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NOTE ON THE TEXT

The text of this edition is taken from the Report of the Sixth Meeting of the British
Association for the Advancement of Science, held at Bristol in August 1836. (London: John
Murray, Albemarle St., 1837.)

Occurrences of ‘tth’ have been changed to ‘tth’ etc., for consistency with analogous
instances of ‘mth’.

The following errors have been corrected:—

the final addition sign (+) was omitted in equation (53.) in the original text;

ellipsis (. . .) was present in the original text between the second occurrence of ‘pm−1’
and ‘q0’ in the text block located between equations (59.) and (60.);

the fourth summand in equation (65.) was printed ‘Cx3’, and has been corrected to ‘Cx’;

‘h’ was printed ‘k’ in the original text in the phrase ‘of the dimension h’ in the text block
between equations (131.) and (132.);

the two final occurrences of ‘qm−2’ were originally printed ‘qm−1’ in the text block be-
tween the reprinted equations (102.) and (126.) in article [10.] (between equations (167.)
and (168.));

an unbalanced opening parenthesis was included in the original text in equation (309.),
before ‘h4h3’ in the third summand on the right hand side of the equation for 8h1.

David R. Wilkins

Dublin, February 2000
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Inquiry into the Validity of a Method recently proposed by George B. Jerrard,
Esq., for Transforming and Resolving Equations of Elevated Degrees: under-
taken at the Request of the Association by Professor Sir W. R. Hamilton.

[Report of the Sixth Meeting of the British Association for the Advancement of Science; held
at Bristol in August 1836. (London: John Murray, Albemarle Street. 1837.) pp. 295–348.]

[1.] It is well known that the result of the elimination of x, between the general equation
of the mth degree,

X = xm + Axm−1 + Bxm−2 + Cxm−3 + Dxm−4 + Exm−5 + &c. = 0 (1.)

and an equation of the form
y = f(x), (2.)

(in which f(x) denotes any rational function of x, or, more generally, any function which
admits of only one value for any one value of x,) is a new or transformed equation of the mth

degree, which may be thus denoted,

{y − f(x1)}{y − f(x2)} · · · {y − f(xm)} = 0, (3.)

x1, x2, . . . xm denoting the m roots of the proposed equation; or, more concisely, thus,

Y = ym + A′ym−1 + B′ym−2 + C′ym−3 + D′ym−4 + E′ym−5 + &c. = 0 (4.)

the coefficients A′, B′, C′, &c., being connected with the values f(x1), f(x2), &c., by the
relations,

−A′ = f(x1) + f(x2) + &c. + f(xm),

+B′ = f(x1)f(x2) + f(x1)f(x3) + f(x2)f(x3) + &c. + f(xm−1)f(xm),

−C′ = f(x1)f(x2)f(x3) + &c.

 (5.)

And it has been found possible, in several known instances, to assign such a form to the
function f(x) or y, that the new or transformed equation, Y = 0, shall be less complex or
easier to resolve, than the proposed or original equation X = 0. For example, it has long
been known that by assuming

y = f(x) =
A

m
+ x, (6.)

one term may be taken away from the general equation (1); that general equation being
changed into another of the form

Y = ym + B′ym−2 + C′ym−3 + &c. = 0, (7.)
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in which there occurs no term proportional to ym−1, the condition

A′ = 0 (8.)

being satisfied; and Tschirnhausen discovered that by assuming

y = f(x) = P + Qx+ x2, (9.)

and by determining P and Q so as to satisfy two equations which can be assigned, and which
are respectively of the first and second degrees, it is possible to fulfil the condition

B′ = 0, (10.)

along with the condition
A′ = 0, (8.)

and therefore to take away two terms at once from the general equation of the mth degree;
or, in other words, to change that equation (1) to the form

Y = ym + C′ym−3 + D′ym−4 + &c. = 0, (11.)

in which there occurs no term proportional either to ym−1 or to ym−2. But if we attempted
to take away three terms at once, from the general equation (1), or to reduce it to the form

Y = ym + D′ym−4 + E′ym−5 + &c. = 0, (12.)

(in which there occurs no term proportional to ym−1, ym−2, or ym−3,) by assuming, according
to the same analogy,

y = P + Qx+ Rx2 + x3, (13.)

and then determining the three coefficients P, Q, R, so as to satisfy the three conditions

A′ = 0, (8.)

B′ = 0, (10.)

and
C′ = 0, (14.)

we should be conducted, by the law (5) of the composition of the coefficients A′, B′, C′, to
a system of three equations, of the 1st, 2nd, and 3rd degrees, between the three coefficients
P, Q, R; and consequently, by elimination, in general, to a final equation of the 6th degree,
which the known methods are unable to resolve. Still less could we take away, in the present
state of algebra, four terms at once from the general equation of the mth degree, or reduce it
to the form

Y = ym + E′ym−5 + &c. = 0, (15.)
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by assuming an expression with four coefficients,

y = P + Qx+ Rx2 + Sx3 + x4; (16.)

because the four conditions,
A′ = 0, (8.)

B′ = 0, (10.)

C′ = 0, (14.)

and
D′ = 0, (17.)

would be, with respect to these four coefficients, P, Q, R, S, of the 1st, 2nd, 3rd, and 4th
degrees, and therefore would in general conduct by elimination to an equation of the 24th
degree. In like manner, if we attempted to take away the 2nd, 3rd, and 5th terms (instead
of the 2nd, 3rd and 4th) from the general equation of the mth degree, or to reduce it to the
form

ym + C′ym−3 + E′ym−5 + &c. = 0, (18.)

so as to satisfy the three conditions (8), (10) and (17),

A′ = 0, B′ = 0, D′ = 0,

by assuming
y = P + Qx+ Rx2 + x3, (13.)

we should be conducted to a final equation of the 8th degree; and if we attempted to satisfy
these three other conditions

A′ = 0, (8.)

C′ = 0, (14.)

and
D′ − αB′2 = 0, (19.)

(in which α is any known or assumed number,) so as to transform the general equation (1)
to the following,

Y = ym + B′ym−2 + αB′2ym−4 + E′ym−5 + &c. = 0, (20.)

by the same assumption (13), we should be conducted by elimination to an equation of
condition of the 12th degree. It might, therefore, have been naturally supposed that each
of these four transformations, (12), (15), (18), (20), of the equation of the mth degree, was
in general impossible to be effected in the present state of algebra. Yet Mr. Jerrard has
succeeded in effecting them all, by suitable assumptions of the function y or f(x), without
being obliged to resolve any equation higher than the fourth degree, and has even effected the
transformation (12) without employing biquadratic equations. His method may be described
as consisting in rendering the problem indeterminate, by assuming an expression for y with
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a number of disposable coefficients greater than the number of conditions to be satisfied;
and in employing this indeterminateness to decompose certain of the conditions into others,
for the purpose of preventing that elevation of degree which would otherwise result from
the eliminations. This method is valid, in general, when the proposed equation is itself of a
sufficiently elevated degree; but I have found that when the exponent m of that degree is below
a certain minor limit, which is different for different transformations, (being = 5 for the first,
= 10 for the second, = 5 for the third, and = 7 for the fourth of those already designated as the
transformations (12), (15), (18) and (20),) the processes proposed by Mr. Jerrard conduct in
general to an expression for the new variable y which is a multiple of the proposed evanescent
polynome X of the mth degree in x; and that on this account these processes, although valid
as general transformations of the equation of the mth degree, become in general illusory when
they are applied to resolve equations of the fourth and fifth degrees, by reducing them to the
binomial form, or by reducing the equation of the fifth degree to the known solvible form
of De Moivre. An analogous process, suggested by Mr. Jerrard, for reducing the general
equation of the sixth to that of the fifth degree, and a more general method of the same kind
for resolving equations of higher degrees, appear to me to be in general, for a similar reason,
illusory. Admiring the great ingenuity and talent exhibited in Mr. Jerrard’s researches, I
come to this conclusion with regret, but believe that the following discussion will be thought
to establish it sufficiently.

[2.] To begin with the transformation (12), or the taking away of the second, third and
fourth terms at once from the general equation of the mth degree, Mr. Jerrard effects this
transformation by assuming generally an expression with seven terms,

y = f(x) = Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′
+ M′xµ

′
+ M′′xµ

′′
+ M′′′xµ

′′′
+ MIVxµ

IV

(21.)

the seven unequal exponents λ′ λ′′ λ′′′ µ′ µ′′ µ′′′ µIV being chosen at pleasure out of the
indefinite line of integers

0, 1, 2, 3, 4, &c. (22.)

and the seven coefficients Λ′ Λ′′ Λ′′′ M′ M′′ M′′′ MIV, or rather their six ratios

Λ′

Λ′′′
,

Λ′′

Λ′′′
,

M′

MIV
,

M′′

MIV
,

M′′′

MIV
,

Λ′′′

MIV
(23.)

being determined so as to satisfy the three conditions

A′ = 0, (8.)

B′ = 0, (10.)

C′ = 0, (14.)

without resolving any equation higher than the third degree, by a process which may be
presented as follows.

In virtue of the assumption (21) and of the law (5) of the composition of the coefficients
A′, B′, C′, it is easy to perceive that those three coefficients are rational and integral and
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homogeneous functions of the seven quantities Λ′ Λ′′ Λ′′′ M′ M′′ M′′′ MIV, of the dimensions
one, two and three respectively; and therefore that A′ and B′ may be developed or decomposed
into parts as follows:

A′ = A′1,0 + A′0,1, (24.)

B′ = B′2,0 + B′1,1 + B′0,2, (25.)

the symbol A′h,i or B′h,i denoting here a rational and integral function of Λ′, Λ′′, Λ′′′, M′,

M′′, M′′′, MIV, which is homogeneous of the degree h with respect to Λ′, Λ′′, Λ′′′, and of the
degree i with respect to M′, M′′, M′′′, MIV. If then we first determine the two ratios of Λ′,
Λ′′, Λ′′′, so as to satisfy the two conditions

A′1,0 = 0, (26.)

B′2,0 = 0, (27.)

and afterwards determine the three ratios of M′, M′′, M′′′, MIV, so as to satisfy the three
other conditions

A′0,1 = 0, (28.)

B′1,1 = 0, (29.)

B′0,2 = 0, (30.)

we shall have decomposed the two conditions (8) and (10), namely,

A′ = 0, B′ = 0,

into five others, and we shall have satisfied these five by means of the five first ratios of the
set (23), namely

Λ′

Λ′′′
,

Λ′′

Λ′′′
,

M′

MIV
,

M′′

MIV
,

M′′′

MIV
, (31.)

without having yet determined the remaining ratio of that set, namely

Λ′′′

MIV
; (32.)

which remaining ratio can then in general be chosen so as to satisfy the remaining condition

C′ = 0,

without our being obliged, in any part of the process, to resolve any equation higher than the
third degree. And such, in substance, is Mr. Jerrard’s general process for taking away the
second, third and fourth terms at once from the equation of the mth degree, although he has
expressed it in his published Researches by means of a new and elegant notation of symmetric
functions, which it has not seemed necessary here to introduce, because the argument itself
can be sufficiently understood without it.
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[3.] On considering this process with attention, we perceive that it consists essentially
of two principal parts, the one conducting to an expression of the form

y = f(x) = Λ′′′φ(x) + MIVχ(x), (33.)

which satisfies the two conditions

A′ = 0, B′ = 0,

the functions φ(x) and χ(x) being determined, namely,

φ(x) =
Λ′

Λ′′′
xλ
′
+

Λ′′

Λ′′′
xλ
′′

+ xλ
′′′
, (34.)

and

χ(x) =
M′

MIV
xµ
′
+

M′′

MIV
xµ
′′

+
M′′′

MIV
xµ
′′′

+ xµ
IV

, (35.)

but the multipliers Λ′′′ and MIV being arbitrary, and the other part of the process determining
afterwards the ratio of those two multipliers so as to satisfy the remaining condition

C′ = 0.

And hence it is easy to see that if we would exclude those useless cases in which the ultimate
expression for the new variable y, or the function f(x), is a multiple of the proposed evanescent
polynome X of the mth degree in x, we must, in general, exclude the cases in which the two
functions φ(x) and χ(x), determined in the first part of the process, are connected by a
relation of the form

χ(x) = aφ(x) + λX, (36.)

a being any constant multiplier, and λX any multiple of X. For in all such cases the expression
(33), obtained by the first part of the process, becomes

y = f(x) = (Λ′′′ + aMIV)φ(x) + λMIVX; (37.)

and since this gives, by the nature of the roots x1, . . . xm,

f(x1) = (λ′′′ + aMIV)φ(x1), . . . f(xm) = (λ′′′ + aMIV)φ(xm), (38.)

we find, by the law (5) of the composition of the coefficients of the transformed equation in
y,

C′ = c(Λ′′′ + aMIV)3, (39.)

the multiplier c being known, namely,

c = −φ(x1)φ(x2)φ(x3)− φ(x1)φ(x2)φ(x4)−&c. (40.)
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and being in general different from 0, because the three first of the seven terms of the expres-
sion (21) for y can only accidentally suffice to resolve the original problem; so that when we
come, in the second part of the process, to satisfy the condition

C′ = 0,

we shall, in general, be obliged to assume

(Λ′′′ + aMIV)3 = 0, (41.)

that is,
Λ′′′ + aMIV = 0; (42.)

and consequently the expression (37) for y reduces itself ultimately to the form which we
wished to exclude, since it becomes

y = λMIVX. (43.)

Reciprocally, it is clear that the second part of the process, or the determination of the ratio
of Λ′′′ to MIV in the expression (33), cannot conduct to this useless form for y unless the
two functions φ(x) and χ(x) are connected by a relation of the kind (36); because, when
we equate the expression (33) to any multiple of X, we establish thereby a relation of that
kind between those two functions. We must therefore endeavour to avoid those cases, and we
need avoid those only, which conduct to this relation (36), and we may do so in the following
manner.

[4.] Whatever positive integer the exponent ν may be, the power xν may always be
identically equated to an expression of this form,

xν = s
(ν)
0 + s

(ν)
1 x+ s

(ν)
2 x2 + · · ·+ s

(ν)
m−1x

m−1 + L(ν)X, (44.)

s
(ν)
0 , s

(ν)
1 , s

(ν)
2 , . . . s

(ν)
(m−1) being certain functions of the exponent ν, and of the coefficients

A,B,C, . . . of the proposed polynome X, while L(ν) is a rational and integral function of x,
which is = 0 if ν be less than the exponent m of the degree of that proposed polynome X,
but otherwise is of the degree ν −m. In fact, if we divide the power xν by the polynome X,
according to the usual rules of the integral division of polynomes, so as to obtain an integral
quotient and an integral remainder, the integral quotient may be denoted by L(ν), and the
integral remainder may be denoted by

s
(ν)
0 + s

(ν)
1 x+ s

(ν)
2 x2 + · · ·+ s

(ν)
m−1x

m−1,

and thus the identity (44) may be established. It may be noticed that the m coefficients

s
(ν)
0 , s

(ν)
1 , . . . s

(ν)
(m−1), may be considered as symmetric functions of the m roots x1, x2, . . . xm

of the proposed equation X = 0, which may be determined by the m relations,

xν1 = s
(ν)
0 + s

(ν)
1 x1 + s

(ν)
2 x2

1 + · · ·+ s
(ν)
m−1x

m−1
1 ,

xν2 = s
(ν)
0 + s

(ν)
1 x2 + s

(ν)
2 x2

2 + · · ·+ s
(ν)
m−1x

m−1
2 ,

· · · · · ·
xνm = s

(ν)
0 + s

(ν)
1 xm + s

(ν)
2 x2

m + · · ·+ s
(ν)
m−1x

m−1
m .

 (45.)
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These symmetric functions of the roots possess many other important properties, but it is
unnecessary here to develop them.

Adopting the notation (44), we may put, for abridgment,

Λ′s
(λ′)
0 + Λ′′s

(λ′′)
0 + Λ′′′s

(λ′′′)
0 = p0,

· · · · · ·
Λ′s

(λ′)
m−1 + Λ′′s

(λ′′)
m−1 + Λ′′′s

(λ′′′)
m−1 = pm−1,

 (46.)

M′s
(µ′)
0 + M′′s

(µ′′)
0 + M′′′s

(µ′′′)
0 + MIVs

(µIV)
0 = p′0,

· · · · · ·
M′s

(µ′)
m−1 + M′′s

(µ′′)
m−1 + M′′′s

(µ′′′)
m−1 + MIVs

(µIV)
m−1 = p′m−1,

 (47.)

Λ′L(λ′) + Λ′′L(λ′′) + Λ′′′L(λ′′′) = Λ, (48.)

M′L(µ′) + M′′L(µ′′) + M′′′L(µ′′′) + MIVL(µIV) = M, (49.)

Λ + M = L (50.)

and then the two parts, of which the expression for y is composed, will take the forms

Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′
= p0 + p1x+ · · ·+ pm−1x

m−1 + ΛX, (51.)

M′xµ
′
+ M′′xµ

′′
+ M′′′xµ

′′′
+ MIVxµ

IV

= p′0 + p′1x+ · · ·+ p′m−1x
m−1 + MX, (52.)

and the expression itself will become

y = f(x) = p0 + p′0 + (p1 + p′1)x+ · · ·+ (pm−1 + p′m−1)xm−1 + LX. (53.)

At the same time we see that the case to be avoided, for the reason lately assigned, is the
case of proportionality of p′0, p

′
1, . . . p

′
m−1 to p0, p1, . . . pm−1. It is therefore convenient to

introduce these new abbreviations,
p′m−1

pm−1
= p, (54.)

and
p′0 − pp0 = q0, p′1 − pp1 = q1, . . . p′m−2 − ppm−2 = qm−2; (55.)

for thus we obtain the expressions

p′0 = q0 + pp0, p′1 = q1 + pp1, . . . p′m−2 = qm−2 + ppm−2, p′m−1 = ppm−1, (56.)

and

y = f(x) = (1 + p)(p0 + p1x+ · · ·+ pm−1x
m−1) + q0 + q1x+ · · ·+ qm−2x

m−2 + LX; (57.)

and we have only to take care that the m− 1 quantities, q0, q1, . . . qm−2 shall not all vanish.
Indeed it is tacitly supposed in (54) that pm−1 does not vanish; but it must be observed that
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Mr. Jerrard’s method itself essentially supposes that the function Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′
is

not any multiple of the evanescent polynome X, and therefore that at least some one of the m
quantities p0, p1, . . . pm−1 is different from 0; now the spirit of the definitional assumptions
here made, and of the reasonings which are to be founded upon them, requires only that
some one such non-evanescent quantity pi out of this set p0, p1, . . . pm−1 should be made the

denominator of a fraction like (54),
p′i
pi

= p, and that thus some one term qix
i should be taken

away out of the difference of the two polynomes, p′0 + p′1x + · · · and p(p0 + p1x + · · ·); and
it is so easy to make this adaptation, whenever the occasion may arise, that I shall retain in
the present discussion, the assumptions (54) (55), instead of writing pi for pm−1.

The expression (57) for f(x), combined with the law (5) of the composition of the
coefficients A′ and B′, shows that these two coefficients of the transformed equation in y may
be expressed as follows,

A′ = (1 + p)A′′1,0 + A′′0,1, (58.)

and
B′ = (1 + p)2B′′2,0 + (1 + p)B′′1,1 + B′′0,2; (59.)

A′′h,i and B′′h,i being each a rational and integral function of the 2m− 1 quantities p0, p1, . . .
pm−1, q0, q1, . . . qm−2, which is independent of the quantity p and of the form of the function L,
and is homogeneous of the dimension h with respect to p0, p1, . . . pm−1, and of the dimension i
with respect to q0, q1, . . . qm−2. Comparing these expressions (58) and (59) with the analogous
expressions (24) and (25), (with which they would of necessity identically coincide, if we were
to return from the present to the former symbols, by substituting, for p0, p1, . . . pm−1, q0,
q1, . . . qm−2, their values as functions of Λ′, Λ′′, Λ′′′, M′, M′′, M′′′, MIV, deduced from the
equations of definition (54) (55) and (46) (47),) we find these identical equations:

A′1,0 = A′′1,0; A0,1 = pA′′1,0 + A′′0,1; (60.)

B′2,0 = B′′2,0; B′1,1 = 2pB′′2,0 + B′′1,1; B′0,2 = p2B′′2,0 + pB′′1,1 + B′′0,2; (61.)

observing that whatever may be the dimension of any part of A′ or B′,with respect to the m
new quantities p, q0, q1, . . . qm−2, the same is the dimension of that part, with respect to the
four old quantities M′, M′′, M′′′, MIV.

The system of the five conditions (26) (27) (28) (29) (30) may therefore be transformed
to the following system,

A′′1,0 = 0, B′′2,0 = 0, (62.)

A′′0,1 = 0, B′′1,1 = 0, B′′0,2 = 0; (63.)

and may in general be treated as follows. The two conditions (62), combined with the m
equations of definition (46), will in general determine the m+ 2 ratios of the m+ 3 quantities
p0, p1, . . . pm−1, Λ, Λ′′, Λ′′′; and then the three conditions (63), combined with the m
equations of definition (47) and with the m other equations (56), will in general determine
the 2m + 3 ratios of the 2m + 4 quantities q0, q1, . . . qm−2, ppm−1, p′0, p′1, . . . p

′
m−1, M′,

M′′, M′′′, MIV; after which, the ratio of Λ′′′ to MIV is to be determined, as before, so as to
satisfy the remaining condition C′ = 0. But because the last-mentioned system, of 2m + 3
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homogeneous equations, (63) (56) (47), between 2m + 4 quantities, involves, as a part of
itself, the system (63) of three homogeneous equations (rational and integral) between m− 1
quantities q0, q1, . . . qm−2, we see that it will in general conduct to the result which we wished
to exclude, namely the simultaneous vanishing of all those quantities,

q0 = 0, q1 = 0, . . . qm−2 = 0, (64.)

unless their number m − 1 be greater than 3, that is, unless the degree m of the proposed
equation (1) be at least equal to the minor limit five. It results, then, from this discussion,
that the transformation by which Mr. Jerrard has succeeded in taking away three terms at once
from the general equation of the mth degree, is not in general applicable when that degree is
lower than the 5th; in such a manner that it is in general inadequate to reduce the biquadratic
equation

x4 + Ax3 + Bx2 + Cx+ D = 0, (65.)

to the binomial form
y4 + D′ = 0, (66.)

except by the useless assumption

y = L(x4 + Ax3 + Bx2 + Cx+ D), (67.)

which gives
y4 = 0. (68.)

However, the foregoing discussion by be considered as confirming the adequacy of the method
to reduce the general equation of the 5th degree,

x5 + Ax4 + Bx3 + Cx2 + Dx+ E = 0, (69.)

to the trinomial form
y5 + D′y + E′ = 0; (70.)

and to effect the analogous transformation (12) for equations of all higher degrees: an unex-
pected and remarkable result, which is one of Mr. Jerrard’s principal discoveries.

[5.] Analogous remarks apply to the process proposed by the same mathematician for
taking away the second, third and fifth terms at once from the general equation (1), so as to
reduce that equation to the form (18). This process agrees with the foregoing in the whole of
its first part, that is, in the assumption of the form (21) for f(x), and in the determination
of the five ratios (31) so as to satisfy the two conditions A′ = 0, B′ = 0, by satisfying the five
others (26) (27) (28) (29) (30), into which those two may be decomposed; and the difference
is only in the second part of the process, that is, in determining the remaining ratio (32) so
as to satisfy the condition D′ = 0, instead of the condition C′ = 0, by resolving a biquadratic
instead of a cubic equation. The discussion which has been given of the former process of
transformation adapts itself therefore, with scarcely any change, to the latter process also,
and shows that this process can only be applied with success, in general, to equations of the

10



fifth and higher degrees. It is, however, a remarkable result that it can be applied generally
to such equations, and especially that the general equation of the fifth degree may be brought
by it to the following trinomial form,

y5 + C′y2 + E′ = 0, (71.)

as it was reduced, by the former process, to the form

y5 + D′y + E′ = 0. (70.)

Mr. Jerrard, to whom the discovery of these transformations is due, has remarked that

by changing y to
1

z
we get two other trinomial forms to which the general equation of the

fifth degree may be reduced; so that in any future researches respecting the solution of such
equations, it will be permitted to set out with any one of these four trinomial forms,

x5 + Ax4 + E = 0,

x5 + Bx3 + E = 0,

x5 + Cx2 + E = 0,

x5 + Dx+ E = 0,

 (72.)

in which the intermediate coefficient A or B or C or D may evidently be made equal to unity,
or to any other assumed number different from zero. We may, for example, consider the
difficulty of resolving the general equation of the fifth degree as reduced by Mr. Jerrard’s
researches to the difficulty of resolving an equation of the form

x5 + x+ E = 0; (73.)

or of this other form,
x5 − x+ E = 0. (74.)

It is, however, important to remark that the coefficients of these new or transformed
equations will often be imaginary, even when the coefficients of the original equation of the
form (69) are real.

[6.] In order to accomplish the transformation (20), (to the consideration of which we
shall next proceed,) Mr. Jerrard assumes, in general, an expression with twelve terms,

y = f(x) = Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′

+ M′xµ
′
+ M′′xµ

′′
+ M′′′xµ

′′′
+ MIVxµ

IV

+ N′xν
′
+ N′′xν

′′
+ N′′′xν

′′′
+ NIVxν

IV

+ NVxν
V

; (75.)

the twelve unequal exponents,

λ′, λ′′, λ′′′, µ′, µ′′, µ′′′, µIV, ν′, ν′′, ν′′′, νIV, νV, (76.)

11



being chosen with pleasure out of the indefinite line of integers (22); and the twelve coeffi-
cients,

Λ′,Λ′′,Λ′′′,M′,M′′,M′′′,MIV,N′,N′′,N′′′,NIV,NV, (77.)

or rather their eleven ratios, which may be arranged and grouped as follows,

Λ′

Λ′′′
,

Λ′′

Λ′′′
, (78.)

M′

MIV
,

M′′

MIV
,

M′′′

MIV
, (79.)

N′

NV
,

N′′

NV
,

N′′′

NV
,

NIV

NV
, (80.)

MIV

NV
, (81.)

Λ′′′

NV
, (82.)

being then determined so as to satisfy the system of the three conditions

A′ = 0, (8.)

C′ = 0, (14.)

D′ − αB′2 = 0, (19.)

by satisfying another system, composed of eleven equations, which are obtained by decompos-
ing the condition (8) into three, and the condition (14) into seven new equations, as follows.
By the law (5) of the formation of the four coefficients A′, B′, C′, D′, and by the assumed
expression (75), those four coefficients are rational and integral and homogeneous functions,
of the first, second, third and fourth degrees, of the twelve coefficients (77); and therefore,
when these latter coefficients are distributed into three groups, one group containing Λ′, Λ′′,
Λ′′′, another group containing M′, M′′, M′′′, MIV, and the third group containing N′, N′′,
N′′′, NIV, NV, the coefficient or function A′ may be decomposed into three parts,

A′ = A′1,0,0 + A′0,1,0 + A′0,0,1, (83.)

and the coefficient or function C′ may be decomposed in like manner into ten parts,

C′ = C′3,0,0 + C′2,1,0 + C′2,0,1 + C′1,2,0 + C′1,1,1 + C′1,0,2 + C′0,3,0 + C′0,2,1 + C′0,1,2 + C′0,0,3, (84.)

in which each of the symbols of the forms A′h,i,k and C′h,i,k denotes a rational and integral
function of the twelve quantities (77); which function (A′h,i,k or C′h,i,k) is homogeneous of the
dimension h with respect to the quantities Λ′, Λ′′, Λ′′′, of the dimension i with respect to the
quantities M′, M′′, M′′′, MIV, and of the dimension k with respect to the quantities N′, N′′,

12



N′′′, NIV, NV. Accordingly Mr. Jerrard decomposes the conditions A′ = 0 and C′ = 0 into
ten others, which may be thus arranged:

A′1,0,0 = 0, C′3,0,0 = 0; (85.)

A′0,1,0 = 0, C′2,1,0 = 0, C′1,2,0 = 0; (86.)

A′0,0,1 = 0, C′2,0,1 = 0, C′1,1,1 = 0, C′1,0,2 = 0; (87.)

C′0,3,0 + C′0,2,1 + C′0,1,2 + C′0,0,3 = 0; (88.)

nine of the thirteen parts of the expressions (83) and (84) being made to vanish separately,
and the sum of the other four parts being also made to vanish. He then determines the two
ratios (78), so as to satisfy the two conditions (85); the three ratios (79), so as to satisfy
the three conditions (86); the four ratios (80), so as to satisfy the four conditions (87); and
the ratio (81) so as to satisfy the condition (88); all which determinations can in general
be successively effected, without its being necessary to resolve any equation higher than the
third degree. The first part of the process is now completed, that is, the two conditions (8)
and (14),

A′ = 0, C′ = 0,

are now both satisfied by an expression of the form

y = f(x) = Λ′′′φ(x) + NVχ(x), (89.)

which is analogous to (33), and in which the functions φ(x) and χ(x) are known, but the
multipliers Λ′′′ and NV are arbitrary; and the second and only remaining part of the process
consists in determining the remaining ratio (82), of Λ′′′ to NV, by resolving an equation of
the fourth degree, so as to satisfy the remaining condition,

D′ − αB′2 = 0. (19.)

[7.] Such, then, (the notation excepted,) is Mr. Jerrard’s general process for reducing
the equation of the mth degree,

X = xm + Axm−1 + Bxm−2 + Cxm−3 + Dxm−4 + Exm−5 + &c. = 0 (1.)

to the form
Y = ym + B′ym−2 + αB′2ym−4 + E′ym−5 + &c. = 0, (20.)

without resolving any auxiliary equation of a higher degree than the fourth. But, on consid-
ering this remarkable process with attention, we perceive that if we would avoid its becoming
illusory, by conducting to an expression for y which is a multiple of the proposed polynome X,
we must, in general, (for reasons analogous to those already explained in discussing the trans-
formation (12),) exclude all those cases in which the functions φ(x) and χ(x) in the expression
(89) are connected by a relation of the form

χ(x) = aφ(x) + λX; (36.)

13



because, in all the cases in which such a relation exists, the first part of the process conducts
to an expression of the form

y = (Λ′′′ + aNV)φ(x) + λNVX, (90.)

and then the second part of the same process gives in general

(Λ′′′ + aNV)4 = 0, (91.)

that is
Λ′′′ + aNV = 0, (92.)

and ultimately
y = λNVX. (93.)

On the other hand, the second part of the process cannot conduct to this useless form for
y, unless the first part of the process has led to functions φ(x), χ(x), connected by a relation
of the form (36). This consideration suggests the introduction of the following new system of
equations of definition.

N′s
(ν′)
0 + N′′s

(ν′′)
0 + N′′′s

(ν′′′)
0 + NIVs

(νIV)
0 + NVs

(νV)
0 = p′′0 ,

· · · · · ·
N′s

(ν′)
m−1 + N′′s

(ν′′)
m−1 + N′′′s

(ν′′′)
m−1 + NIVs

(νIV)
m−1 + NVs

(νV)
m−1 = p′′m−1,

 (94.)

N′L(ν′) + N′′L(ν′′) + N′′′L(ν′′′) + NIVL(νIV) + NVL(νV) = N, (95.)

p′′m−1

pm−1
= p′, (96.)

p′′0 − p′p0 = q′0, p′′1 − p′p1 = q′1, . . . p′′m−2 − p′pm−2 = q′m−2 (97.)

to be combined with the definitions (46), (47), (48), (49), (54), (55), and with the following,
which may now be conveniently used instead of the definition (50),

Λ + M + N = L. (98.)

In this notation we shall have, as before,

p′0 = q0 + pp0, p′1 = q1 + pp1, . . . p′m−2 = qm−2 + ppm−2, p′m−1 = ppm−1, (56.)

and shall also have the analogous expressions

p′′0 = q′0 + p′p0, p′′1 = q′1 + p′p1, . . . p′′m−2 = q′m−2 + p′pm−2, p′′m−1 = p′pm−1; (99.)

the expression (75) for y will become

y = f(x) = p0 + p′0 + p′′0 + (p1 + p′1 + p′′1)x+ · · ·+ (pm−1 + p′m−1 + p′′m−1)xm−1 + LX, (100.)
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that is, by (56) and (99),

y = f(x) = (1 + p+ p′)(p0 + p1x+ · · ·+ pm−1x
m−1)

+ q0 + q′0 + (q1 + q′1)x+ · · ·+ (qm−2 + q′m−2)xm−2 + LX :

}
(101.)

and the excluded case, or case of failure, will now be the case when the sums

p′0 + p′′0 , p′1 + p′′1 , . . . p′m−1 + p′′m−1

are proportional to p0, p1, . . . pm−1, that is, when

q0 + q′0 = 0, q1 + q′1 = 0, . . . qm−2 + q′m−2 = 0. (102.)

Indeed it is here tacitly supposed that pm−1 does not vanish; but Mr. Jerrard’s method itself
supposes tacitly that at least some one, such as pi, of the m quantities p0, . . . pm−1, is different
from 0, and it is easy, upon occasion, to substitute any such non-evanescent quantity pi for
pm−1, and then to make the few other connected changes which the spirit of this discussion
requires.

The expression (101) for f(x), combined with the law (5) of the composition of the
coefficients A′ and C′, gives, for those coefficients, expressions of the forms,

A′ = (1 + p+ p′)A′′1,0,0 + A′′0,1,0 + A′′0,0,1, (103.)

and

C′ = (1 + p+ p′)3C′′3,0,0 + (1 + p+ p′)2(C′′2,1,0 + C′′2,0,1)

+ (1 + p+ p′)(C′′1,2,0 + C′′1,1,1 + C′′1,0,2) + C′′0,3,0 + C′′0,2,1 + C′′0,1,2 + C′′0,0,3, (104.)

A′′h,i,k and C′′h,i,k being rational and integral functions of the 3m − 2 quantities p0, p1, . . .
pm−1, q0, q1, . . . qm−2, q′0, q′1, . . . q

′
m−2, which functions are independent of p, p′, and L, and

are homogeneous of the dimension h with respect to p0, . . . pm−1, of the dimension i with
respect to q0, . . . qm−2, of the dimension k with respect to q′0, . . . q

′
m−2; they are also such

that the sums
A′′0,1,0 + A′′0,0,1 (105.)

and
C′′2,1,0 + C′′2,0,1 (106.)

are homogeneous functions, of the 1st dimension, of the m−1 sums q0 + q′0, . . . qm−2 + q′m−2;
while the sum

C′′1,2,0 + C′′1,1,1 + C′′1,0,2 (107.)

is a homogeneous function, of the 2nd dimension, and the sum

C′′0,3,0 + C′′0,2,1 + C′′0,1,2 + C′′0,0,3 (108.)
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is a homogeneous function, of the 3rd dimension, of the same m − 1 quantities. These new
expressions (103) and (104), for the coefficients A′ and C′, must identically coincide with the
former expressions (83) and (84), when we return from the present to the former notation, by
changing p, p′, p0, p1, . . . pm−1, q0, q1, . . . qm−2, q′0, q′1, . . . q

′
m−2, to their values as functions

of Λ′, Λ′′, Λ′′′, M′, M′′, M′′′, MIV, N′, N′′, N′′′, NIV, NV; and hence it is easy to deduce the
following identical equations:

A′1,0,0 = A′′1,0,0;

A′0,1,0 = pA′′1,0,0 + A′′0,1,0;

A′0,0,1 = p′A′′1,0,0 + A′′0,0,1;

 (109.)

and

C′3,0,0 = C′′3,0,0;

C′2,1,0 = 3pC′′3,0,0 + C′′2,1,0;

C′2,0,1 = 3p′C′′3,0,0 + C′′2,0,1;

C′1,2,0 = 3p2C′′3,0,0 + 2pC′′2,1,0 + C′′1,2,0;

C′1,1,1 = 6pp′C′′3,0,0 + 2p′C′′2,1,0 + 2pC′′2,0,1 + C′′1,1,1;

C′1,0,2 = 3p′2C′′3,0,0 + 2p′C′′2,0,1 + C′′1,0,2;

C′0,3,0 + C′0,2,1 + C′0,1,2 + C′0,0,3 = (p+ p′)3C′′3,0,0 + (p+ p′)2(C′′2,1,0 + C′′2,0,1)

+ (p+ p′)(C′′1,2,0 + C′′1,1,1 + C′′1,0,2) + C′′0,3,0 + C′′0,2,1 + C′′0,1,2 + C′′0,0,3.



(110.)

The system of the ten conditions (85), (86), (87), (88), may therefore be transformed to
the following:

A′′1,0,0 = 0, C′′3,0,0 = 0; (111.)

A′′0,1,0 = 0, C′′2,1,0 = 0, C′′1,2,0 = 0; (112.)

A′′0,0,1 = 0, C′′2,0,1 = 0, C′′1,1,1 = 0, C′′1,0,2 = 0; (113.)

C′′0,3,0 + C′′0,2,1 + C′′0,1,2 + C′′0,0,3 = 0; (114.)

and may in general be treated as follows. The two conditions (111) may first be combined
with the m equations of definition (46), and employed to determine the m + 2 ratios of the
m+ 3 quantities p0, . . . pm−1, Λ′ Λ′′ Λ′′′; and therefore to give a result of the form

Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′
= Λ′′′φ(x), (115.)

the function φ(x) being known. The three conditions (112), combined with the 2m equations
(47) and (56), may then be used to determine the 2m + 3 ratios of the 2m + 4 quantities
q0, . . . qm−2, ppm−1, p′0, . . . p

′
m−1, M′, M′′, M′′′, MIV, and consequently to give

M′xµ
′
+ M′′xµ

′′
+ M′′′xµ

′′′
+ MIVxµ

IV

= MIVψ(x), (116.)
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ψ(x) denoting a known function. The four conditions (113) may next be combined with the
2m equations (94) and (99), so as to determine the 2m + 4 ratios of the 2m + 5 quantities
q′0, . . . q

′
m−2, p′pm−1, p′′0 , . . . p

′′
m−1, N′, N′′, N′′′, NIV, NV; and thus we shall have

N′xν
′
+ N′′xν

′′
+ N′′′xν

′′′
+ NIVxν

IV

+ NVxν
V

= NVω(x), (117.)

the function ω(x) also being known; so that, at this stage, the expression (75) for y will be
reduced to the form

y = f(x) = Λ′′′φ(x) + MIVψ(x) + NVω(x), (118.)

the three functions φ(x), ψ(x), ω(x) being known, but the three coefficients Λ′′′, MIV, NV,
being arbitrary. The condition (114) will next determine the ratio of any one of the quantities
q0, . . . qm−2 to any one of the quantities q′0, . . . q

′
m−2, and therefore also the connected ratio

of MIV to NV, and consequently will give

MIVψ(x) + NVω(x) = NVχ(x), (119.)

χ(x) being another known function; and thus we shall have accomplished, in a way apparently
but not essentially different from that employed in the foregoing article, the first part of
Mr. Jerrard’s process, namely, the discovery of an expression for y, of the form

y = f(x) = Λ′′′φ(x) + NVχ(x), (89.)

which satisfies the two conditions

A′ = 0, C′ = 0,

the functions φ(x) and χ(x) being determined and known, but the multipliers Λ′′′ and NV

being arbitrary: after which it will only remain to perform the second part of the process,
namely, the determination of the ratio of Λ′′′ to NV, so as to satisfy the remaining condition

D′ − αB′2 = 0,

by resolving a biquadratic equation.

[8.] The advantage of this new way of presenting the first part of Mr. Jerrard’s process
is that it enables us to perceive, that if we would avoid the case of failure above mentioned,
we must in general exclude those cases in which the ratios

q′0
q′m−2

,
q′1

q′m−2

, . . .
q′m−3

q′m−2

, (120.)

determined, as above explained, through the medium of the conditions (113), coincide with
the ratios

q0
qm−2

,
q1

qm−2
, . . .

qm−3

qm−2
, (121.)
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determined, at an earlier stage, through the medium of the conditions (112). In fact, when
the ratios (120) coincide with the ratios (121), they necessarily coincide with the following
ratios also,

q0 + q′0
qm−2 + q′m−2

,
q1 + q′1

qm−2 + q′m−2

, . . .
qm−3 + q′m−3

qm−2 + q′m−2

; (122.)

and unless the ratios, thus determined, of the m− 1 sums q0 + q′0, . . . qm−2 + q′m−2, are acci-
dentally such as to satisfy the condition (114), which had not been employed in determining
them, then that condition, which is a rational and integral and homogeneous equation of
the third degree between those quantities, will oblige them all to vanish, and therefore will
conduct to the case of failure (102). Reciprocally, in that case of failure, the ratios (120)
coincide with the ratios (121), because we have then

q′0 = −q0, q′1 = −q1, . . . q′m−2 = −qm−2. (123.)

The case to be excluded, in general, is therefore that in which the m−1 quantities q′0, . . . q
′
m−2

are proportional to the m − 1 quantities q0, . . . qm−2; and this consideration suggests the
introduction of the following new symbols or definitions,

q′m−2

qm−2
= q, (124.)

q′0 − qq0 = r0, q′1 − qq1 = r1, . . . q′m−3 − qqm−3 = rm−3; (125.)

because, by introducing these, we shall only be obliged to guard against the simultaneous
vanishing of the m−2 quantities r0, r1, . . . rm−3; that is, we shall have the following simplified
statement of the general case of failure,

r0 = 0, r1 = 0, . . . rm−3 = 0. (126.)

Adopting, therefore, the definitions (124) and (125), and consequently the expressions

q′0 = r0 + qq0, q′1 = r1 + qq1, . . . q′m−3 = rm−3 + qqm−3, q′m−2 = qqm−2, (127.)

which give

q0 + q′0 = (1 + q)q0 + r0, q1 + q′1 = (1 + q)q1 + r1, . . .

qm−3 + q′m−3 = (1 + q)qm−3 + rm−3, qm−2 + q′m−2 = (1 + q)qm−2,

}
(128.)

we easily perceive that the three homogeneous functions (105) (106) (107), of these m − 1
sums q0 + q′0, . . . qm−2 + q′m−2, may be expressed in the following manner:

A′′0,1,0 + A′′0,0,1 = (1 + q)A′′′0,1,0 + A′′′0,0,1; (129.)

C′′2,1,0 + C′′2,0,1 = (1 + q)C′′′2,1,0 + C′′′2,0,1; (130.)

C′′1,2,0 + C′′1,1,1 + C′′1,0,2 = (1 + q)2C′′′1,2,0 + (1 + q)C′′′1,1,1 + C′′′1,0,2; (131.)
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the symbol A′′′h,i,k or C′′′h,i,k denoting here a rational and integral function of the 3m − 3
quantities p0, . . . pm−1, q0, . . . qm−2, r0, . . . rm−3, which is, like the function A′′h,i,k or C′′h,i,k,
homogeneous of the dimension h with respect to p0, . . . pm−1, and of the dimension i with
respect to q0, . . . qm−2, but is homogeneous of the dimension k with respect to r0, . . . rm−3,
and is independent of q′0, . . . q

′
m−2 and of p, p′, q; whereas A′′h,i,k or C′′h,i,k was homogeneous of

the dimension k with respect to q′0, . . . q
′
m−2, and was independent of r0, . . . rm−3. The three

identical equations (129) (130) (131) may be decomposed into the seven following, which are
analogous to (60) and (61):

A′′0,1,0 = A′′′0,1,0; A′′0,0,1 = qA′′′0,1,0 + A′′′0,0,1; (132.)

C′′2,1,0 = C′′′2,1,0; C′′2,0,1 = qC′′′2,1,0 + C′′′2,0,1; (133.)

C′′1,2,0 = C′′′1,2,0; C′′1,1,1 = 2qC′′′1,2,0 + C′′′1,1,1; C′′1,0,2 = q2C′′′1,2,0 + qC′′′1,1,1 + C′′′1,0,2; (134.)

and, in virtue of these, the seven conditions (112) and (113) may be put under the forms,

A′′′0,1,0 = 0, C′′′2,1,0 = 0, C′′′1,2,0 = 0, (135.)

and
A′′′0,0,1 = 0, C′′′2,0,1 = 0, C′′′1,1,1 = 0, C′′′1,0,2 = 0. (136.)

The three conditions of the group (135) differ only in their notation from the three conditions
(112), and are to be used exactly like those former conditions, in order to determine the
ratios of q0, . . . qm−2, after the ratios of p0, . . . pm−1 have been determined, through the help
of the conditions (111); but, in deducing the conditions (136) from the conditions (113), a real
simplification has been effected (and not merely a change of notation) by suppressing several
terms, such as qA′′′0,1,0, which vanish in consequence of the conditions (112) or (135). And
since we have thus been led to perceive the existence of a group (136), of four homogeneous
equations (rational and integral) between the m − 2 quantities r0, r1, . . . rm−3, we see, at
last, that we shall be conducted, in general, to the case of failure (126), in which all those
quantities vanish, unless their number m − 2 be greater than four ; that is unless the degree
of the proposed equation in x be at least equal to the minor limit seven. It results, then,
from this analysis, that for equations of the sixth and lower degrees, Mr. Jerrard’s process
for effecting the transformation (20), or of satisfying the three conditions (8) (14) and (19),

A′ = 0, C′ = 0, D′ − αB′2 = 0,

will, in general, become illusory, by conducting to an useless expression, of the form (93),
for the new variable y; so that it fails, for example, to reduce the general equation of the fifth
degree,

x5 + Ax4 + Bx3 + Cx2 + Dx+ E = 0, (69.)

to De Moivre’s solvible form,

y5 + B′y3 + 1
5B′2y + E′ = 0, (137.)
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except, by a useless assumption, of the form

y = L(x5 + Ax4 + Bx3 + Cx2 + Dx+ E), (138.)

which gives, indeed, a very simple transformed equation, namely,

y5 = 0, (139.)

but affords no assistance whatever towards resolving the proposed equation in x. Indeed,
for equations of the fifth degree, the foregoing discussion may be considerably simplified, by
observing, that, in virtue of the eight conditions (112), (113), (114), the four homogeneous
functions (105) (106) (107) (108), of the m−1 sums q0 +q′0, . . . qm−2 +q′m−2, are all = 0, and
therefore also (in general) those sums themselves must vanish (which is the case of failure
(102),) when their number m−1 is not greater than four, that is, when the proposed equation
is not higher than the fifth degree. But the foregoing discussion (though the great generality of
the question has caused it to be rather long) has the advantage of extending even to equations
of the sixth degree, and of showing that even for such equations the method generally fails,
in such a manner that it will not in general reduce the equation

x6 + Ax5 + Bx4 + Cx3 + Dx2 + Ex+ F = 0 (140.)

to the form
y6 + B′y4 + αB′y2 + E′y + F′ = 0, (141.)

except by the assumption

y = L(x6 + Ax5 + Bx4 + Cx3 + Dx2 + Ex+ F); (142.)

which gives, indeed, a very simple result, namely,

y6 = 0, (143.)

but does not at all assist us to resolve the proposed equation (140). However, this discussion
may be regarded as confirming the adequacy of the method to transform the general equation
of the seventh degree,

x7 + Ax6 + Bx5 + Cx4 + Dx3 + Ex2 + Fx+ G = 0, (144.)

to another of the form

y7 + B′y5 + αB′2y3 + E′y2 + F′y + G′ = 0, (145.)

without assuming y = any multiple of the proposed evanescent polynome x7 + Ax6 + &c.;
and to effect the analogous transformation (20), for equations of all higher degrees; a curious
and unexpected discovery, for which algebra is indebted to Mr. Jerrard.
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[9.] The result obtained by the foregoing discussion may seem, so far as it respects
equations of the sixth degree to be of very little importance; because the equation (141), to
which it has been shown that the method fails to reduce the general equation (140), is not
itself, in general, of any known solvible form, whatever value may be chosen for the arbitrary
multiplier α. But it must be observed that if the method had in fact been adequate to
effect that general transformation of the equation of the sixth degree, without resolving any
auxiliary equation of a higher degree than the fourth, then it would also have been adequate
to reduce the same general equation (140) of the sixth degree to this other form, which is
obviously and easily solvible,

y6 + B′y4 + D′y2 + F′ = 0, (146.)

by first assigning an expression of the form

y = f(x) = Λ′′′φ(x) + NVχ(x), (89.)

which should satisfy the two conditions

A′ = 0, (8.)

C′ = 0, (14.)

and by then determining the ratio of Λ′′′ to NV, so as to satisfy this other condition,

E′ = 0, (147.)

which could be done without resolving any auxiliary equation of a higher degree than the fifth;
and this reduction, of the difficulty of the sixth to that of the fifth degree, would have been
a very important result, of which it was interesting to examine the validity. The foregoing
discussion, however, appears to me to prove that this transformation also is illusory; for it
shows that, because the degree of the proposed equation is less than the minor limit 7, the
functions φ(x) and χ(x) in (89) are connected by a relation of the form (36); on which account
the expression (89) becomes

y = f(x) = (Λ′′′ + aNV)φ(x) + λNVX, (90.)

and the condition
E′ = 0, (147.)

gives, in general,
(Λ′′′ + aNV)5 = 0, (148.)

that is,
Λ′′′ + aNV = 0; (92.)

so that finally the expression for y becomes

y = λNVX, (93.)
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that is, it takes in general the evidently useless form,

y = L(x6 + Ax5 + Bx4 + Cx3 + Dx2 + Ex+ F). (142.)

[10.] Mr. Jerrard has not actually stated, in his published Researches, the process by
which he would effect in general the transformation (15), so as to take away four terms at
once from the equation of the mth degree, without resolving any auxiliary equation of a higher
degree than the fourth; but he has sufficiently indicated this process, which appears to be
such as the following. He would probably assume an expression with twenty-one terms for
the new variable,

y = f(x) = Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′

+ M′xµ
′
+ M′′xµ

′′
+ M′′′xµ

′′′
+ MIVxµ

IV

+ N′xν
′
+ N′′xν

′′
+ N′′′xν

′′′
+ NIVxν

IV

+ NVxν
V

+ NVIxν
VI

+ Ξ′xξ
′
+ Ξ′′xξ

′′
+ Ξ′′′xξ

′′′
+ ΞIVxξ

IV

+ ΞVxξ
V

+ ΞVIxξ
VI

+ ΞVIIxξ
VII

+ ΞVIIIxξ
VIII

, (149.)

and would develop or decompose the coefficients A′, B′, C′, of the transformed equation in y,
considered as rational and integral, and homogeneous functions of the twenty-one coefficients,

Λ, Λ′, Λ′′, (150.)

M′, M′′, M′′′, MIV, (151.)

N′, N′′, N′′′, NIV, NV, NVI, (152.)

Ξ′, Ξ′′, Ξ′′′, ΞIV, ΞV, ΞVI, ΞVII, ΞVIII, (153.)

into the following parts:

A′ = A′1,0,0,0 + A′0,1,0,0 + A′0,0,1,0 + A′0,0,0,1; (154.)

B′ = B′2,0,0,0 + B′1,1,0,0 + B′1,0,1,0 + B′1,0,0,1
+ B′0,2,0,0 + B′0,1,1,0 + B′0,1,0,1 + B′0,0,2,0 + B′0,0,1,1 + B′0,0,0,2; (155.)

C′ = C′3,0,0,0 + C′2,1,0,0 + C′2,0,1,0 + C′2,0,0,1 + C′1,2,0,0 + C′1,1,1,0 + C′1,1,0,1
+ C′1,0,2,0 + C′1,0,1,1 + C′1,0,0,2 + C′0,3,0,0 + C′0,2,1,0 + C′0,2,0,1
+ C′0,1,2,0 + C′0,1,1,1 + C′0,1,0,2 + C′0,0,3,0 + C′0,0,2,1 + C′0,0,1,2 + C′0,0,0,3; (156.)

each part A′h,i,k,l or B′h,i,k,l or C′h,i,k,l being itself a rational and integral function of the
twenty-one quantities (150) (151) (152) (153), and being also homogeneous of the degree h
with respect to the three quantities (150), of the degree i with respect to the four quantities
(151), of the degree k with respect to the six quantities (152), and of the degree l with respect
to the eight quantities (153). He would then determine the two ratios of the two first to the
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last of the three quantities (150) (that is, the ratios of Λ′ and Λ′′ to Λ′′′) so as to satisfy the
two conditions

A′1,0,0,0 = 0, B′2,0,0,0 = 0; (157.)

the three ratios of the first three to the last of the four quantities (151), so as to satisfy the
three conditions

A′0,1,0,0 = 0, B′1,1,0,0 = 0, B′0,2,0,0 = 0; (158.)

the ratio of the last of the quantities (150) to the last of the quantities (151), so as to satisfy
the condition

C′3,0,0,0 + C′2,1,0,0 + C′1,2,0,0 + C′0,3,0,0 = 0; (159.)

the five ratios of the five first to the last of the six quantities (152), so as to satisfy the five
conditions,

A′0,0,1,0 = 0,

B′1,0,1,0 + B′0,1,1,0 = 0,

B′0,0,2,0 = 0,

C′2,0,1,0 + C′1,1,1,0 + C′0,2,1,0 = 0,

C′1,0,2,0 + C′0,1,2,0 = 0;


(160.)

the seven ratios of the seven first to the last of the eight quantities (153), so as to satisfy the
seven conditions

A′0,0,0,1 = 0,

B′1,0,0,1 + B′0,1,0,1 = 0,

B′0,0,1,1 = 0, B′0,0,0,2 = 0,

C′2,0,0,1 + C′1,1,0,1 + C′0,2,0,1 = 0,

C′1,0,1,1 + C′0,1,1,1 = 0,

C′1,0,0,2 + C′0,1,0,2 = 0;


(161.)

and the ratio of the last of the quantities (152) to the last of the quantities (153), so as to
satisfy the condition

C′0,0,3,0 + C′0,0,2,1 + C′0,0,1,2 + C′0,0,0,3 = 0 : (162.)

all which determinations could in general be successively effected, without its being necessary
to resolve any equation of a higher degree than the fourth. The first part of the process would
now be completed; that is, the assumed expression (149) for y would be reduced to the form

y = f(x) = MIVφ(x) + ΞVIIIχ(x), (163.)

the functions φ(x) and χ(x) being determined and known, but the multipliers MIV and ΞVIII

being arbitrary, and this expression (163) being such as to satisfy the three conditions (8),
(10) and (14),

A′ = 0, B′ = 0, C′ = 0;

nineteen out of the twenty ratios of the twenty-one coefficients (150) (151) (152) (153) having
been determined so as to satisfy the nineteen equations (157) (158) (159) (160) (161) (162),
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into which those three conditions had been decomposed. And the second and only remaining
part of the process would consist in then determining the remaining ratio of MIV to ΞVIII, so
as to satisfy the remaining condition

D′ = 0, (17.)

and thereby to reduce the general equation of the mth degree,

X = xm + Axm−1 + Bxm−2 + Cxm−3 + Dxm−4 + Exm−5 + &c. = 0, (1.)

to the form
Y = ym + E′ym−5 + &c. = 0. (15.)

It is possible, of course, that this may not be precisely the same as Mr. Jerrard’s unpublished
process, but it seems likely that the one would not be found to differ from the other in any
essential respect, notation being always excepted. It is, at least, a process suggested by the
published researches of that author, and harmonizing with the discoveries which they contain.

But by applying to this new process the spirit of the former discussions, and putting for
abbreviation,

Λ′s
(λ′)
0 + Λ′′s

(λ′′)
0 + Λ′′′s

(λ′′′)
0 + M′s

(µ′)
0 + · · ·+ MIVs

(µIV)
0 = p0,

· · · · · ·
Λ′s

(λ′)
m−1 + Λ′′s

(λ′′)
m−1 + Λ′′′s

(λ′′′)
m−1 + M′s

(µ′)
m−1 + · · ·+ MIVs

(µIV)
m−1 = pm−1,

 (164.)

N′s
(ν′)
0 + · · ·+ NVIs

(νVI)
0 = p′0,

· · · · · ·
N′s

(ν′)
m−1 + · · ·+ NVIs

(νVI)
m−1 = p′m−1,

 (165.)

Ξ′s
(ξ′)
0 + · · ·+ ΞVIIIs

(ξVIII)
0 = p′′0 ,

· · · · · ·
Ξ′s

(ξ′)
m−1 + · · ·+ ΞVIIIs

(ξVIII)
m−1 = p′′m−1,

 (166.)

Λ′L(λ′) + Λ′′L(λ′′) + Λ′′′L(λ′′′) + M′L(µ′) + · · ·+ MIVL(µIV)

+ N′L(ν′) + · · ·+ NVIL(νVI) + Ξ′L(ξ′) + · · ·+ ΞVIIIL(ξVIII) = L, (167.)

we may change the expression (149) to the form (100), through the theorem and notation
(44); and in order to avoid the case of failure, in which the functions φ(x) and χ(x) in (163)
are connected by a relation of the form (36), we must avoid, as in the discussion given in the
seventh article, the case where the m sums p′0 + p′′0 , . . . p

′
m−1 + p′′m−1 are proportional to the

m quantities p0, . . . pm−1, that is, the case

q0 + q′0 = 0, . . . qm−2 + q′m−2 = 0, (102.)

if we adopt the definitions (54) (55) and (96) (97), so as to introduce the symbols p, q0, q1, . . .
qm−2, and p′, q′0, q′1, . . . q

′
m−2. With these additional symbols it is easy to transform the
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conditions (160) into others, which (when suitably combined with the equations of definition,
and with the ratios of p0, . . . pm−1 already previously determined through the help of the
conditions (157) (158) (159),) shall serve to determine the ratios (121) of q0, . . . qm−2; and
then to determine, in like manner, with the help of the conditions (161), the ratios (120) of
q′0, . . . q

′
m−2; after which, the condition (162) may be transformed into a rational and integral

and homogeneous equation of the third degree between the sums q0+q′0, . . . , qm−2+q′m−2, and
will in general oblige those sums to vanish, if their ratios (122) have already been determined
independently of the condition (162), which will happen when the ratios (120) coincide with
the ratios (121), that is, when the quantities q′0, . . . , q

′
m−2 are proportional to the quantities

q0, . . . , qm−2. We must, therefore, in general avoid this last proportionality, in order to avoid
the case of failure (102); and thus we are led to introduce the symbols q, r0, r1, . . . rm−3,
defined by the equations (124) (125), and to express the case of failure by the equations

r0 = 0, r1 = 0, · · · rm−3 = 0. (126.)

With these new symbols we easily discover that the seven conditions (161) may be re-
duced to seven rational and integral and homogeneous equations between the quantities
r0, r1, . . . rm−3, which will in general oblige them all to vanish, and therefore will produce the
case of failure (126) unless the number m − 2 of these quantities be greater than the number
seven, that is, unless the exponent m of the degree of the proposed equation be at least equal
to the minor limit ten. It results, then, from this discussion, that the process described in
the present article will not in general avail to take away four terms at once, from equations
lower than the tenth degree, and, of course, that it will not reduce the general equation of
the fifth degree,

x5 + Ax4 + Bx3 + Cx2 + Dx+ E = 0, (69.)

to the binomial form

y5 + E′ = 0, (168.)

except by the useless assumption

y = L(x5 + Ax4 + Bx3 + Cx2 + Dx+ E), (138.)

which gives

y5 = 0. (139.)

[11.] A principal feature of Mr. Jerrard’s general method is to avoid, as much as possible,
the raising of the degree in elimination; and for that purpose to decompose the equations of
condition in every question into groups, which shall each contain, if possible, not more than
one equation of a higher degree than the first ; although the occurrence of two equations of the
second degree in one group is not fatal to the success of the method, because the final equation
of such a group being only elevated to the fourth degree, can be resolved by the known rules.
It might, therefore, have been more completely in the spirit of this general method, because
it would have more completely avoided the elevation of degree by elimination, if, in order to
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take away four terms at once from the general equation of the mth degree, we had assumed
an expression with thirty-three terms, of the form

y = f(x) = Λ′xλ
′
+ Λ′′xλ

′′
+ Λ′′′xλ

′′′

+ M′xµ
′
+ · · ·+ MIVxµ

IV

+ N′xν
′
+ · · ·+ NVxν

V

+ Ξ′xξ
′
+ · · ·+ ΞVIxξ

VI

+ O′xo
′
+ · · ·+ OVIIxo

VII

+ Π′x$
′
+ · · ·+ ΠVIIIx$

VIII

; (169.)

and had determined the six ratios of Λ′,Λ′′,Λ′′′,M′, . . . MIV, and the twenty-five ratios of
N′, . . . ,ΠVIII, so as to satisfy the thirty-one conditions

A′1,0,0,0,0,0 = 0, B′2,0,0,0,0,0 = 0, (170.)

A′0,1,0,0,0,0 = 0, B′1,1,0,0,0,0 = 0, B′0,2,0,0,0,0 = 0, (171.)

C′3,0,0,0,0,0 + C′2,1,0,0,0,0 + C′1,2,0,0,0,0 + C′0,3,0,0,0,0 = 0, (172.)

A′0,0,1,0,0,0 = 0,

B′1,0,1,0,0,0 + B′0,1,1,0,0,0 = 0,

B′0,0,2,0,0,0 = 0,

C′2,0,1,0,0,0 + C′1,1,1,0,0,0 + C′0,2,1,0,0,0 = 0,

 (173.)

A′0,0,0,1,0,0 = 0,

B′1,0,0,1,0,0 + B′0,1,0,1,0,0 = 0,

B′0,0,1,1,0,0 = 0,

B′0,0,0,2,0,0 = 0,

C′2,0,0,1,0,0 + C′1,1,0,1,0,0 + C′0,2,0,1,0,0 = 0,


(174.)

C′1,0,2,0,0,0 + C′1,0,1,1,0,0 + C′1,0,0,2,0,0 + C′0,1,2,0,0,0 + C′0,1,1,1,0,0 + C′0,1,0,2,0,0 = 0, (175.)

A′0,0,0,0,1,0 = 0,

B′1,0,0,0,1,0 + B′0,1,0,0,1,0 = 0,

B′0,0,1,0,1,0 + B′0,0,0,1,1,0 = 0,

B′0,0,0,0,2,0 = 0,

C′2,0,0,0,1,0 + C′1,1,0,0,1,0 + C′0,2,0,0,1,0 = 0,

C′1,0,1,0,1,0 + C′1,0,0,1,1,0 + C′0,1,1,0,1,0 + C′0,1,0,1,1,0 = 0,


(176.)
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A′0,0,0,0,0,1 = 0,

B′1,0,0,0,0,1 + B′0,1,0,0,0,1 = 0,

B′0,0,1,0,0,1 + B′0,0,0,1,0,1 = 0,

B′0,0,0,0,1,1 = 0,

B′0,0,0,0,0,2 = 0,

C′2,0,0,0,0,1 + C′1,1,0,0,0,1 + C′0,2,0,0,0,1 = 0,

C′1,0,1,0,0,1 + C′1,0,0,1,0,1 + C′0,1,1,0,0,1 + C′0,1,0,1,0,1 = 0,


(177.)

C′1,0,0,0,2,0 + C′1,0,0,0,1,1 + C′1,0,0,0,0,2 + C′0,1,0,0,2,0 + C′0,1,0,0,1,1 + C′0,1,0,0,0,2 = 0, (178.)

C′0,0,3,0,0,0 + C′0,0,2,1,0,0 + C′0,0,2,0,1,0 + C′0,0,2,0,0,1 + C′0,0,1,2,0,0 + C′0,0,1,1,1,0
+ C′0,0,1,1,0,1 + C′0,0,1,0,2,0 + C′0,0,1,0,1,1 + C′0,0,1,0,0,2 + C′0,0,0,3,0,0 + C′0,0,0,2,1,0
+ C′0,0,0,2,0,1 + C′0,0,0,1,2,0 + C′0,0,0,1,1,1 + C′0,0,0,1,0,2 + C′0,0,0,0,3,0 + C′0,0,0,0,2,1
+ C′0,0,0,0,1,2 + C′0,0,0,0,0,3 = 0, (179.)

into which the three conditions

A′ = 0, B′ = 0, C′ = 0,

may be decomposed; the symbol A′f,g,h,i,k,l, or B′f,g,h,i,k,l, or C′f,g,h,i,k,l denoting here a ratio-

nal and integral function of the thirty-three coefficients Λ′, . . . ΠVIII, which is homogeneous
of the degree f with respect to Λ′, Λ′′, Λ′′′, of the degree g with respect to M′, . . . ,MIV, of
the degree h with respect to N′, . . . NV, of the degree i with respect to Ξ′, . . . ΞVI, of the de-
gree k with respect to O′, . . . OVII, and of the degree l with respect to Π′, . . . ΠVIII: while the
remaining ratio of MIV to ΠVIII, should afterwards be chosen so as to satisfy the remaining
condition

D′ = 0.

But, on putting, for abridgment,

N′s
(ν′)
0 + · · ·+ NVs

(νV)
0 + Ξ′s

(ξ′)
0 + · · ·+ ΞVIs

(ξVI)
0 = p′0,

· · · · · ·
N′s

(ν′)
m−1 + · · ·+ NVs

(νV)
m−1 + Ξ′s

(ξ′)
m−1 + · · ·+ ΞVIs

(ξVI)
m−1 = p′m−1,

 (180.)

O′s
(o′)
0 + · · ·+ OVIIs

(oVII)
0 = p′′0 ,

· · · · · ·
O′s

(o′)
m−1 + · · ·+ OVIIs

(oVII)
m−1 = p′′m−1,

 (181.)

Π′s
($′)
0 + · · ·+ ΠVIIIs

($VIII)
0 = p′′′0 ,

· · · · · ·
Π′s

($′)
m−1 + · · ·+ ΠVIIIs

($VIII)
m−1 = p′′′m−1,

 (182.)
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Λ′L(λ′) + Λ′′L(λ′′) + Λ′′′L(λ′′′) + M′L(µ′) + · · ·+ MIVL(µIV)

+N′L(ν′) + · · ·+ NVL(νV) + Ξ′L(ξ′) + · · ·+ ΞVIL(ξVI)

+O′L(o′) + · · ·+ OVIIL(oVII) + Π′L($′) + · · ·+ ΠVIIIL($VIII) = L, (183.)

p′′′m−1

pm−1
= p′′, (184.)

p′′′0 − p′′p0 = q′′0 , . . . p′′′m−2 − p′′pm−2 = q′′m−2, (185.)

q′′m−2

qm−2
= q′, (186.)

q′′0 − q′q0 = r′0, . . . q′′m−3 − q′qm−3 = r′m−3, (187.)

r′m−3

rm−3
= r, (188.)

r′0 − rr0 = t0, . . . r′m−4 − rrm−4 = tm−4, (189.)

and retaining the analogous expressions (164) (54) (55) (96) (97) (124) (125), we find, by
a reasoning exactly analogous to that employed in the former discussions, that the final
expression for y will in general be of the useless form

y = LX, (190.)

in the following case of failure,

t0 = 0, t1 = 0, . . . tm−4 = 0; (191.)

and on the other hand that the seven conditions (177) may be reduced to the form of seven ra-
tional and integral and homogeneous equations between these m−3 quantities t0, t1, . . . , tm−4;
so that the case of failure will in general occur in the employment of the present process,
unless the number m − 3 be greater than seven, that is, unless the degree m of the proposed
equation in x be at least equal to the minor limit eleven.

It must, however, be remembered that the less complex process described in the foregoing
article, (since it contained no condition, nor group of conditions, in which the dimension, or
the product of the dimensions, exceeded the number four,) agreed sufficiently with the spirit
of Mr. Jerrard’s general method; and was adequate to take away four terms at once from the
general equation of the tenth, or of any higher degree.

[12.] The various processes described in the 2nd, 5th, 6th and 11th articles of the
communication, for transforming the general equation of the mth degree, by satisfying certain
systems of equations of condition, are connected with the solution of this far more general
problem proposed by Mr. Jerrard, “to discover m− 1 ratios of m disposable quantities,

a1, a2, . . . am, (192.)
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which shall satisfy a given system of h1 rational and integral and homogeneous equations of
the first degree,

A′ = 0, A′′ = 0, . . . A(h1) = 0; (193.)

h2 such equations of the second degree,

B′ = 0, B′′ = 0, . . . B(h2) = 0; (194.)

h3 of the third degree,
C′ = 0, C′′ = 0, . . . C(h3) = 0; (195.)

and so on, as far as ht equations of the tth degree

T′ = 0, T′′ = 0, . . . T(ht) = 0, (196.)

without being obliged in any part of the process, to introduce any elevation of degree by elim-
ination.” Mr. Jerrard has not published his solution of this very general problem, but he has
sufficiently suggested the method which he would employ, and it is proper to discuss it briefly
here, with reference to the extent of its application, and the circumstances under which it
fails; not only on account of the importance of such discussion in itself, but also because it is
adapted to throw light on all the questions already considered.

If we assume

a1 = a′1 + a′′1 , a2 = a′2 + a′′2 , . . . am = a′m + a′′m, (197.)

that is, if we decompose each of the m disposable quantities a1, a2, . . . am into two parts,
we may then accordingly decompose every one of the h1 proposed homogeneous functions of
those m quantities, which are of the first degree, namely

A′,A′′, . . . A(α), . . . A(h1); (198.)

every one of the h2 proposed functions of the second degree,

B′,B′′, . . . B(β), . . . B(h2); (199.)

every one of the h3 functions of the third degree,

C′,C′′, . . . C(γ), . . . C(h3); (200.)

and so on, as far as all the first ht − 1 functions of the tth degree,

T′,T′′, . . . T(τ), . . . T(ht−1) (201.)

(the last function T(ht) being reserved for another purpose, which will be presently explained,)
into other homogeneous functions, according to the general types,

A(α) = A
(α)
1,0 + A

(α)
0,1 ,

B(β) = B
(β)
2,0 + B

(β)
1,1 + B

(β)
0,2 ,

C(γ) = C
(γ)
3,0 + C

(γ)
2,1 + C

(γ)
1,2 + C

(γ)
0,3 ,

· · · · · ·
T(τ) = T

(τ)
t,0 + T

(τ)
t−1,1 + · · ·+ T

(τ)
0,t :


(202.)
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each symbol of the class
A(α)
p,q , B(β)

p,q , C(γ)
p,q , . . . T(τ)

p,q , (203.)

denoting a rational and integral and homogeneous function of the 2m new quantities,

a′1, a
′
2, . . . a

′
m, (204.)

and
a′′1 , a

′′
2 , . . . a

′′
m, (205.)

which function is homogeneous of the degree p with respect to the quantities (204), and of
the degree q with respect to the quantities (205). By this decomposition, we may substitute,
instead of the problem first proposed, the system of the three following auxiliary problems.
First to satisfy, by ratios of the m quantities (204), an auxiliary system of equations, con-
taining h1 equations of the first degree, namely,

A′1,0 = 0, A′′1,0 = 0, A
(h1)
1,0 = 0; (206.)

h2 equations of the second degree,

B′2,0 = 0, B′′2,0 = 0, B
(h2)
2,0 = 0; (207.)

h3 of the third degree,

C′3,0 = 0, C′′3,0 = 0, C
(h3)
3,0 = 0; (208.)

and so on, as far as the following ht − 1 equations of the tth degree,

T′t,0 = 0, T′′t,0 = 0, T
(ht−1)
t,0 = 0. (209.)

Second, to satisfy, by ratios of the m quantities (205), a system containing h1 + h2 +
h3 + · · ·+ ht − 1 equations, which are of the first degree with respect to those m quantities,
and are of the forms

A
(α)
0,1 = 0, B

(β)
1,1 = 0, C

(γ)
2,1 = 0, . . . T

(τ)
t−1,1 = 0; (210.)

h2 + h3 + · · ·+ ht − 1 equations of the second degree, and of the forms

B
(β)
0,2 = 0, C

(γ)
1,2 = 0, . . . T

(τ)
t−2,2 = 0; (211.)

h3 + · · ·+ ht − 1 equations of the third degree, and of the forms,

C
(γ)
0,3 = 0, . . . T

(τ)
t−3,3 = 0; (212.)

and so on, as far as ht − 1 equations of the tth degree, namely,

T′0,t = 0, T′′0,t = 0, . . . T
(ht−1)
0,t = 0. (213.)
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And third, to satisfy, by the ratio of any one of the m quantites (205) to any one of the m
quantities (204), this one remaining equation of the tth degree,

T(ht) = 0. (214.)

For if we can resolve all these three auxiliary problems, we shall thereby have resolved the
original problem also. And there is this advantage in thus transforming the question, that
whereas there were ht equations of the highest (that is of the tth) degree, in the problem
originally proposed, there are only ht − 1 equations of that highest degree, in each of the
two first auxiliary problems, and only one such equation in the third. If, then, we apply
the same process of transformation to each of the two first auxiliary problems, and repeat it
sufficiently often, we shall get rid of all the equations of the tth degree, and ultimately of all
equations of degrees higher than the first; with the exception of certain equations, which are
at various stages of the process set aside to be separately and singly resolved, without any
such combination with others as could introduce an elevation of degree by elimination. And
thus, at last, the original problem may doubtless be resolved, provided that the number m, of
quantities originally disposable, be large enough.

[13.] But that some such condition respecting the magnitude of that number m is
necessary, will easily appear, if we observe that when m is not large enough to satisfy the
inequality,

m > h1 + h2 + h3 + · · ·+ ht, (215.)

then the original h1+h2+h3+· · ·+ht equations, being rational and integral and homogeneous
with respect to the original m quantities (192), will in general conduct to null values for all
those quantities, that is, to the expressions

a1 = 0, a2 = 0, . . . am = 0, (216.)

and therefore to a result which we designed to exclude; because by the enunciation of the
original problem it was by the m − 1 ratios of those m quantities that we were to satisfy, if
possible, the equations originally proposed. The same excluded case, or case of failure (216),
will in general occur when the solution of the second auxiliary problem gives ratios for the
m auxiliary quantities (205), which coincide with the ratios already found in resolving the
first auxiliary problem for the m other auxiliary quantities (204); that is, when the two first
problems conduct to expressions of the forms

a′′1 = aa′1, a′′2 = aa′2, . . . a′′m = aa′m, (217.)

a being any common multiplier; for then these two first problems conduct, in virtue of the
definitions (197), to a determined set of ratios for the m original quantities (192), namely,

a1

am
=

a′1
a′m

, . . .
am−1

am
=
a′m−1

a′m
; (218.)

and unless these ratios happen to satisfy the equation of the third problem (214), which
had not been employed in determining them, that last homogeneous equation (214) will
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oblige all those m quantities (192) to vanish, and so will conduct to the case of failure (216).
Now, although, when the conditions (215) is satisfied, the first auxiliary problem becomes
indeterminate, because

m− 1 > h1 + h2 + h3 + · · ·+ ht − 1,

so that the number m−1 of the disposable ratios of the m auxiliary quantities (204) is greater
than the number of the homogeneous equations which those m quantities are to satisfy, yet
whatever system of m− 1 such ratios

a′1
a′m

,
a′2
a′m

, . . .
a′m−1

a′m
, (219.)

we may discover and employ, so as to satisfy the equations of the first auxiliary problem,
it will always be possible to satisfy the equations of the second auxiliary problem also, by
employing the same system of m−1 ratios for the m other auxiliary quantities (205), that is,
by employing expressions for those quantities of the forms (217); and reciprocally, it will in
general be impossible to resolve the second auxiliary problem otherwise, unless the number
of its equations be less than m− 1. For if we put, for abridgment,

a′′m
a′m

= a, (220.)

and
a′′1 − aa′1 = b1, a′′2 − aa′2 = b2, . . . a′′m−1 − aa′m−1 = bm−1, (221.)

we shall have, as a general system of expressions for the m quantities (205), the following,

a′′1 = aa′1 + b1, a′′2 = aa′2 + b2, . . . a′′m−1 = aa′m−1 + bm−1, a′′m = aa′m; (222.)

and therefore by (197),

a1 = (1 + a)a′1 + b1, . . . am−1 = (1 + a)a′m−1 + bm−1, am = (1 + a)a′m; (223.)

so that the homogeneous functions A(α),B(β), . . . T(τ) may be, in general, decomposed in this
new way,

A(α) = (1 + a)A
8(α)
1,0 + A

8(α)
0,1 ;

B(β) = (1 + a)2B
8(β)
2,0 + (1 + a)B

8(β)
1,1 + B

8(β)
0,2 ;

· · · · · ·
T(τ) = (1 + a)tT

8(τ)
t,0 + (1 + a)t−1T

8(τ)
t−1,1 + · · ·+ T

8(τ)
0,t :

 (224.)

each symbol of the class
A8(α)
p,q , B8(β)

p,q , . . . T8(τ)
p,q (225.)

denoting a rational and integral function of the 2m − 1 quantities a′1, . . . am, b1, . . . bm−1,
which is homogeneous of the dimension p with respect to the m quantities

a′1, . . . a
′
m, (204.)
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and of the dimension q with respect to the m− 1 quantities

b1, . . . bm−1, (226.)

but is independent of the multiplier a. And the identical equations obtained by comparing
the expressions (202) and (224), resolve themselves into the following:

A
(α)
1,0 = A

8(α)
1,0 ; A

(α)
0,1 = aA

8(α)
1,0 + A

8(α)
0,1 ;

B
(β)
2,0 = B

8(β)
2,0 ; B

(β)
1,1 = 2aB

8(β)
2,0 + B

8(β)
1,1 ;

B
(β)
0,2 = a2B

8(β)
2,0 + aB

8(β)
1,1 + B

8(β)
0,2 ;

· · · · · ·
T

(τ)
t,0 = T

8(τ)
t,0 ; T

(τ)
t−1,1 = taT

8(τ)
t,0 + T

8(τ)
t−1,1;

T
(τ)
t−2,2 =

t(t− 1)

2
a2T

8(τ)
t,0 + (t− 1)aT

8(τ)
t−1,1 + T

8(τ)
t−2,2;

· · · · · ·
T

(τ)
0,t = atT

8(τ)
t,0 + at−1T

8(τ)
t−1,1 + · · ·+ T

8(τ)
0,t ;



(227.)

so that the first system of auxiliary equations, (206) . . . (209), which are of the forms

A
(α)
1,0 = 0, B

(β)
2,0 = 0, C

(γ)
3,0 = 0, . . . T

(τ)
t,0 = 0, (228.)

may be replaced by the system

A
8(α)
1,0 = 0, B

8(β)
2,0 = 0, C

8(γ)
3,0 = 0, . . . T

8(τ)
t,0 = 0, (229.)

the change, so far, being only a change of notation; and after satisfying this system by a
suitable selection of the ratios of the quantities (204), the second system of auxiliary equations,
(210) . . . (213), may then be transformed, with a real simplification, (which consists in getting
rid of the arbitrary multiplier a, and in diminishing the number of quantities whose ratios
remain to be disposed of,) to another system of equations of the forms

A
8(α)
0,1 = 0, B

8(β)
1,1 = 0, C

8(γ)
2,1 = 0, . . . T

8(τ)
t−1,1 = 0;

B
8(β)
0,2 = 0, C

8(γ)
1,2 = 0, . . . T

8(τ)
t−2,2 = 0;

C
8(γ)
0,3 = 0, . . . T

8(τ)
t−3,3 = 0;

· · · · · ·
T
8(τ)
0,t = 0;


(230.)

which are rational and integral and homogeneous with respect to the m− 1 quantities (226),
and are independent of the multiplier a. Unless, then, the number of the equations of this
transformed system (230), which is the same as the number of equations in the second auxil-
iary problem before proposed, be less than the number m− 1 of the new auxiliary quantities
(226), we shall have, in general, null values for all those quantities, that is, we shall have

b1 = 0, b2 = 0, . . . bm−1 = 0; (231.)
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and therefore we shall be conducted, by (222), to expressions of the forms (217), which will
in general lead, as has been already shown, to the case of failure (216). We have therefore a
new condition of inequality, which the number m must satisfy, in order to the general success
of the method, namely the following,

m− 1 > h′1 + h′2 + h′3 + · · ·+ h′t; (232.)

in which h′1, h
′
2, h3, . . . , h

′
t denote respectively the numbers of the equations of the first, second,

third,. . . and tth degrees, in the second auxiliary problem; so that, by what has been already
shown,

h′t = ht − 1,

h′t−1 = ht−1 + ht − 1,

h′t−2 = ht−2 + ht−1 + ht − 1,

· · · · · ·
h′2 = h2 + · · ·+ ht − 1,

h′1 = h1 + h2 + · · ·+ ht − 1.


(233.)

These last expressions give

h′1 + h′2 + h′3 + · · ·+ h′t = h1 + 2h2 + 3h3 + · · ·+ tht − t; (234.)

so that the new condition of inequality, (232), may be written as follows,

m− 1 > h1 + 2h2 + 3h3 + · · ·+ t(ht − 1); (235.)

and therefore also thus,

m > h1 + h2 + h3 + · · ·+ ht + h2 + 2h3 + · · ·+ (t− 1)(ht − 1). (236.)

It includes, therefore, in general, the old inequality (215); and may be considered as compris-
ing in itself all the conditions respecting the magnitude of the number m, connected with our
present inquiry: or, at least, as capable of furnishing us with all such conditions, if only it be
sufficiently developed.

[14.] It must, however, be remembered, as a part of such development, that although,
when this condition (232) or (235) or (236) is satisfied, the three auxiliary problems above
stated are, in general, theoretically capable of being resolved, and of conducting to a system of
ratios of the m original quantities (192), which shall satisfy the original system of equations,
yet each of the two first auxiliary systems contains, in general, more than two equations of
the second or higher degrees; and therefore that, in order to avoid any elevation of degree by
elimination (as required by the original problem), the process must in general be repeated,
and each of the two auxiliary systems themselves must be decomposed, and treated like the
system originally proposed. These new decompositions introduce, in general, new conditions
of inequality, analogous to the condition lately determined; but it is clear that the condition
connected with the decomposition of the first of the auxiliary systems must be included in
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the condition connected with the decomposition of the second of those systems, because
the latter system contains, in general, in each of the degrees 1, 2, 3, . . . , t − 1, a greater
number of equations than the former, while both contain, in the degree t, the same number
of equations, namely, ht−1. Conceiving, then, the second auxiliary system to be decomposed
by a repetition of the process above described into two new auxiliary systems or groups of
equations, and into one separate and reserved equation of the tth degree, we are conducted
to this new equation of inequality, analogous to (232),

m− 2 > h′′1 + h′′2 + h′′3 + · · ·+ h′′t ; (237.)

h′′1 , h
′′
2 , h
′′
3 , . . . h

′′
t denoting, respectively, the numbers of equations of the first, second, third,. . .

and tth degrees, in the second new group of equations; in such a manner that, by the nature
of the process,

h′′t = h′t − 1,

h′′t−1 = h′t−1 + h′t − 1,

h′′t−2 = h′t−2 + h′t−1 + h′t − 1,

· · · · · ·
h′′1 = h′1 + h′2 + · · ·+ h′t − 1.


(238.)

Repeating this process, we find, next, the condition,

m− 3 > h′′′1 + h′′′2 + h′′′3 + · · ·+ h′′′t , (239.)

and generally

m− i > h
(i)
1 + h

(i)
2 + h

(i)
3 + · · ·+ h

(i)
t ; (240.)

each new condition of this series including all that go before it, and the symbol h
(i)
p being

such that
h(0)
p = hp, (241.)

h
(i+1)
t − h(i)

t = −1, (242.)

and
h

(i+1)
t−n − h

(i)
t−n = h

(i+1)
t−n+1. (243.)

Integrating these last equations as equations in finite differences, we find

h
(i)
t = ht − i;

h
(i)
t−1 = ht−1 + i

(
ht −

i+ 1

2

)
;

h
(i)
t−2 = ht−2 + iht−1 + i .

i+ 1

2
.

(
ht −

i+ 2

3

)
;

h
(i)
t−3 = ht−3 + iht−2 + i

i+ 1

2
ht−1 + i

i+ 1

2

i+ 2

3

(
ht −

i+ 3

4

)
;

· · · · · ·
h

(i)
1 = h1 + ih2 + i

i+ 1

2
h3 + i

i+ 1

2

i+ 2

3
h4 + · · ·

+ i
i+ 1

2

i+ 2

3
· · · i+ t− 2

t− 1

(
ht −

i+ t− 1

t

)
.



(244.)
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And making, in these expressions,
i = ht, (245.)

so as to have
h

(i)
t = 0, (246.)

and putting, for abridgment,

h
(ht)
1 = 8h1, h

(ht)
2 = 8h2, · · · h

(ht)
t−1 = 8ht−1, (247.)

we find that at the stage when all the equations of the tth degree have been removed from
the auxiliary groups of equations, we are led to satisfy, if possible, by the ratios of m − ht
auxiliary quantities, a system containing 8h1 equations of the first degree, 8h2 of the second,
8h3 of the third, and so on as far as 8ht−1 of the degree t− 1; in which

8ht−1 = ht−1 + 1
2ht(ht − 1),

8ht−2 = ht−2 + htht−1 + 1
3
(ht + 1)ht(ht − 1),

8ht−3 = ht−3 + htht−2 + 1
2(ht + 1)htht−1 + 1

8 (ht + 2)(ht + 1)ht(ht − 1),
8h1 = h1 + hth2 + 1

2 (ht + 1)hth3 + 1
6 (ht + 2)(ht + 1)hth4 + · · ·

+
1

2.3.4 . . . (t− 2)t
(ht + t− 2)(ht + t− 3) · · ·ht(ht − 1);


(248.)

so that, at this stage, we arrive at the following condition of inequality,

m− ht > 8h1 + 8h2 + 8h3 + · · ·+ 8ht−1, (249.)

8h1,
8h2, . . .

8ht−1 having the meanings (248). In exactly the same way, we find the condition

m− ht − 8ht−1 >
88h1 + 88h2 + 88h3 + · · ·+ 88ht−2, (250.)

in which,
88ht−2 = 8ht−2 + 1

2
8ht−1(8ht−1 − 1),

88ht−3 = 8ht−3 + 8ht−1
8ht−2 + 1

3 (8ht−1 + 1)8ht−1(8ht−1 − 1),

&c.,

 (251.)

by clearing all the auxiliary systems from all equations of the degree t − 1; and again by
clearing all such auxiliary groups from equations of the degree t − 2, we obtain a condition
of the form

m− ht − 8ht−1 − 88ht−2 >
888h1 + · · ·+ 888ht−3, (252.)

in which
888ht−3 = 88ht−3 + 1

2
88ht−2(88ht−2 − 1), &c. (253.)

so that at last we are conducted to a condition which may be thus denoted, and which contains
the ultimate result of all the restrictions on the number m,

m− ht − 8ht−1 − 88ht−2 − 888ht−3 − · · · − (t−2)h2 >
(t−1)h1, (254.)
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that is,
m > ht + 8ht−1 + 88ht−2 + 888ht−3 + · · ·+ (t−2)h2 + (t−1)h1. (255.)

The number m, of quantities originally disposible, must therefore in general be at least equal
to a certain minor limit, which may be thus denoted,

m(h1, h2, h3, . . . ht) = ht + 8ht−1 + 88ht−2 + · · ·+ (t−2)h2 + (t−1)h1 + 1, (256.)

in order that the method may succeed ; and reciprocally, the method will in general be successful
when m equals or surpasses this limit.

[15.] To illustrate the foregoing general discussion, let us suppose that

t = 2; (257.)

that is, let us propose to satisfy a system containing h1 equations of the first degree,

A′ = 0, . . . A(α) = 0, . . . A(h1) = 0, (193.)

and h2 equations of the second degree,

B′ = 0, . . . B(β) = 0, . . . B(h2) = 0, (194.)

(but not containing any equations of higher degrees than the second,) by a suitable selection
of the m− 1 ratios of m quantities,

a1, . . . am, (192.)

and without being obliged in any part of the process to introduce any elevation of degree by
elimination. Assuming, as before,

a1 = a′1 + a′′1 , . . . am = a′m + a′′m, (197.)

and employing the corresponding decompositions

A′ = A′1,0 + A′0,1, . . . A(h1) = A
(h1)
1,0 + A

(h1)
0,1 , (258.)

and

B′ = B′2,0 + B′1,1 + B′0,2, . . . B(h2−1) = B
(h2−1)
2,0 + B

(h2−1)
1,1 + B

(h2−1)
0,2 , (259.)

we shall be able to resolve the original problem, if we can resolve the system of the three
following.
First: to satisfy, by ratios of the m auxiliary quantities

a′1, . . . a
′
m, (204.)
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an auxiliary system, containing the h1 equations of the first degree

A′1,0 = 0, . . . A
(h1)
1,0 = 0, (206.)

and the h2 − 1 equations of the second degree

B′2,0 = 0, . . . B
(h2−1)
2,0 = 0. (260.)

Second: to satisfy, by ratios of the m other auxiliary quantities

a′′1 , . . . a
′′
m, (205.)

another auxiliary system, containing h1 + h2 − 1 equations of the first degree,

A′0,1 = 0, . . . A
(h1)
0,1 = 0, B′1,1 = 0, . . . B

(h2−1)
1,1 = 0, (261.)

and h2 − 1 equations of the second degree,

B′0,2 = 0, . . . B
(h2−1)
0,2 = 0. (262.)

Third: to satisfy, by the ratio of any one of the m quantities (205) to any one of the m
quantities (204), this one remaining equation of the second degree

B(h2) = 0. (263.)

The enunciation of the original problem supposes that

m > h1 + h2; (264.)

since otherwise the original equations (193) and (194) would in general conduct to the ex-
cluded case, or case of failure,

a1 = 0, . . . am = 0. (216.)

In virtue of this condition (264) the first auxiliary problem is indeterminate, because

m− 1 > h1 + h2 − 1. (265.)

But, by whatever system of ratios

a′1
a′m

, . . .
a′m−1

a′m
(219.)

we may succeed in satisfying the first auxiliary system of equations, (206) and (260), we may
in general transform the second auxiliary system of equations, (261) and (262), into a system
which may be thus denoted,

A8′0,1 = 0, . . . A
8(h1)
0,1 = 0,

B8′1,1 = 0, . . . B
8(h2−1)
1,1 = 0,

B8′0,2 = 0, . . . B
8(h2−1)
0,2 = 0,

 (266.)
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and which contains h1 + h2 − 1 equations of the first degree, and h2 − 1 equations of the
second degree, between m− 1 new combinations, or new auxiliary quantities following,

b1 = a′′1 −
a′1
a′m

a′′m, . . . bm−1 = a′′m−1 −
a′m−1

a′m
a′′m; (267.)

so that the solution of the second auxiliary problem will give, in general,

b1 = 0, . . . bm−1 = 0; (231.)

and will therefore give, for the m auxiliary quantities (205), a system of ratios coincident
with the ratios (219),

a′′1
a′′m

=
a′1
a′m

, . . .
a′′m−1

a′′m
=
a′m−1

a′m
, (268.)

unless
m− 1 > h1 + 2(h2 − 1). (269.)

When, therefore, this last condition is not satisfied, the two first auxiliary problems will
conduct, in general, to a system of determined ratios for the m original quantities (192),
namely

a1

am
=

a′1
a′m

, . . .
am−1

am
=
a′m−1

a′m
; (218.)

and unless these happen to satisfy the equation of the third auxiliary problem, namely

B(h2) = 0, (263.)

which had not been employed in determing them, we shall fall back on the excluded case, or
case of failure, (216). But, even when the condition (269) is satisfied, and when, therefore, the
auxiliary equations are theoretically capable of conducting to ratios which shall satisfy the
equations originally proposed, it will still be necessary, in general, to decompose each of the
two first auxiliary systems of equations into others, in order to comply with the enunciation of
the original problem, which requires that we should avoid all raising of degree by elimination,
in every part of the process. Confining ourselves to the consideration of the second auxiliary
problem, (which includes the difficulties of the first,) we see that the transformed auxiliary
system (266) contains h′1 equations of the first degree, and h′2 of the second, if we put, for
abridgment,

h′2 = h2 − 1,

h′1 = h1 + h2 − 1;

}
(270.)

which new auxiliary equations are to be satisfied, if possible, by the ratios of m − 1 new
auxiliary quantities; so that a repetition of the former process of decomposition and transfor-
mation would conduct to a new auxiliary system, containing h′′1 equations of the first degree,
and h′′2 of the second, in which

h′′2 = h′2 − 1,

h′′1 = h′1 + h′2 − 1,

}
(271.)
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and which must be satisfied, if possible, by the ratios of m− 2 new auxiliary quantities; and
thus we should arrive at this new condition, as necessary to the success of the method:

m− 2 > h′1 + 2(h′2 − 1); (272.)

or, more concisely,
m− 2 > h′′1 + h′′2 . (273.)

And so proceeding, we should find generally,

m− i > h
(i)
1 + h

(i)
2 , (274.)

the functions h
(i)
1 , h

(i)
2 being determined by the equations

h
(0)
2 = h2, h

(0)
1 = h1, (275.)

h
(i+1)
2 − h(i)

2 = −1, (276.)

h
(i+1)
1 − h(i)

1 = h
(i+1)
2 ; (277.)

which give, by integrations of finite differences,

h
(i)
2 = h2 − i;

h
(i)
1 = h1 + i

(
h2 −

i+ 1

2

)
.

 (278.)

Thus, making
i = h2, (279.)

and putting, for abridgment,

8h1 = h
(h2)
1 = h1 + 1

2
h2(h2 − 1), (280.)

we arrive at last at a stage of the process at which we have to satisfy a system of 8h1 equations
of the first degree by the ratios of m−h2 quantities; and now, at length, we deduce this final
condition of inequality, to be satisfied by the number m, in order to the general success of
the method (in the case t = 2),

m− h2 >
8h1; (281.)

that is,
m > h1 + 1

2 (h2 + 1)h2; (282.)

or, in other words, m must at least be equal to the following minor limit,

m(h1, h2) = h1 + 1 + 1
2 (h2 + 1)h2. (283.)

For example, making h1 = 1, and h2 = 2, we find that a system containing one homogeneous
equation of the first degree, and two of the second, can be satisfied, in general, without any
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elevation of degree by elimination, and therefore without its being necessary to resolve any
equation higher than the second degree, by the ratios of m quantities, provided that this
number m is not less than the minor limit five: a result which may be briefly thus expressed,

m(1, 2) = 5. (284.)

[16.] Indeed, it might seem, that in the process last described, an advantage would be
gained by stopping at that stage, at which, by making i = h2 − 1 in the formulae (278), we
should have

h
(h2−1)
2 = 1,

h
(h2−1)
1 = h1 + 1

2h2(h2 − 1),

}
(285.)

and
m− i = m− h2 + 1; (286.)

that is, when we should have to satisfy, by the ratios of m2 − h2 + 1 quantities, a system
containing only one equation of the second degree, in combination with h1 + 1

2h2(h2 − 1) of
the first. For, the ordinary process of elimination, performed between the equations of this
last system, would not conduct to any equation higher than the second degree; and hence,
without going any further, we might perceive it to be sufficient that the number m should
satisfy this condition of inequality,

m− h2 + 1 > h1 + 1
2h2(h2 − 1) + 1. (287.)

But it is easy to see that this alteration of method introduces no real simplification; the
condition (287) being really coincident with the condition (282) or (283). To illustrate this
result, it may be worth observing, that, in general, instead of the ordinary mode of satisfying,
by ordinary elimination, any system of rational and integral and homogeneous equations,
containing n such equations of the first degree,

8A′ = 0, 8A′′ = 0, . . . 8A(n) = 0, (288.)

and one of the second degree
8B′ = 0, (289.)

by the n+ 1 ratios of n+ 2 disposable quantities,

a1, a2, . . . an+2, (290.)

it is permitted to proceed as follows. Decomposing each of the first n+ 1 quantities into two
parts, so as to put

a1 = a′1 + a′′1 , a2 = a′2 + a′′2 , . . . an+1 = a′n+1 + a′′n+1, (291.)

we may decompose each of the given functions of the first degree, such as 8A(α), into two

corresponding parts, 8A(α)
1,0 and 8A(α)

0,1 , of which the former, 8A(α)
1,0 is a function of the first

degree of the n+ 2 quantities,
a′1, a

′
2, . . . a

′
n+1, a

′
n+2, (292.)
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while the latter, 8A(α)
0,1 , is a function of the first degree of the n+ 1 other quantities

a′′1 , a
′′
2 , . . . a

′′
n+1; (293.)

and then, after resolving in any manner the indeterminate problem, to satisfy the n equations
of the first degree,

8A′1,0 = 0, 8A′′1,0 = 0, . . . 8A(n)
1,0 = 0, (294.)

by a suitable selection of the n + 1 ratios of the n + 2 quantities (292), (excluding only the
assumption an+2 = 0,) we may determine the n ratios of the n+ 1 quantities (293), so as to
satisfy these n other equations of the first degree,

8A′0,1 = 0, 8A′′0,1 = 0, . . . 8A(n)
0,1 = 0; (295.)

after which it will only remain to determine the ratio of any one of these latter quantities
(293) to any one of the former quantities (292), so as to satisfy the equation of the second
degree (289), and the original problem will be resolved.

[17.] Again, let
t = 3; (296.)

that is, let us consider a system containing h1 equations of the first degree, such as those
marked (193), along with h2 equations of the second degree (194), and h3 equations of the
third degree (195), to be satisfied by the ratios of m disposable quantities (192). After
exhausting, by the general process already sufficiently explained, all the equations of the
third degree in all the auxiliary systems, we are conducted to satisfy, if possible, by the ratios
of m − h3 quantities, a system containing 8h1 equations of the first, and 8h2 of the second
degree, in which,

8h2 = h2 + 1
2h3(h3 − 1),

8h1 = h1 + h3h2 + 1
3
(h3 + 1)h3(h3 − 1);

}
(297.)

and after exhausting, next, all the equations of the second degree in all the new auxiliary
systems, we are conducted to satisfy, by the ratios of m−h3− 8h2 quantities, a system of 88h1

equations of the first degree, in which,

88h1 = 8h1 + 1
2
8h2(8h2 − 1). (298.)

We find, therefore, that the number m must satisfy the following condition of inequality,

m− h3 − 8h2 >
88h1, (299.)

that is,
m > h3 + 8h2 + 88h1. (300.)

On substituting for 88h1 its value (298), this last condition becomes,

m > h3 + 1
2
8h2(8h2 + 1) + 8h1; (301.)
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that is, in virtue of the expressions (297),

m > h1 + 1
2 (h2 + 1)h2 + 1

2(h2 + 1)(h3 + 1)h3

+ 1
3(h3 + 1)h3(h3 − 1) + 1

8(h3 + 1)h3(h3 − 1)(h3 − 2).

}
(302.)

The number m must therefore equal or surpass a certain minor limit, which, in the notation
of factorials, may be expressed as follows:

m < (h1 + 1) + 1
2 [h2 + 1]2 + 1

2 (h2 + 1)[h3 + 1]2 + 1
3 [h3 + 1]3 + 1

8 [h3 + 1]4; (303.)

the symbol [η]n denoting the continued product,

[η]n = η(η − 1)(η − 2) · · · (η − n+ 1). (304.)

So that, when we denote this minor limit of m by the symbol m(h1, h2, h3), we obtain, in
general, the formula

m(h1, h2, h3) = η1 + 1
2 [η2]2 + 1

2η2[η3]2 + 1
3 [η3]3 + 1

8 [η3]4, (305.)

in which,

η1 = h1 + 1, η2 = h2 + 1, η3 = h3 + 1. (306.)

For example,

m(1, 1, 1) = 5. (307.)

[18.] When

t = 4, (308.)

that is, when some of the original equations are as high as the fourth degree, (but none more
elevated,) then

8h3 = h3 + 1
2h4(h4 − 1),

8h2 = h2 + h4h3 + 1
3
(h4 + 1)h4(h4 − 1),

8h1 = h1 + h4h2 + 1
2(h4 + 1)h4h3 + 1

8 (h4 + 2)(h4 + 1)h4(h4 − 1);

 (309.)

88h2 = 8h2 + 1
2
8h3(8h3 − 1),

88h1 = 8h1 + 8h3
8h2 + 1

3 (8h3 + 1)8h3(8h3 − 1);

}
(310.)

888h1 = 88h1 + 1
2
88h2(88h2 − 1); (311.)

and the minor limit of m, denoted by the symbol m(h1, h2, h3, h4), is given by the equation

m(h1, h2, h3, h4) = h4 + 8h3 + 88h2 + 888h1 + 1; (312.)
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which may be thus developed,

m(h1, h2, h3, h4) = η1 +
1

2
[η2]2 +

1

2
η2[η3]2 +

1

3
[η3]3 +

1

8
[η3]4

+ η2

{
1

2
η3[η4]2 +

1

3
[η4]3 +

1

8
[η4]4

}
+

1

4
[η3]3[η4]2 + [η3]2

{
1

2
[η4]2 +

2

3
[η4]3 +

3

16
[η4]4

}
+ η3

{
[η4]3 +

7

4
[η4]4 +

2

3
[η4]5 +

1

16
[η4]6

}
+

3

2
[η4]4 +

5

2
[η4]5 +

79

72
[η4]6 +

1

6
[η4]7 +

1

128
[η4]8,



(313.)

if we employ the notation of factorials, and put for abridgment,

η1 = h1 + 1, . . . η4 = h4 + 1. (314.)

In the notation of powers, we have

m(h1, h2, h3, h4)

= 1 + h1

+
1

24
h2(12 + 10h4 + 9h2

4 + 2h3
4 + 3h4

4)

+
1

2
h2h3(1 + h4 + h2

4) +
1

2
h2h

2
3 +

1

2
h2

2

+
1

48
h3(20 + 22h4 + 25h2

4 + 9h3
4 + 8h4

4 + 5h5
4 + 3h6

4)

+
1

48
h2

3(18 + 10h4 + 15h2
4 + 14h3

4 + 9h4
4)

+
1

12
h3

3(1 + 3h4 + 3h2
4) +

1

8
h4

3

+
1

1152
(432h4 + 364h2

4 + 108h3
4 + 169h4

4 + 24h5
4 + 34h6

4 + 12h7
4 + 9h8

4). (315.)

As examples, whichever formula we employ, we find

m(1, 0, 1, 1) = 7; (316.)

m(1, 1, 1, 1) = 11; (317.)

m(1, 1, 1, 2) = 47; (318.)

m(5, 4, 3, 3) = 922. (319.)
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[19.] In general (by the nature of the process explained in the foregoing articles) the
minor limit (256) of the number m, which we have denoted by the symbol

m(h1, h2, . . . ht),

is a function such that

m(h1, h2, . . . ht) = 1 +m(h′1, h
′
2, . . . h

′
t), (320.)

h′1, . . . h
′
t being determined by the formulae (233). This equation in finite differences (320)

may be regarded as containing the most essential element of the whole foregoing discussion;
and from it the formulae already found for the cases t = 2, t = 3, t = 4, might have been
deduced in other ways. From it also we may perceive, that whenever the original system
contains only one equation of the highest or tth degree, in such a manner that

ht = 1, (321.)

then, whatever t may be, we have the formula

m(h1, h2, . . . ht−1, 1) = m(h1 + h2 + · · ·+ ht−1, h2 + · · ·+ ht−1, . . . ht−1); (322.)

so that, for example,
m(1, 1, 1, 1, 1) = 1 +m(4, 3, 2, 1); (323.)

m(4, 3, 2, 1) = 1 +m(9, 5, 2) = 46; (324.)

m(1, 1, 1, 1, 1, 1) = 1 +m(5, 4, 3, 2, 1); (325.)

m(5, 4, 3, 2, 1) = 1 +m(14, 9, 5, 2) = 922; (326.)

and therefore
m(1, 1, 1, 1, 1) = 47, (327.)

m(1, 1, 1, 1, 1, 1) = 923. (328.)

[20.] The formula
m(1, 1, 1) = 5, (307.)

may be considered as expressing, generally, that in order to satisfy a system of three homo-
geneous equations, rational and integral, and of the forms

A′ = 0, B′ = 0, C′ = 0, (329.)

that is, of the first, second, and third degrees, by a system of ratios of m disposable quantities

a1, . . . am, (192.)

which ratios are to be discovered by Mr. Jerrard’s method of decomposition, without any
elevation of degree by elimination, the number m ought to be at least equal to the minor
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limit five; a result which includes and illustrates that obtained in the 4th article of the present
communication, respecting Mr. Jerrard’s process for taking away three terms at once from
the general equation of the mth degree: namely that this process is not generally applicable
when m is less than five. Again, the process described in the eleventh article, for taking
away, on Mr. Jerrard’s principles, four terms at once from the general equation of the mth

degree, without being obliged to eliminate between any two equations of condition of higher
degrees than the first, was shown to require, for its success, in general, that m should be at
least equal to the minor limit eleven; and this limitation is included in, and illustrated by,
the result

m(1, 1, 1, 1) = 11, (317.)

which expresses generally a similar limitation to the analogous process for satisfying any four
homogeneous equations of condition,

A′ = 0, B′ = 0, C′ = 0, D′ = 0, (330.)

of the first, second, third, and fourth degrees, by the ratios of m disposable quantities,
a1, a2, . . . , am. In like manner it is shown by the result

m(1, 1, 1, 1, 1) = 47, (327.)

that Mr. Jerrard’s general method would not avail to satisfy the five conditions

A′ = 0, B′ = 0, C′ = 0, D′ = 0, E′ = 0, (331.)

and so to take away five terms at once from the equation of the mth degree, without any
elevation of degree being introduced in the eliminations, unless m be at least = 47, that is,
unless the equation to be transformed be at least of the 47th degree; and the result

m(1, 1, 1, 1, 1, 1) = 923, (328.)

shows that the analogous process for taking away six terms at once, or for satisfying the six
conditions

A′ = 0, B′ = 0, C′ = 0, D′ = 0, E′ = 0, F′ = 0, (332.)

is limited to equations of the 923rd and higher degrees.
Finally, the result

m(1, 0, 1, 1) = 7, (316.)

and the connected result
m(1, 0, 1, 0, 1) = 7, (333.)

show that it is not in general possible to satisfy, by the same method, a system of three
conditions of the first, third, and fourth degrees, respectively, such as the system

A′ = 0, C′ = 0, D′ − αB′2 = 0, (334.)

nor a system of 3 conditions of the first, third, and fifth degrees,

A′ = 0, C′ = 0, E′ = 0, (335.)

unless m be at least = 7; which illustrates and confirms the conclusions before obtained
respecting the inadequacy of the method to reduce the general equation of the fifth degree to
De Moivre’s solvible form, or to reduce the general equation of the sixth to that of the fifth
degree.
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[21.] Indeed, if some elevation of degree be admitted in the eliminations between the
auxiliary equations, the minor limit of the number m may sometimes be advantageously
depressed. Thus, in the process for satisfying the system of equations (330), we first reduce
the original difficulty to that of satisfying, by the ratios ofm−1 quantities, a system containing
three equations of the first degree, two of the second, and one of the third; and we next reduce
this difficulty to that of satisfying, by the ratios of m− 2 quantities, a system containing five
equations of the first, and two of the second degree. Now, at this stage, it is advantageous
to depart from the general method, and to have recourse to ordinary elimination; because
we can thus resolve the last-mentioned auxiliary system, not indeed without some elevation
of degree, but with an elevation which conducts no higher than a biquadratic equation; and
by avoiding the additional decomposition which the unmodified method requires, we are able
to employ a lower limit for m. In fact, the general method would have led us to a new
transformation of the question, by which it would have been required to satisfy, by the ratios
of m − 3 new quantities, a system containing six new equations of the first, and one of the
second degree; it would therefore have been necessary, in general, in employing that method,
that m − 3 should be greater than 6 + 1, or in other words that m should be at least equal
to the minor limit eleven; and accordingly we found

m(1, 1, 1, 1) = 11. (317.)

But when we dispense with this last decomposition, we need only have m − 2 > 5 + 2, and
the process, by this modification, succeeds even for m = ten. It was thus that Mr. Jerrard’s
principles were shown, in the tenth article of this paper, to furnish a process for taking away
four terms at once from equations as low as the tenth degree, provided that we employ (as
we may) certain auxiliary systems of conditions, (160) and (161), of which each contains two
equations of the second degree, but none of a degree more elevated. But it appears to be
impossible, by any such mixture of ordinary elimination with the general method explained
above, to depress so far that lower limit of m which has been assigned by the foregoing
discussion, as to render the method available for resolving any general equation, by reducing
it to any known solvible form. This Method of Decomposition has, however, conducted, in the
hands of its inventor Mr. Jerrard, to several general transformations of equations, which must
be considered as discoveries in algebra; and to the solution of an extensive class of problems
in the analysis of indeterminates, which had not before been resolved: the notation, also,
of symmetric functions, which has been employed by that mathematician, in his published
researches* on these subjects, is one of great beauty and power.

* Mathematical Researches, by George B. Jerrard, A.B., Bristol; printed by William Strong,
Clare Street; to be had of Longman and Co., London.
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