H1 = Σ .
m

2

(
1 +

m

M

)
(x′2 + y′2 + z′2)−M Σ .mf,

H2 =
m1m2

M
(x′1x

′
2 + y′1y

′
2 + z′1z

′
2 −Mf1,2) + · · ·

+
mimk

M
(x′ix

′
k + y′iy

′
k + z′iz

′
k −Mfi,k) + · · · ,

 (H2.)
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of which the latter is small in comparision with the former, and may be neglected in a
first approximation. Suppressing it accordingly, we are conducted to the following 6n − 6
differential equations of the 1st order, belonging to a simpler motion, which may be called
the undisturbed :

dξ

dt
=

1

m

δH1

δx′
=
(

1 +
m

M

)
x′;

dx′

dt
= − 1

m

δH1

δξ
= M

δf

δξ
;

dη

dt
=

1

m

δH1

δy′
=
(

1 +
m

M

)
y′;

dy′

dt
= − 1

m

δH1

δη
= M

δf

δη
;

dζ

dt
=

1

m

δH1

δz′
=
(

1 +
m

M

)
z′;

dz′

dt
= − 1

m

δH1

δζ
= M

δf

δζ
.


(I2.)

These equations arrange themselves in n− 1 groups, corresponding to the n− 1 binary
systems (m,M); and it is easy to integrate the equations of each group separately. We may
suppose, then, these integrals found, under the forms,

κ = χ(1)(t, ξ, η, ζ, x′, y′, z′), ν = χ(4)(t, ξ, η, ζ, x′, y′, z′),

λ = χ(2)(t, ξ, η, ζ, x′, y′, z′), τ = χ(5)(t, ξ, η, ζ, x′, y′, z′),

µ = χ(3)(t, ξ, η, ζ, x′, y′, z′), ω = χ(6)(t, ξ, η, ζ, x′, y′, z′),

 (K2.)

the six quantities κ λ µ ν τ ω being constant for the undisturbed motion of any one binary
system; and therefore the six functions χ(1), χ(2), χ(3), χ(4), χ(5), χ(6), or κ, λ, µ, ν, τ , ω,
being such as to satisfy identically the following equation,

0 = m
δκ

δt
+
δκ

δξ

δH1

δx′
− δκ

δx′
δH1

δξ
+
δκ

δη

δH1

δy′
− δκ

δy′
δH1

δη
+
δκ

δζ

δH1

δz′
− δκ

δz′
δH1

δζ
, (L2.)

with five other analogous, for the five other elements λ, µ, ν, τ , ω, in any one binary system
(m,M).

33. Returning now to the original multiple system, we may retain as definitions the
equations (K2.), but then we can no longer consider the elements κi λi µi νi τi ωi of the
binary system (mi,M) as constant, because this system is now disturbed by the other masses
mk; however, the 6n− 6 equations of disturbed relative motion, when put under the forms

m
dξ

dt
=
δH1

δx′
+
δH2

δx′
, m

dx′

dt
= −δH1

δξ
− δH2

δξ
,

m
dη

dt
=
δH1

δy′
+
δH2

δy′
, m

dy′

dt
= −δH1

δη
− δH2

δη
,

m
dζ

dt
=
δH1

δz′
+
δH2

δz′
, m

dz′

dt
= −δH1

δζ
− δH2

δζ
,


(M2.)

and combined with the identical equations of the kind (L2.) give the following simple expres-
sion for the differential of the element κ, in its disturbed and variable state,

m
dκ

dt
=
δκ

δξ

δH2

δx′
− δκ

δx′
δH2

δξ
+
δκ

δη

δH2

δy′
− δκ

δy′
δH2

δη
+
δκ

δζ

δH2

δz′
− δκ

δz′
δH2

δζ
, (N2.)
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together with analogous expressions for the differentials of the other elements. And if we
express ξ η ζ x′ y′ z′, and therefore H2 itself, as depending on the time and on these varying
elements, we may transform the 6n− 6 differential equations of the 1st order (M2.), between
ξ η ζ x′ y′ z′ t, into the same number of equations of the same order between the varying
elements and the time; which will be of the forms:

m
dκ

dt
= {κ, λ}δH2

δλ
+ {κ, µ}δH2

δµ
+ {κ, ν}δH2

δν
+ {κ, τ}δH2

δτ
+ {κ, ω}δH2

δω
,

m
dλ

dt
= {λ, κ}δH2

δκ
+ {λ, µ}δH2

δµ
+ {λ, ν}δH2

δν
+ {λ, τ}δH2

δτ
+ {λ, ω}δH2

δω
,

m
dµ

dt
= {µ, κ}δH2

δκ
+ {µ, λ}δH2

δλ
+ {µ, ν}δH2

δν
+ {µ, τ}δH2

δτ
+ {µ, ω}δH2

δω
,

m
dν

dt
= {ν, κ}δH2

δκ
+ {ν, λ}δH2

δλ
+ {ν, µ}δH2

δµ
+ {ν, τ}δH2

δτ
+ {ν, ω}δH2

δω
,

m
dτ

dt
= {τ, κ}δH2

δκ
+ {τ, λ}δH2

δλ
+ {τ, µ}δH2

δµ
+ {τ, ν}δH2

δν
+ {τ, ω}δH2

δω
,

m
dω

dt
= {ω, κ}δH2

δκ
+ {ω, λ}δH2

δλ
+ {ω, µ}δH2

δµ
+ {ω, ν}δH2

δν
+ {ω, τ}δH2

δτ
,



(O2.)

if we put, for abridgement,

{κ, λ} =
δκ

δξ

δλ

δx′
− δκ

δx′
δλ

δξ
+
δκ

δη

δλ

δy′
− δκ

δy′
δλ

δη
+
δκ

δζ

δλ

δz′
− δκ

δz′
δλ

δζ
, (P2.)

and form the other symbols {κ, µ}, {λ, κ}, &c., from this, by interchanging the letters. It is
evident that these symbols have the properties,

{λ, κ} = −{κ, λ}, {κ, κ} = 0; (184.)

and it results from the principles of the 15th number, that these combinations {κ, λ}, &c.,
when expressed as functions of the elements, do not contain the time explicitly. There are,
in general, by (184.), only 15 such distinct combinations for each of the n−1 binary systems;
but there would thus be, in all, 15n− 15, if they admitted of no further reductions: however
it results from the principles of the 16th number, that 12n−12 of these combinations may be
made to vanish by a suitable choice of the elements. The following is another way of effecting
as great a simplification, at least for that extensive class of cases in which the undisturbed
distance between the two points of each binary system (m,M) admits of a minimum value.

Simplification of the Differential Expressions by a suitable choice of the Elements.

34. When the undisturbed distance r of m from M admists of such a minimum q,
corresponding to a time τ , and satisfying at that time the conditions

r′ = 0, r′′ > 0, (185.)
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then the integrals of the group (I2.), or the known rules of the undisturbed motion of m about
M , may be presented in the following manner:

κ =
√{(ξy′ − ηx′)2 + (ηz′ − ζy′)2 + (ζx′ − ξz′)2};

λ = κ− ξy′ + ηx′;

µ =
M +m

2M
(x′2 + y′2 + z′2)−Mf(r);

ν = tan−1 .
ηz′ − ζy′
ξz′ − ζx′ ;

τ = t−
∫ r

q

√
M

M +m
.
dr√
dr2

. dr√{
2µ+ 2Mf(r)−

(
1 +

m

M

) κ2

r2

} ;

ω = ν + sin−1 .
κζr−1

√
2λκ− λ2

−
∫ r

q

√
M +m

M
.
dr√
dr2

.
κ

r2
. dr√{

2µ+ 2Mf(r)−
(

1 +
m

M

) κ2

r2

} ;



(Q2.)

the minimum distance q being a function of the two elements κ, µ, which must satisfy the
conditions

2µ+ 2Mf(q)−
(

1 +
m

M

) κ2

q2
= 0, Mf ′(q) +

(
1 +

m

M

) κ2

q3
> 0; (186.)

and sin−1 s, tan−1 t, being used (according to Sir John Herschel’s notation) to express,
not the cosecant and cotangent, but the inverse functions corresponding to sine and cosine,
or the arcs which are more commonly called arc(sin = s), arc(tan = t). It must also be

observed that the factor
dr√
dr2

, which we have introduced under the signs of integration, is

not superfluous, but is designed to be taken as equal to positive or negative unity, according
as dr is positive or negative; that is, according as r is increasing or diminishing, so as to make
the element under each integral sign constantly positive. In general, it appears to be a useful
rule, though not always followed by analysts, to employ the real radical symbol

√
R only for

positive quantities, unless the negative sign be expressly prefixed; and then
r√
r2

will denote

positive or negative unity, according as r is positive or negative. The arc given by its sine, in
the expression of the element ω, is supposed to be so chosen as to increase continually with
the time.

35. After these remarks on the notation, let us apply the formula (P2.) to calculate the
values of the 15 combinations such as {κ, λ}, of the 6 constants or elements (Q2.).

Since
r =
√{ξ2 + η2 + ζ2}, (187.)

it is easy to perceive that the six combinations of the 4 first elements are as follows:

{κ, λ} = 0, {κ, µ} = 0, {κ, ν} = 0, {λ, µ} = 0, {λ, ν} = 1, {µ, ν} = 0. (188.)
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To form the 4 combinations of these first 4 elements with τ , we may observe, that this
5th element τ , as expressed in (Q2.), involves explicitly (besides the time) the distance r,
and the two elements κ, µ; but the combinations already determined show that these two
elements may be treated as constant in forming the four combinations now sought; we need
only attend, therefore, to the variation of r, and if we interpret by the rule (P2.) the symbols
{κ, r}, {λ, r}, {µ, r}, {ν, r}, and attend to the equations (I2.), we see that

{κ, r} = 0, {λ, r} = 0, {µ, r} = −dr
dt
, {ν, r} = 0, (189.)

dr

dt
being the total differential coefficient of r in the undisturbed motion, as determined by

the equations (I2); and, therefore, that

{κ, τ} = 0, {λ, τ} = 0, {ν, τ} = 0, (190.)

and

{µ, τ} = −δτ
δr

dr

dt
= +

dt

dr

dr

dt
= 1 : (191.)

observing that in differentiating the expressions of the elements (Q2), we may treat those
elements as constant, if we change the differentials of ξ η ζ x′ y′ z′ to their undisturbed
values. It remains to calculate the 5 combinations of these elements with the last element ω;
which is given by (Q2.) as a function of the distance r, the coordinate ζ, and the 4 elements
κ, λ, µ, ν; so that we may employ this formula,

{e, ω} =
δω

δr
{e, r}+

δω

δζ
{e, ζ}+

δω

δκ
{e, κ}+

δω

δλ
{e, λ}+

δω

δµ
{e, µ}+

δω

δν
{e, ν}, (192.)

in which, if e be any of the first five elements, or the distance r,

{e, r} = −1

r

(
ξ
δe

δx′
+ η

δe

δy′
+ ζ

δe

δz′

)
, {e, ζ} = − δe

δz′
, {e, κ} = 0, (193.)

and
δω

δζ
=

(
δκ

δz′

)−1

,
δω

δr
= −dζ

dr

δω

δζ
,

δω

δν
= 1; (194.)

the formula (192.) may therefore be thus written:

{e, ω} =


z′
(
ξ
δe

δx′
+ η

δe

δy′
+ ζ

δe

δz′

)
ξx′ + ηy′ + ζz′

− δe

δz′


(
δκ

δz′

)−1

+{e, ν}+δω

δλ
{e, λ}+δω

δµ
{e, µ}. (195.)

We easily find, by this formula, that

{κ, ω} = −1; {λ, ω} = 0; {µ, ω} = 0; {r, ω} =
dr

dt

δω

δµ
; (196.)
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and

{ν, ω} = − δν
δz′

δω

δζ
− δω

δλ
= 0. (197.)

The formula (195.) extends to the combination {τ, ω} also; but in calculating this last
combination we are to remember that τ is given by (Q2.) as a function of κ, µ, r, such that

δτ

δr
= − dt

dr
; (198.)

and thus we see, with the help of the combinations (196.) already determined, that

{τ, ω} = −δτ
δκ
− δω

δµ
=

δ

δκ

∫ r

q

Θr dr +
δ

δµ

∫ r

q

Ωr dr, (199.)

if we represent for abridgement by Θr and Ωr the coefficients of dr under the interal signs in
(Q2.), namely,

Θr =

√
M

M +m
.
dr√
dr2

{
2µ+ 2Mf(r)− M +m

M
.
κ2

r2

}− 1
2

,

Ωr =
κ

r2

√
M +m

M
.
dr√
dr2

{
2µ+ 2Mf(r)− M +m

M
.
κ2

r2

}− 1
2

,

 (200.)

These coefficients are evidently connected by the relation

δΘr

δκ
+
δΩr
δµ

= 0, (201.)

which gives
δ

δκ

∫ r

r′

Θr dr +
δ

δµ

∫ r

r′

Ωr dr = 0, (202.)

r′ being any quantity which does not vary with the elements κ and µ; we might therefore
at once conclude by (199.) that the combination {τ, ω} vanishes, if a difficulty were not
occasioned by the necessity of varying the lower limit q, which depends on those two elements,
and by the circumstance that at this lower limit the coefficients Θr Ωr become infinite.
However, the relation (202.) shows that we may express the combination {τ, ω} as follows:

{τ, ω} =
δ

δκ

∫ r′

q

Θr dr +
δ

δµ

∫ r′

q

Ωr dr, (203.)

r′ being an auxiliary and arbitrary quantity, which cannot really affect the result, but may
be made to facilitate the calculation; or in other words, we may assign to the distance r any
arbitrary value, not varying for infinitesimal variations of κ, µ, which may assist in calculating
the value of the expression (199.). We may therefore suppose that the increase of distance
r − q is small, and corresponds to a small positive interval of time t − τ , during which the
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distance r and its differential coefficient r′ are constantly increasing; and then after the first
moment τ , the quantity

Θr =
1

r′
(204.)

will be constantly finite, positive, and decreasing, during the same interval, so that its integral
must be greater than if it had constantly its final value; that is,

t− τ =

∫ r

q

Θr dr > (r − q)Θr. (205.)

Hence, although Θr tends to infinity, yet (r − q)Θr tends to zero, when by diminishing the
interval we make r tend to q; and therefore the following difference∫ r

q

Ωr dr −
M +m

M

κ

q2

∫ r

q

Θr dr =
M +m

M

∫ r

q

(
κ

r2
− κ

q2

)
Θr dr (206.)

will also tend to 0, and so will also its partial differential coefficient of the first order, taken
with respect to µ. We find therefore the following formula for {τ, ω}, (remembering that this
combination has been shown to be independent of r,)

{τ, ω} = Λ
r=q

{
δ

δκ

∫ r

q

Θr dr +
M +m

M

κ

q2

δ

δµ

∫ r

q

Ωr dr

}
; (207.)

the sign Λ
r=q

implying that the limit is to be taken to which the expression tends when r tends

to q. In this last formula, as in (199.), the integral

∫ r

q

Θr dr may be considered as a known

function of r, q, κ, µ, or simply of r, q, κ, if µ be eliminated by the first condition (186.); and
since it vanishes independently of κ when r = q, it may thus be denoted:∫ r

q

Θr dr = φ(r, q, κ)− φ(q, q, κ), (208.)

the form of the function φ depending on the law of attraction or repulsion. This integral
therefore, when considered as depending on κ and µ, by depending on κ and q, need not
be varied with respect to κ, in calculating {τ, ω} by (207.), because its partial differential

coefficient

(
δ

δκ

∫ r

q

Θr dr

)
, obtained by treating q as constant, vanishes at the limit r = q;

nor need it be varied with respect to q, because, by (186.),

δq

δκ
+
M +m

M

κ

q2

δq

δµ
= 0; (209.)

it may therefore be treated as constant, and we find at last

{τ, ω} = 0, (210.)
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the two terms (199.) or (203.) both tending to infinity when r tends to q, but always
destroying each other.

36. Collecting now our results, and presenting for greater clearness each combination
under the two forms in which it occurs when the order of the elements is changed, we have,
for each binary system, the following thirty expressions:

{κ, λ} = 0, {κ, µ} = 0, {κ, ν} = 0, {κ, τ} = 0, {κ, ω} = −1,

{λ, κ} = 0, {λ, µ} = 0, {λ, ν} = 1, {λ, τ} = 0, {λ, ω} = 0,

{µ, κ} = 0, {µ, λ} = 0, {µ, ν} = 0, {µ, τ} = 1, {µ, ω} = 0,

{ν, κ} = 0, {ν, λ} = −1, {ν, µ} = 0, {ν, τ} = 0, {ν, ω} = 0,

{τ, κ} = 0, {τ, λ} = 0, {τ, µ} = −1, {τ, ν} = 0, {τ, ω} = 0,

{ω, κ} = 1, {ω, λ} = 0, {ω, µ} = 0, {ω, ν} = 0, {ω, τ} = 0;


(R2.)

so that the three combinations

{µ, τ}, {ω, κ}, {λ, ν}

are each equal to positive unity; the three inverse combinations

{τ, µ}, {κ, ω}, {ν, λ}

are each equal to negative unity; and all the others vanish. The six differential equations of
the first order, for the 6 varying elements of any one binary system (m,M), are therefore, by
(O2.),

m
dµ

dt
=
δH2

δτ
, m

dτ

dt
= −δH2

δµ
,

m
dω

dt
=
δH2

δκ
, m

dκ

dt
= −δH2

δω
,

m
dλ

dt
=
δH2

δν
, m

dν

dt
= −δH2

δλ
,


(S2.)

and if we still omit the variation of t, they may all be summed up in this form for the variation
of H2,

δH2 = Σ .m(µ′δτ − τ ′δµ+ ω′δκ− κ′δω + λ′δν − ν′δλ), (T2.)

which single formula enables us to derive all the 6n−6 differential equations of the first order,
for all the varying elements of all the binary systems, from the variation or from the partial
differential coefficients of a single quantity H2, expressed as a function of those elements.

If we choose to introduce into the expression (T2.), for δH2, the variation of the time t,
we have only to change δτ to δτ − δt, because, by (Q2.), δt enters only so accompanied; that
is, t enters only under the form t − τi, in the expressions of ξi ηi ζi x

′
i y
′
i z
′
i as functions of

the time and of the elements; we have, therefore

δH2

δt
= −Σ

δH2

δτ
= −Σ .mµ′; (211.)
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and since, by (H2.), (Q2),
H1 = Σ .mµ, (212.)

we find, finally,
dH1

dt
= −δH2

δt
. (U2.)

This remarkable form for the differential ofH1, considered as a varying element, is general
for all problems of dynamics. It may be deduced by the general method from the formulæ of
the 13th and 14th numbers, which give

dH1

dt
=
δH2

δκ1
Σ

(
δH1

δη

δκ1

δ$
− δH1

δ$

δκ1

δη

)
+ · · ·+ δH2

δκ6n
Σ

(
δH1

δη

δκ6n

δ$
− δH1

δ$

δκ6n

δη

)
=
δH2

δκ1

δκ1

δt
+
δH2

δκ2

δκ2

δt
+ · · ·+ δH2

δκ6n

δκ6n

δt
= −δH2

δt
,

 (213.)

κ1 κ2 . . . κ6n being any 6n elements of a system expressed as functions of the time and of
the quantities η ω; or concisely by this special consideration, that H1 + H2 is constant in
the disturbed motion, and that in taking the first total differential coefficient of H2 with
respect to the time, the elements may by (F1.) be treated as constant. It is also a remarkable
corollary of the general principles just referred to, but not one difficult to verify, that the first

partial differential coefficient
δκs
δt

, of any element κs, taken with respect to the time, may be

expressed as a function of the elements alone, not involving the time explicitly.

On the essential distinction between the Systems of Varying Elements considered in this Essay
and those hitherto employed by mathematicians.

37. When we shall have integrated the differential equations of varying elements (S2.),
we can then calculate the varying relative coordinates ξ η ζ, for any binary system (m,M),
by the rules of undisturbed motion, as expressed by the equations (I2.), (Q2.), or by the
following connected formulæ:

ξ = r

(
cos θ +

λ

κ
sin(θ − ν) sin ν

)
,

η = r

(
sin θ − λ

κ
sin(θ − ν) cos ν

)
,

ζ =
r

κ

√
2λκ− λ2 sin(θ − ν);


(V2.)

in which the distance r is determined as a function of the time t and of the elements τ , κ, µ,
by the 5th equation (Q2.), and in which

θ = ω +

∫ r

q

√
M +m

M
.
dr√
dr2

.
κ

r2
dr√{

2µ+ 2Mf(r)−
(

1 +
m

M

) κ2

r2

} , (W2.)
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q being still the minimum of r, when the orbit is treated as constant, and being still connected
with the elements κ, µ, by the first equation of condition (186.). In astronomical language,
M is the sun, m a planet, ξ η ζ are the heliocentric rectangular coordinates, r is the radius
vector, θ the longitude in the orbit, ω the longitude of the perihelion, ν of the node, θ− ω is
the true anomaly, θ − ν the argument of latitude, µ the constant part of the half square of
undisturbed heliocentric velocity, diminished in the ratio of the sun’s mass (M) to the sum
(M +m) of masses of sun and planet, κ is the double of the areal velocity diminished in the

same ratio,
λ

κ
is the versed sine of the inclination of the orbit, q the perihelion distance, and

τ the time of perihelion passage. The law of attraction or repulsion is here left undetermined;
for Newton’s law, µ is the sun’s mass divided by the axis major of the orbit taken negatively,
and κ is the square root of the semiparameter, multiplied by the sun’s mass, and divided by
the square root of the sum of the masses of sun and planet. But the varying ellipse or
other orbit, which the foregoing formulæ require, differs essentially (though little) from that
hitherto employed by astronomers: because it gives correctly the heliocentric coordinates,
but not the heliocentric components of velocity, without differentiating the elements in the
calculation; and therefore does not touch but cuts, (though under a very small angle,) the
actual heliocentric orbit, described under the influence of all the disturbing forces.

38. For it results from the foregoing theory, that if we differentiate the expressions (V2.)
for the heliocentric coordinates, without differentiating the elements, and then assign to those
new varying elements their values as functions of the time, obtained from the equations (S2),
and deduce the centrobaric components of velocity by the formulæ (I2.), or by the following:

x′ =
Mξ′

M +m
, y′ =

Mη′

M +m
, z′ =

Mζ ′

M +m
; (214.)

then these centrobaric components will be the same functions of the time and of the new
varying elements which might be otherwise deduced by elimination from the integrals (Q2.),
and will represent rigorously (by the extension given in the theory to those last-mentioned
integrals) the components of velocity of the disturbed planet m, relatively to the centre of
gravity of the whole solar system. We chose, as more suitable to the general course of our
method, that these centrobaric components of velocity should be the auxiliary variables to
be combined with the heliocentric coordinates, and to have their disturbed values rigorously
expressed by the formulæ of undisturbed motion; but in making this choice it became neces-
sary to modify these latter formulæ, and to determine a varying orbit essentially distinct in
theory (though little differing in practice) from that conceived so beautifully by Lagrange.
The orbit which he imagined was more simply connected with the heliocentric motion of a
single planet, since it gave, for such heliocentric motion, the velocity as well as the position;
the orbit which we have chosen is perhaps more closely combined with the conception of a
multiple system, moving about its common centre of gravity, and influenced in every part
by the actions of all the rest. Whichever orbit shall be hereafter adopted by astronomers,
they will remember that both are equally fit to represent the celestial appearances, if the
numeric elements of either set be suitable determined by observation, and the elements of
the other set of orbits be deduced from these by calculation. Meantime mathematicians will
judge, whether in sacrificing a part of the simplicity of that geometrical conception on which
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the theories of Lagrange and Poisson are founded, a simplicity of another kind has not
been introduced, which was wanting in those admirable theories; by our having succeeded in
expressing rigorously the differentials of all our own new varying elements through the coef-
ficients of a single function: whereas it has seemed necessary hitherto to employ one function
for the Earth disturbed by Venus, and another function for Venus disturbed by the Earth.

Integration of the Simplified Equations, which determine the new varying Elements.

39. The simplified differential equations of varying elements, (S2.), are of the same form
as the equations (A.), and may be integrated in a similar manner. If we put, for abridgement,

(τ, κ, ν) =

∫ t

0

{
Σ

(
τ
δH2

δτ
+ κ

δH2

δκ
+ ν

δH2

δν

)
−H2

}
dt, (X2.)

and interpret similarly the symbols (µ, ω, λ), &c., we can easily assign the variations of the
following 8 combinations, (τ, κ, ν), (µ, ω, λ), (µ, κ, ν), (τ, ω, λ), (τ, ω, ν), (µ, κ, λ), (τ, κ, λ),
(µ, ω, ν); namely

δ(τ, κ, ν) = Σ .m(τ δµ− τ0 δµ0 + κ δω − κ0 δω0 + ν δλ− ν0 δλ0)−H2 δt,

δ(µ, ω, λ) = Σ .m(µ0 δτ0 − µ δτ + ω0 δκ0 − ω δκ+ λ0 δν0 − λ δν)−H2 δt,

δ(µ, κ, ν) = Σ .m(µ0 δτ0 − µ δτ + κ δω − κ0 δω0 + ν δλ− ν0 δλ0)−H2 δt,

δ(τ, ω, λ) = Σ .m(τ δµ− τ0 δµ0 + ω0 δκ0 − ω δκ+ λ0 δν0 − λ δν)−H2 δt,

δ(τ, ω, ν) = Σ .m(τ δµ− τ0 δµ0 + ω0 δκ0 − ω δκ+ ν δλ− ν0 δλ0)−H2 δt,

δ(µ, κ, λ) = Σ .m(µ0 δτ0 − µ δτ + κ δω − κ0 δω0 + λ0 δν0 − λ δν)−H2 δt,

δ(τ, κ, λ) = Σ .m(τ δµ− τ0 δµ0 + κ δω − κ0 δω0 + λ0 δν0 − λ δν)−H2 δt,

δ(µ, ω, ν) = Σ .m(µ0 δτ0 − µ δτ + ω0 δκ0 − ω δκ+ ν δλ− ν0 δλ0)−H2 δt,


(Y2.)

κ0 λ0 µ0 ν0 τ0 ω0 being the initial values of the varying elements κ λ µ ν τ ω. If, then, we
consider, for example, the first of these 8 combinations (τ, κ, ν), as a function of all of the
3n − 3 elements µi ωi λi, and of their initial values µ0,i ω0,i λ0,i, involving also in general
the time explicitly, we shall have the following forms for the 6n− 6 rigorous integrals of the
6n− 6 equations (S2.):

miτi =
δ

δµi
(τ, κ, ν); miτ0,i = − δ

δµ0,i
(τ, κ, ν);

miκi =
δ

δωi
(τ, κ, ν); miκ0,i = − δ

δω0,i
(τ, κ, ν);

miνi =
δ

δλi
(τ, κ, ν); miν0,i = − δ

δλ0,i
(τ, κ, ν);


(Z2.)

and in like manner we can deduce forms for the same rigorous integrals, from any one of
the eight combinations (Y2.). The determination of all the varying elements would there-
fore be fully accomplished, if we could find the complete expression for any one of these 8
combinations.
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40. A first approximate expression for any one of them can be found from the form under
which we have supposed H2 to be put, namely, as a function of the elements and of the time,
which may be thus denoted:

H2 = H2(t, κ1, λ1, µ1, ν1, τ1, ω1, · · · κn−1, λn−1, µn−1, νn−1, τn−1, ωn−1); (A3.)

by changing in this function the varying elements to their initial values, and employing the
following approximate integrals of the equations (S2.),

µ = µ0 +
1

m

∫ t

0

δH2

δτ0
dt, τ = τ0 −

1

m

∫ t

0

δH2

δµ0
dt,

ω = ω0 +
1

m

∫ t

0

δH2

δκ0
dt, κ = κ0 −

1

m

∫ t

0

δH2

δω0
dt,

λ = λ0 +
1

m

∫ t

0

δH2

δν0
dt, ν = ν0 −

1

m

∫ t

0

δH2

δλ0
dt.


(B3.)

For if we denote, for example, the first of the 8 combinations (Y2.) by G, so that

G = (τ, κ, ν), (C3.)

we shall have, as a first approximate value,

G1 =

∫ t

0

{
Σ

(
τ0
δH2

δτ0
+ κ0

δH2

δκ0
+ ν0

δH2

δν0

)
−H2

}
dt; (D3.)

and after thus expressing G1 as a function of the time, and of the initial elements, we can
eliminate the initial quantities of the forms τ0 κ0 ν0, and introduce in their stead the final
quantities µ ω λ, so as to obtain an expression for G1 of the kind supposed in (Z2.), namely,
a function of the time t, the varying elements µ ω λ, and their initial values µ0 ω0 λ0.
An approximate expression thus found may be corrected by a process of that kind, which
has often been employed in this Essay for other similar purposes. For the function G, or the
combination (τ, κ, ν), must satisfy rigorously, by (Y2.), (A3.), the following partial differential
equation:

0 =
δG

δt
+H2

(
t,

1

m1

δG

δω1
, λ1, µ1,

1

m1

δG

δλ1
,

1

m1

δG

δµ1
, ω1,

1

m2

δG

δω2
, · · · ωn−1

)
; (E3.)

and each of the other analogous functions or combinations (Y2.) must satisfy an analogous
equation: if then we change G to G1 + G2, and neglect the squares and products of the
coefficients of the small correction G2, G1 being a first approximation such as that already
found, we are conducted, as a second approximation on principles already explained, to the
following expression for this correction G2:

G2 = −
∫ t

0

{
δG1

δt
+H2

(
1

m1

δG1

δω1
, λ1, µ1,

1

m1

δG1

δλ1
,

1

m1

δG1

δµ1
, ω1, · · ·

)}
dt : (F3.)

which may be continually and indefinitely improved by a repetition of the same process of
correction. We may therefore, theoretically, consider the problem as solved; but it must
remain for future consideration, and perhaps for actual trial, to determine which of all these
various processes of successive and indefinite approximation, deduced in the present Essay
and in the former, as corollaries of one general Method, and as consequences of one central
Idea, is best adapted for numeric application, and for the mathematical study of phenomena.
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