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Introductory Remarks.

The theoretical development of the laws of motion of bodies is a problem of such interest
and importance, that it has engaged the attention of all the most eminent mathematicians,
since the invention of dynamics as a mathematical science by Galileo, and especially since
the wonderful extension which was given to that science by Newton. Among the successors
of those illustrious men, Lagrange has perhaps done more than any other analyst, to give
extent and harmony to such deductive researches, by showing that the most varied conse-
quences respecting the motions of systems of bodies may be derived from one radical formula;
the beauty of the method so suiting the dignity of the results, as to make of his great work
a kind of scientific poem. But the science of force, or of power acting by law in space and
time, has undergone already another revolution, and has become already more dynamic, by
having almost dismissed the conceptions of solidity and cohesion, and those other material
ties, or geometrically imaginably conditions, which Lagrange so happily reasoned on, and
by tending more and more to resolve all connexions and actions of bodies into attractions
and repulsions of points: and while the science is advancing thus in one direction by the
improvement of physical views, it may advance in another direction also by the invention
of mathematical methods. And the method proposed in the present essay, for the deduc-
tive study of the motions of attracting or repelling systems, will perhaps be received with
indulgence, as an attempt to assist in carrying forward so high an inquiry.

In the methods commonly employed, the determination of the motion of a free point in
space, under the influence of accelerating forces, depends on the integration of three equations
in ordinary differentials of the second order; and the determination of the motions of a system
of free points, attracting or repelling one another, depends on the integration of a system of
such equations, in number threefold the number of the attracting or repelling points, unless we
previously diminish by unity this latter number, by considering only relative motions. Thus, in
the solar system, when we consider only the mutual attractions of the sun and the ten known
planets, the determination of the motions of the latter about the former is reduced, by the
usual methods, to the integration of a system of thirty ordinary differential equations of the
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second order, between the coordinates and the time; or, by a transformation of Lagrange, to
the integration of a system of sixty ordinary differential equations of the first order, between
the time and the elliptic elements: by which integrations, the thirty varying coordinates, or
the sixty varying elements, are to be found as functions of the time. In the method of the
present essay, this problem is reduced to the search and differentiation of a single function,
which satisfies two partial differential equations of the first order and of the second degree:
and every other dynamical problem, respecting the motions of any system, however numerous,
of attracting or repelling points, (even if we suppose those points restricted by any conditions
of connexion consistent with the law of living force,) is reduced, in like manner, to the study
of one central function, of which the form marks out and characterizes the properties of the
moving system, and is to be determined by a pair of partial differential equations of the
first order, combined with some simple considerations. The difficulty is therefore at least
transferred from the integration of many equations of one class to the integration of two of
another: and even if it should be thought that no practical facility is gained, yet an intellectual
pleasure may result from the reduction of the most complex and, probably, of all researches
respecting the forces and motions of body, to the study of one characteristic function,* the
unfolding of one central relation.

The present essay does not pretend to treat fully of this extensive subject,—a task which
may require the labours of many years and many minds; but only to suggest the thought
and propose the path to others. Although, therefore, the method may be used in the most
varied dynamical researches, it is at present only applied to the orbits and perturbations of a
system with any laws of attraction or repulsion, and with one predominant mass or centre of
predominant energy; and only so far, even in this one research, as appears sufficient to make
the principle itself understood. It may be mentioned here, that this dynamical principle is
only another form of that idea which has already been applied to optics in the Theory of
systems of rays, and that an intention of applying it to the motion of systems of bodies
was announced† at the publication of that theory. And besides the idea itself, the manner
of calculation also, which has been thus exemplified in the sciences of optics and dynamics,
seems not confined to those two sciences, but capable of other applications; and the peculiar
combination which it involves, of the principles of variations with those of partial differentials,
for the determination and use of an important class of integrals, may constitute, when it shall
be matured by the future labours of mathematicians, a separate branch of analysis.

WILLIAM R. HAMILTON.

Observatory, Dublin, March 1834.

* Lagrange and, after him, Laplace and others, have employed a single function to
express the different forces of a system, and so to form in an elegant manner the differential
equations of its motion. By this conception, great simplicity has been given to the statement
of the problem of dynamics; but the solution of that problem, or the expression of the mo-
tions themselves, and of their integrals, depends on a very different and hitherto unimagined
function, as it is the purpose of this essay to show.
† Transactions of the Royal Irish Academy, Vol. xv, page 80. A notice of this dynamical

principle was also lately given in an article “On a general Method of expressing the Paths of
Light and of the Planets,” published in the Dublin University Review for October 1833.
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Integration of the Equations of Motion of a System, characteristic Function of such Motion,
and Law of varying Action.

1. The known differential equations of motion of a system of free points, repelling or
attracting one another according to any functions of their distances, and not disturbed by
any foreign force, may be comprised in the following formula:

Σ .m(x′′ δx+ y′′ δy + z′′ δz) = δU. (1.)

In this formula the sign of summation Σ extends to all the points of the system; m is, for any
one such point, the constant called its mass; x′′, y′′, z′′, are its component accelerations, or
the second differential coefficients of its rectangular coordinates x, y, z, taken with respect
to the time; δx, δy, δz, are any arbitrary infinitesimal displacements which the point can
be imagined to receive in the same three rectangular directions; and δU is the infinitesimal
variation corresponding, of a function U of the masses and mutual distances of the several
points of the system, of which the form depends on the laws of their mutual actions, by the
equation

U = Σ .mm′f(r), (2.)

r being the distance between any two points m, m′, and the function f(r) being such that the
derivative or differential coefficient f ′(r) expresses the law of their repulsion, being negative
in the case of attraction. The function which has been here called U may be named the
force-function of a system: it is of great utility in theoretical mechanics, into which it was
introduced by Lagrange, and it furnishes the following elegant forms for the differential
equations of motion, included in the formula (1.):

m1x
′′
1 =

δU

δx1
; m2x

′′
2 =

δU

δx2
; . . . mnx

′′
n =

δU

δxn
;

m1y
′′
1 =

δU

δy1
; m2y

′′
2 =

δU

δy2
; . . . mny

′′
n =

δU

δyn
;

m1z
′′
1 =

δU

δz1
; m2z

′′
2 =

δU

δz2
; . . . mnz

′′
n =

δU

δzn
;


(3.)

the second members of these equations being the partial differential coefficients of the first
order of the function U . But notwithstanding the elegance and simplicity of this known
manner of stating the principal problem of dynamics, the difficulty of solving that problem,
or even of expressing its solution, has hitherto appeared insuperable; so that only seven
intermediate integrals, or integrals of the first order, with as many arbitrary constants, have
hitherto been found for these general equations of motion of a system of n points, instead
of 3n intermediate and 3n final integrals, involving ultimately 6n constants; nor has any
integral been found which does not need to be integrated again. No general solution has been
obtained assigning (as a complete solution ought to do) 3n relations between the n masses
m1, m2, . . . mn, the 3n varying coordinates x1, y1, z1, . . . xn, yn, zn, the varying time t, and the
6n initial data of the problem, namely, the initial coordinates a1, b1, c1, . . . an, bn, cn, and their
initial rates of increase a′1, b

′
1, c
′
1, . . . a

′
n, b
′
n, c
′
n; the quantities called here initial being those
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which correspond to the arbitrary origin of time. It is, however, possible (as we shall see)
to express these long-sought relations by the partial differential coefficients of a new central
or radical function, to the search and employment of which the difficulty of mathematical
dynamics becomes henceforth reduced.

2. If we put for abridgement

T = 1
2 Σ .m(x′2 + y′2 + z′2), (4.)

so that 2T denotes, as in the Mécanique Analytique, the whole living force of the system;
(x′, y′, z′, being here, according to the analogy of our foregoing notation, the rectangular
components of velocity of the point m, or the first differential coefficients of its coordinates
taken with respect to the time;) an easy and well known combination of the differential equa-
tions of motion, obtained by changing in the formula (1.) the variations to the differentials
of the coordinates, may be expressed in the following manner,

dT = dU, (5.)

and gives, by integration, the celebrated law of living force, under the form

T = U +H. (6.)

In this expression, which is one of the seven known integrals already mentioned, the
quantity H is independent of the time, and does not alter in the passage of the points of the
system from one set of positions to another. We have, for example, an initial equation of the
same form, corresponding to the origin of time, which may be written thus,

T0 = U0 +H. (7.)

The quantity H may, however, receive any arbitrary increment whatever, when we pass
in thought from a system moving in one way, to the same system moving in another, with
the same dynamical relations between the accelerations and positions of its points, but with
different initial data; but the increment of H, thus obtained, is evidently connected with the
analogous increments of the functions T and U , by the relation

∆T = ∆U + ∆H, (8.)

which, for the case of infinitesimal variations, may be conveniently be written thus,

δT = δU + δH; (9.)

and this last relation, when multiplied by dt, and integrated, conducts to an important result.
For it thus becomes, by (4.) and (1.),∫

Σ .m(dx . δx′+ dy . δy′+ dz . δz′) =

∫
Σ .m(dx′ . δx+ dy′ . δy+ dz′ . δz) +

∫
δH . dt, (10.)

4



that is, by the principles of the calculus of variations,

δV = Σ .m(x′ δx+ y′ δy + z′ δz)− Σ .m(a′ δa+ b′ δb+ c′ δc) + t δH, (A.)

if we denote by V the integral

V =

∫
Σ .m(x′ dx+ y′ dy + z′ dz) =

∫ t

0

2T dt, (B.)

namely, the accumulated living force, called often the action of the system, from its initial to
its final position.

If, then, we consider (as it is easy to see that we may) the action V as a function of
the initial and final coordinates, and of the quantity H, we shall have, by (A.), the following
groups of equations; first, the group,

δV

δx1
= m1x

′
1;

δV

δx2
= m2x

′
2; . . .

δV

δxn
= mnx

′
n;

δV

δy1
= m1y

′
1;

δV

δy2
= m2y

′
2; . . .

δV

δyn
= mny

′
n;

δV

δz1
= m1z

′
1;

δV

δz2
= m2z

′
2; . . .

δV

δzn
= mnz

′
n.


(C.)

Secondly, the group,

δV

δa1
= −m1a

′
1;

δV

δa2
= −m2a

′
2; . . .

δV

δan
= −mna

′
n;

δV

δb1
= −m1b

′
1;

δV

δb2
= −m2b

′
2; . . .

δV

δbn
= −mnb

′
n;

δV

δc1
= −m1c

′
1;

δV

δc2
= −m2c

′
2; . . .

δV

δcn
= −mnc

′
n;


(D.)

and finally, the equation,
δV

δH
= t. (E.)

So that if this function V were known, it would only remain to eliminate H between the 3n+1
equations (C.) and (E.), in order to obtain all the 3n intermediate integrals, or between (D.)
and (E.) to obtain all the 3n final integrals of the differential equations of motion; that is,
ultimately, to obtain the 3n sought relations between the 3n varying coordinates and the time,
involving also the masses and the 6n initial data above mentioned; the discovery of which
relations would be (as we have said) the general solution of the general problem of dynamics.
We have, therefore, at least reduced that general problem to the search and differentiation of
a single function V , which we shall call on this account the characteristic function of
motion of a system; and the equation (A.), expressing the fundamental law of its variation,
we shall call the equation of the characteristic function, or the law of varying action.
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3. To show more clearly that the action or accumulated living force of a system, or in
other words, the integral of the product of the living force by the element of the time, may
be regarded as a function of the 6n + 1 quantities already mentioned, namely, of the initial
and final coordinates, and of the quantity H, we may observe, that whatever depends on
the manner and time of motion of the system may be considered as such a function; because
the initial form of the law of living force, when combined with the 3n known or unknown
relations between the time, the initial data, and the varying coordinates, will always furnish
3n + 1 relations, known or unknown, to connect the time and the initial components of
velocities with the initial and final coordinates, and with H. Yet from not having formed
the conception of the action as a function of this kind, the consequences that have been
here deduced from the formula (A.) for the variation of that definite integral appear to have
escaped the notice of Lagrange, and of the other illustrious analysts who have written on
theoretical mechanics; although they were in possession of a formula for the variation of this
integral not greatly differing from ours. For although Lagrange and others, in treating of
the motion of a system, have shown that the variation of this definite integral vanishes when
the extreme coordinates and the constant H are given, they appear to have deduced from
this result only the well known law of least action; namely, that if the points or bodies of
a system be imagined to move from a given set of initial to a given set of final positions,
not as they do nor even as they could move consistently with the general dynamical laws or
differential equations of motion, but so as not to violate any supposed geometrical connexions,
nor that one dynamical relation between velocities and configurations which constitutes the
law of living force; and if, besides, this geometrically imaginable, but dynamically impossible
motion, be made to differ infinitely little from the actual manner of motion of the system,
between the given extreme positions; then the varied value of the definite integral called
action, or the accumulated living force of the system in the motion thus imagined, will differ
infinitely less from the actual value of that integral. But when this well known law of least,
or as it might be better called, of stationary action, is applied to the determination of the
actual motion of the system, it serves only to form, by the rules of the calculus of variations,
the differential equations of motion of the second order, which can always be otherwise found.
It seems, therefore, to be with reason that Lagrange, Laplace, and Poisson have spoken
lightly of the utility of this principle in the present state of dynamics. A different estimate,
perhaps, will be formed of that other principle which has been introduced in the present
paper, under the name of the law of varying action, in which we pass from an actual motion
to another motion dynamically possible, by varying the extreme positions of the system, and
(in general) the quantity H, and which serves to express, by means of a single function, not
the mere differential equations of motion, but their intermediate and their final integrals.

Verification of the foregoing Integrals.

4. A verification, which ought not to be neglected, and at the same time an illustration
of this new principle, may be obtained by deducing the known differential equations of motion
from our system of intermediate integrals, and by showing the consistence of these again with
our final integral system. As preliminary to such verification, it is useful to observe that the
final equation (6.) of living force, when combined with the system (C.), takes this new form,
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1
2 Σ .

1

m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

= U +H; (F.)

and that the initial equation (7.) of living force becomes by (D.)

1
2 Σ .

1

m

{(
δV

δa

)2

+

(
δV

δb

)2

+

(
δV

δc

)2
}

= U0 +H. (G.)

These two partial differential equations, inital and final, of the first order and the second
degree, must both be identically satisfied by the characteristic function V : they furnish (as
we shall find) the principal means of discovering the form of that function, and are of essential
importance in its theory. If the form of this function were known, we might eliminate 3n−1 of
the 3n initial coordinates between the 3n equations (C.); and although we cannot yet perform
the actual process of this elimination, we are entitled to assert that it would remove along
with the others the remaining initial coordinate, and would conduct to the equation (6.) of
final living force, which might then be transformed into the equation (F.). In like manner
we may conclude that all the 3n final coordinates could be eliminated together from the 3n
equations (D.), and that the result would be the initial equation (7.) of living force, or the
transformed equation (G.). We may therefore consider the law of living force, which assisted
us in discovering the properties of our characteristic function V , as included reciprocally in
those properties, and as resulting by elimination, in every particular case, from the systems
(C.) and (D.); and in treating of either of these systems, or in conducting any other dynamical
investigation by the method of this characteristic function, we are at liberty to employ the
partial differential equations (F.) and (G.) which that function must necessarily satisfy.

It will now be easy to deduce, as we proposed, the known equations of motion (3.) of the
second order, by differentiation and elimination of constants, from our intermediate integral
system (C.), (E.), or even from a part of that system, namely, from the group (C.), when
combined with the equation (F.). For we thus obtain

m1x
′′
1 =

d

dt

δV

δx1
= x′1

δ2V

δx2
1

+ x′2
δ2V

δx1 δx2
+ · · ·+ x′n

δ2V

δx1 δxn

+ y′1
δ2V

δx1 δy1
+ y′2

δ2V

δx1 δy2
+ · · ·+ y′n

δ2V

δx1 δyn

+ z′1
δ2V

δx1 δz1
+ z′2

δ2V

δx1 δz2
+ · · ·+ z′n

δ2V

δx1 δzn

=
1

m1

δV

δx1

δ2V

δx2
1

+
1

m2

δV

δx2

δ2V

δx1 δx2
+ · · ·+ 1

mn

δV

δxn

δ2V

δx1 δxn

+
1

m1

δV

δy1

δ2V

δx1 δy1
+

1

m2

δV

δy2

δ2V

δx1 δy2
+ · · ·+ 1

mn

δV

δyn

δ2V

δx1 δyn

+
1

m1

δV

δz1

δ2V

δx1 δz1
+

1

m2

δV

δz2

δ2V

δx1 δz2
+ · · ·+ 1

mn

δV

δzn

δ2V

δx1 δzn

=
δ

δx1
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

=
δ

δx1
(U +H);



(11.)
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that is, we obtain

m1x
′′
1 =

δU

δx1
. (12.)

And in like manner we might deduce, by differentiation, from the integrals (C.) and from (F.)
all the other known differential equations of motion, of the second order, contained in the
set marked (3.); or, more concisely, we may deduce at once the formula (1.), which contains
all those known equations, by observing that the intermediate integrals (C.), when combined
with the relation (F.), give

Σ .m(x′′ δx+ y′′ δy + z′′ δz)

= Σ

(
d

dt

δV

δx
. δx+

d

dt

δV

δy
. δy +

d

dt

δV

δz
. δz

)
= Σ .

1

m

(
δV

δx

δ

δx
+
δV

δy

δ

δy
+
δV

δz

δ

δz

)
Σ

(
δV

δx
δx+

δV

δy
δy +

δV

δz
δz

)
= Σ

(
δx

δ

δx
+ δy

δ

δy
+ δz

δ

δz

)
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

= Σ

(
δx

δ

δx
+ δy

δ

δy
+ δz

δ

δz

)
(U +H)

= δU.



(13.)

5. Again, we were to show that our intermediate integral system, composed of the
equations (C.) and (E.), with the 3n arbitrary constants a1, b1, c1, . . . an, bn, cn, (and involving
also the auxiliary constant H,) is consistent with our final integral system of equations (D.)
and (E.), which contain 3n other arbitrary constants, namely a′1, b

′
1, c
′
1, . . . a

′
n, b
′
n, c
′
n. The

immediate differentials of the equations (C.), (D.), (E.), taken with respect to the time, are,
for the first group,

d

dt

δV

δx1
= m1x

′′
1 ;

d

dt

δV

δx2
= m2x

′′
2 ; . . .

d

dt

δV

δxn
= mnx

′′
n;

d

dt

δV

δy1
= m1y

′′
1 ;

d

dt

δV

δy2
= m2y

′′
2 ; . . .

d

dt

δV

δyn
= mny

′′
n;

d

dt

δV

δz1
= m1z

′′
1 ;

d

dt

δV

δz2
= m2z

′′
2 ; . . .

d

dt

δV

δzn
= mnz

′′
n;


(H.)

for the second group,

d

dt

δV

δa1
= 0;

d

dt

δV

δa2
= 0; . . .

d

dt

δV

δan
= 0;

d

dt

δV

δb1
= 0;

d

dt

δV

δb2
= 0; . . .

d

dt

δV

δbn
= 0;

d

dt

δV

δc1
= 0;

d

dt

δV

δc2
= 0; . . .

d

dt

δV

δcn
= 0;


(I.)
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and finally, for the last equation,
d

dt

δV

δH
= 1. (K.)

By combining the equations (C.) with their differentials (H.), and with the relation (F.),
we deduced, in the foregoing number, the known equations of motion (3.); and we are now to
show the consistence of the same intermediate integrals (C.) with the group of differentials
(I.) which have been obtained from the final integrals.

The first equation of the group (I.) may be developed thus:

0 = x′1
δ2V

δa1 δx1
+ x′2

δ2V

δa1 δx2
+ · · ·+ x′n

δ2V

δa1 δxn

+ y′1
δ2V

δa1 δy1
+ y′2

δ2V

δa1 δy2
+ · · ·+ y′n

δ2V

δa1 δyn

+ z′1
δ2V

δa1 δz1
+ z′2

δ2V

δa1 δz2
+ · · ·+ z′n

δ2V

δa1 δzn


(14.)

and the others may be similarly developed. In order, therefore, to show that they are satisfied
by the group (C.), it is sufficient to prove that the following equations are true,

0 =
δ

δai
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}
,

0 =
δ

δbi
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}
,

0 =
δ

δci
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}
,


(L.)

the integer i receiving any value from 1 to n inclusive; which may be shown at once, and
the required verification thereby be obtained, if we merely take the variation of the relation
(F.) with respect to the initial coordinates, as in the former verification we took its variation
with respect to the final coordinates, and so obtained results which agreed with the known
equations of motion, and which may be thus collected,

δ

δxi
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

=
δU

δxi
;

δ

δyi
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

=
δU

δyi
;

δ

δzi
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

=
δU

δzi
.


(M.)

The same relation (F.), by being varied with respect to the quantity H, conducts to the
expression

δ

δH
Σ .

1

2m

{(
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
}

= 1; (N.)
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and this, when developed, agrees with the equation (K.), which is a new verification of the
consistence of our foregoing results. Nor would it have been much more difficult, by the help
of the foregoing principles, to have integrated directly our integrals of the first order, and so
to have deduced in a different way our final integral system.

6. It may be considered as still another verification of our own general integral equations,
to show that they include not only the known law of living force, or the integral expressing
that law, but also the six other known integrals of the first order, which contain the law of
motion of the centre of gravity, and the law of description of areas. For this purpose, it is
only necessary to observe that it evidently follows from the conception of our characteristic
function V , that the function depends on the initial and final positions of the attracting or
repelling points of a system, not as referred to any foreign standard, but only as compared
with one another; and therefore that this function will not vary, if without making any real
change in either initial or final configuration, or in the relation of these to each other, we
alter at once all the initial and all the final positions of the points of the system, by any
common motion, whether of translation or of rotation. Now by considering these coordinate
translations, we obtain the three following partial differential equations of the first order,
which the function V must satisfy,

Σ
δV

δx
+ Σ

δV

δa
= 0;

Σ
δV

δy
+ Σ

δV

δb
= 0;

Σ
δV

δz
+ Σ

δV

δc
= 0;


(O.)

and by considering three coordinate rotations, we obtain these three other relations between
the partial differential coefficients of the same order of the same characteristic function,

Σ

(
x
δV

δy
− y δV

δx

)
+ Σ

(
a
δV

δb
− bδV

δa

)
= 0;

Σ

(
y
δV

δz
− z δV

δy

)
+ Σ

(
b
δV

δc
− cδV

δb

)
= 0;

Σ

(
z
δV

δx
− xδV

δz

)
+ Σ

(
c
δV

δa
− aδV

δc

)
= 0;


(P.)

and if we change the final coefficients of V to the final components of momentum, and the
initial coefficients to the initial components taken negatively, according to the dynamical
properties of this function expressed by the integrals (C.) and (D.), we shall change these
partial differential equations (O.) (P.), to the following,

Σ .mx′ = Σ .ma′; Σ .my′ = Σ .mb′; Σ .mz′ = Σ .mc′; (15.)

and
Σ .m(xy′ − yx′) = Σ .m(ab′ − ba′);
Σ .m(yz′ − zy′) = Σ .m(bc′ − cb′);
Σ .m(zx′ − xz′) = Σ .m(ca′ − ac′).

 (16.)

10



In this manner, therefore, we can deduce from the properties of our characteristic function
the six other known integrals above mentioned, in addition to that seventh which contains
the law of living force, and which assisted in the discovery of our method.

Introduction of relative or polar Coordinates, or other marks of position of a System.

7. The property of our characteristic function, by which it depends only on the internal
or mutual relations between the positions initial and final of the points of an attracting or
repelling system, suggests an advantage in employing internal or relative coordinates; and
from the analogy of other applications of algebraical methods to researches of a geometrical
kind, it may be expected that polar and other marks of position will also often be found
useful. Supposing, therefore, that the 3n final coordinates x1 y1 z1 . . . xn yn zn have been
expressed as functions of 3n other variables η1 η2 . . . η3n, and that the 3n initial coordinates
have in like manner been expressed as functions of 3n similar quantities, which we shall call
e1 e2 . . . e3n, we shall proceed to assign a general method for introducing these new marks of
position into the expressions of our fundamental relations.

For this purpose we have only to transform the law of varying action, or the fundamental
formula (A.), by transforming the two sums,

Σ .m(x′ δx+ y′ δy + z′ δz), and Σ .m(a′ δa+ b′ δb+ c′ δc),

which it involves, and which are respectively equivalent to the following more developed
expressions,

Σ .m(x′ δx+ y′ δy + z′ δz) = m1(x′1 δx1 + y′1 δy1 + z′1 δz1)

+m2(x′2 δx2 + y′2 δy2 + z′2 δz2)

+ &c. +mn(x′n δxn + y′n δyn + z′n δzn);

 (17.)

Σ .m(a′ δa+ b′ δb+ c′ δc) = m1(a′1 δa1 + b′1 δb1 + c′1 δc1)

+m2(a′2 δa2 + b′2 δb2 + c′2 δc2)

+ &c. +mn(a′n δan + b′n δbn + c′n δcn).

 (18.)

Now xi being by supposition a function of the 3n new marks of position η1 . . . η3n, its
variation δxi, and its differential coefficient x′i may be thus expressed:

δxi =
δxi
δη1

δη1 +
δxi
δη2

δη2 + · · ·+ δxi
δη3n

δη3n; (19.)

x′i =
δxi
δη1

η′1 +
δxi
δη2

η′2 + · · ·+ δxi
δη3n

η′3n; (20.)

and similarly for yi and zi. If, then, we consider x′i as a function, by (20.), of η′1 . . . η
′
3n,

involving also in general η1 . . . η3n, and if we take its partial differential coefficients of the
first order with respect to η′1 . . . η

′
3n, we find the relations,

δx′i
δη′1

=
δxi
δη1

;
δx′i
δη′2

=
δxi
δη2

; . . .
δx′i
δη′3n

=
δxi
δη3n

; (21.)

11



and therefore we obtain these new expressions for the variations δxi, δyi, δzi,

δxi =
δx′i
δη′1

δη1 +
δx′i
δη′2

δη2 + · · ·+ δx′i
δη′3n

δη3n,

δyi =
δy′i
δη′1

δη1 +
δy′i
δη′2

δη2 + · · ·+ δy′i
δη′3n

δη3n,

δzi =
δz′i
δη′1

δη1 +
δz′i
δη′2

δη2 + · · ·+ δz′i
δη′3n

δη3n.


(22.)

Substituting these expressions (22.) for the variations in the sum (17.), we easily trans-
form it into the following,

Σ .m(x′ δx+ y′ δy + z′ δz) = Σ .m

(
x′
δx′

δη′1
+ y′

δy′

δη′1
+ z′

δz′

δη′1

)
. δη1

+ Σ .m

(
x′
δx′

δη′2
+ y′

δy′

δη′2
+ z′

δz′

δη′2

)
. δη2

+ &c.+ Σ .m

(
x′
δx′

δη′3n
+ y′

δy′

δη′3n
+ z′

δz′

δη′3n

)
. δη3n

=
δT

δη′1
δη1 +

δT

δη′2
δη2 + · · ·+ δT

δη′3n
δη3n;


(23.)

T being the same quantity as before, namely, the half of the final living force of system, but
being now considered as a function of η′1 . . . η

′
3n, involving also the masses, and in general

η1 . . . η3n, and obtained by substituting for the quantities x′ y′ z′ their values of the form
(20.) in the equation of definition

T = 1
2 Σ .m(x′2 + y′2 + z′2). (4.)

In like manner we find this transformation for the sum (18.),

Σ .m(a′ δa+ b′ δb+ c′ δc) =
δT0

δe′1
δe1 +

δT0

δe′2
δe2 + · · ·+ δT0

δe′3n
δe3n. (24.)

The law of varying action, or the formula (A.), becomes therefore, when expressed by
the present more general coordinates or marks of position,

δV = Σ .
δT

δη′
δη − Σ .

δT

δe′
δe+ t δH; (Q.)

and instead of the groups (C.) and (D.), into which, along with the equation (E.), this law
resolved itself before, it gives now these other groups,

δV

δη1
=
δT

δη′1
;

δV

δη2
=
δT

δη′2
; · · · δV

δη3n
=

δT

δη′3n
; (R.)
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and
δV

δe1
= −δT0

δe′1
;

δV

δe2
= −δT0

δe′2
; · · · δV

δe3n
= − δT0

δe′3n
. (S.)

The quantities e1 e2 . . . e3n, and e′1 e
′
2 . . . e

′
3n, are now the initial data respecting the

manner of motion of the system; and the 3n final integrals, connecting these 6n initial data,
and the n masses, with the time t, and with the 3n final or varying quantities η1 η2 . . . η3n,
which mark the varying positions of the n moving points of the system, are now to be
obtained by eliminating the auxiliary constant H between the 3n+1 equations (S.) and (E.);
while the 3n intermediate integrals, or integrals of the first order, which connect the same
varying marks of position and their first differential coefficients with the time, the masses,
and the initial marks of position, are the result of elimination of the same auxiliary constant
H between the equations (R.) and (E.). Our fundamental formula, and intermediate and
final integrals, can therefore be very simply expressed with any new sets of coordinates; and
the partial differential equations (F.) (G.), which our characteristic function V must satisfy,
and which are, as we have said, essential in the theory of that function, can also easily be
expressed with any such transformed coordinates, by merely combining the final and initial
expressions of the law of living force,

T = U +H, (6.)

T0 = U0 +H, (7.)

with the new groups (R.) and (S.). For this purpose we must now consider the function U ,
of the masses and mutual distances of the several points of the system, as depending on
the new marks of position η1 η2 . . . η3n; and the analogous function U0, as depending simi-
larly on the initial quantities e1 e2 . . . e3n; we must also suppose that T is expressed (as it

may) as a function of its own coefficients,
δT

δη′1
,
δT

δη′2
, . . .

δT

δη′3n
, which will always be, with re-

spect to these, homogeneous of the second dimension, and may also involve explicitly the
quantities η1 η2 . . . η3n; and that T0 is expressed as a similar function of its coefficients
δT0

δe′1
,
δT0

δe′2
, . . .

δT0

δe′3n
; so that

T = F

(
δT

δη′1
,
δT

δη′2
, . . .

δT

δη′3n

)
,

T0 = F

(
δT0

δe′1
,
δT0

δe′2
, . . .

δT0

δe′3n

)
;

 (25.)

and that then these coefficients of T and T0 are changed to their values (R.) and (S.), so as
to give, instead of (F.) and (G.), two other transformed equations, namely,

F

(
δV

δη1
,
δV

δη2
, . . .

δV

δη3n

)
= U +H, (T.)

and, on account of the homogeneity and dimension of T0,

F

(
δV

δe1
,
δV

δe2
, . . .

δV

δe3n

)
= U0 +H. (U.)
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8. Nor is there any difficulty in deducing analogous transformations for the known dif-
ferential equations of motion of the second order, of any system of free points, by taking the
variation of the new form (T.) of the law of living force, and by attending to the dynamical
meanings of the coefficients of our characteristic function. For if we observe that the final
living force 2T , when considered as a function of η1 η2 . . . η3n, and of η′1 η

′
2 . . . η

′
3n, is neces-

sarily homogeneous of the second dimension with respect to the latter set of variables, and
must therefore satisfy the condition

2T = η′1
δT

δη′1
+ η′2

δT

δη′2
+ · · ·+ η′3n

δT

δη′3n
, (26.)

we shall perceive that its total variation,

δT =
δT

δη1
δη1 +

δT

δη2
δη2 + · · ·+ δT

δη3n
δη3n

+
δT

δη′1
δη′1 +

δT

δη′2
δη′2 + · · ·+ δT

δη′3n
δη′3n,

 (27.)

may be put under the form

δT = η′1 δ
δT

δη′1
+ η′2 δ

δT

δη′2
+ · · ·+ η′3n δ

δT

δη′3n

− δT

δη1
δη1 −

δT

δη2
δη2 − · · · −

δT

δη3n
δη3n

= Σ .η′ δ
δT

δη′
− Σ .

δT

δη
δη

= Σ .

(
η′ δ

δV

δη
− δT

δη
δη

)
,


(28.)

and therefore that the total variation of the new partial differential equation (T.) may be
thus written,

Σ .

(
η′ δ

δV

δη
− δT

δη
δη

)
= Σ .

δU

δη
δη + δH : (V.)

in which, if we observe that η′ =
dη

dt
, and that the quantities of the form η are the only ones

which vary with the time, we shall see that

Σ .η′δ
δV

δη
= Σ

(
d

dt

δV

δη
. δη +

d

dt

δV

δe
. δe

)
+

d

dt

δV

δH
. δH, (29.)

because the identical equation δdV = dδV gives, when developed,

Σ

(
δ
δV

δη
. dη + δ

δV

δe
. de

)
+ δ

δV

δH
. dH = Σ

(
d
δV

δη
. δη + d

δV

δe
. δe

)
+ d

δV

δH
. δH. (30.)
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Decomposing, therefore, the expression (V.), for the variation of half the living force, into
as many separate equations as it contains independent variations, we obtain, not only the
equation

d

dt

δV

δH
= 1, (K.)

which had already presented itself, and the group

d

dt

δV

δe1
= 0,

d

dt

δV

δe2
= 0, · · · d

dt

δV

δe3n
= 0, (W.)

which might have been at once obtained by differentiation from the final integrals (S.), but
also a group of 3n other equations of the form

d

dt

δV

δη
− δT

δη
=
δU

δη
, (X.)

which give, by the intermediate integrals (R.),

d

dt

δT

δη′
− δT

δη
=
δU

δη
: (Y.)

that is, more fully,
d

dt

δT

δη′1
− δT

δη1
=
δU

δη1
;

d

dt

δT

δη′2
− δT

δη2
=
δU

δη2
;

· · · · · ·
d

dt

δT

δη′3n
− δT

δη3n
=

δU

δη3n
.


(Z.)

These last transformations of the differential equations of motion of the second order,
of an attracting or repelling system, coincide in all respects (a slight difference of notation
excepted,) with the elegant canonical forms in the Mécanique Analytique of Lagrange; but
it seemed worth while to deduce them here anew, from the properties of our characteristic
function. And if we were to suppose (as it has often been thought convenient and even
necessary to do,) that the n points of a system are not entirely free, nor subject only to
their own mutual attractions or repulsions, but connected by any geometrical conditions, and
influenced by any foreign agencies, consistent with the law of conservation of living force;
so that the number of independent marks of position would be now less numerous, and the
force-function U less simple than before; it might still be proved, by a reasoning very similar
to the foregoing, that on these suppositions also (which however, the dynamical spirit is
tending more and more to exclude,) the accumulated living force or action V of the system
is a characteristic motion-function of the kind already explained; having the same law and
formula of variation, which are susceptible of the same transformations; obliged to satisfy in
the same way a final and an initial relation between its partial differential coefficients of the
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first order; conducting, by the variation of one of these two relations, to the same canonical
forms assigned by Lagrange for the differential equations of motion; and furnishing, on the
same principles as before, their intermediate and their final integrals. To those imaginable
cases, indeed, in which the law of living force no longer holds, our method also would not
apply; but it appears to be the growing conviction of the persons who have meditated the
most profoundly on the mathematical dynamics of the universe, that these are cases suggested
by insufficient views of the mutual actions of body.

9. It results from the foregoing remarks, that in order to apply our method of the
characteristic function to any problem of dynamics respecting any moving system, the known
law of living force is to be combined with our law of varying action; and that the general
expression of this latter law is to be obtained in the following manner. We are first to express
the quantity T , namely, the half of the living force of the system, as a function (which will
always be homogeneous of the second dimension,) of the differential coefficients or rates of
increase η′1, η′2 &c., of any rectangular coordinates, or other marks of position of the system:
we are next to take the variation of this homogeneous function with respect to those rates of
increase, and to change the variations of those rates δη′1, δη′2, &c., to the variations δη1, δη2,
&c., of the marks of position themselves; and then to subtract the initial from the final value
of the result, and to equate the remainder to δV − t δH. A slight consideration will show
that this general rule or process for obtaining the variation of the characteristic function V ,
is applicable even when the marks of position η1, η2, &c. are not all independent of each
other; which will happen when they have been made, from any motive of convenience, more
numerous than the rectangular coordinates of the several points of the system. For if we
suppose that the 3n rectangular coordinates x1 y1 z1 . . . xn yn zn have been expressed by any
transformation as functions of 3n + k other marks of position, η1 η2 . . . η3n+k, which must
therefore be connected by k equations of condition,

0 = φ1(η1, η2, . . . η3n+k),

0 = φ2(η1, η2, . . . η3n+k),

· · · · · ·
0 = φk(η1, η2, . . . η3n+k),

 (31.)

giving k of the new marks of position as functions of the remaining 3n,

η3n+1 = ψ1(η1, η2, . . . η3n),

η3n+2 = ψ2(η1, η2, . . . η3n),

· · · · · ·
η3n+k = ψk(η1, η2, . . . η3n),

 (32.)

the expression
T = 1

2 Σ .m(x′2 + y′2 + z′2), (4.)

will become, by the introduction of these new variables, a homogeneous function of the
second dimension of the 3n + k rates of increase η′1, η

′
2, . . . η

′
3n+k, involving also in general
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η1, η2, . . . η3n+k, and having a variation which may be thus expressed:

δT =

(
δT

δη′1

)
δη′1 +

(
δT

δη′2

)
δη′2 + · · ·+

(
δT

δη′3n+k

)
δη′3n+k

+

(
δT

δη1

)
δη1 +

(
δT

δη2

)
δη2 + · · ·+

(
δT

δη3n+k

)
δη3n+k;

 (33.)

or in this other way,

δT =
δT

δη′1
δη′1 +

δT

δη′2
δη′2 + · · ·+ δT

δη′3n
δη′3n

+
δT

δη1
δη1 +

δT

δη2
δη2 + · · ·+ δT

δη3n
δη3n,

 (34.)

on account of the relations (32.) which give, when differentiated with respect to the time,

η′3n+1 = η′1
δψ1

δη1
+ η′2

δψ1

δη2
+ · · ·+ η′3n

δψ1

δη3n
,

η′3n+2 = η′1
δψ2

δη1
+ η′2

δψ2

δη2
+ · · ·+ η′3n

δψ2

δη3n
,

· · · · · ·
η′3n+k = η′1

δψk
δη1

+ η′2
δψk
δη2

+ · · ·+ η′3n
δψk
δη3n

,


(35.)

and therefore, attending only to the variations of quantities of the form η′,

δη′3n+1 =
δψ1

δη1
δη′1 +

δψ1

δη2
δη′2 + · · ·+ δψ1

δη3n
δη′3n,

δη′3n+2 =
δψ2

δη1
δη′1 +

δψ2

δη2
δη′2 + · · ·+ δψ2

δη3n
δη′3n,

· · · · · ·
δη′3n+k =

δψk
δη1

δη′1 +
δψk
δη2

δη′2 + · · ·+ δψk
δη3n

δη′3n.


(36.)

Comparing the two expressions (33.) and (34.), we find by (36.) the relations

δT

δη′1
=

(
δT

δη′1

)
+

(
δT

δη′3n+1

)
δψ1

δη1
+

(
δT

δη′3n+2

)
δψ2

δη1
+ · · ·+

(
δT

δη′3n+k

)
δψk
δη1

,

δT

δη′2
=

(
δT

δη′2

)
+

(
δT

δη′3n+1

)
δψ1

δη2
+

(
δT

δη′3n+2

)
δψ2

δη2
+ · · ·+

(
δT

δη′3n+k

)
δψk
δη2

,

· · · · · ·
δT

δη′3n
=

(
δT

δη′3n

)
+

(
δT

δη′3n+1

)
δψ1

δη3n
+

(
δT

δη′3n+2

)
δψ2

δη3n
+ · · ·+

(
δT

δη′3n+k

)
δψk
δη3n

;


(37.)
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which give, by (32.),

δT

δη′1
δη1 +

δT

δη′2
δη2 + · · ·+ δT

δη′3n
δη3n =

(
δT

δη′1

)
δη1 +

(
δT

δη′2

)
δη2 + · · ·+

(
δT

δη′3n+k

)
δη3n+k; (38.)

we may therefore put the expression (Q.) under the following more general form,

δV = Σ .

(
δT

δη′

)
δη −Σ .

(
δT0

δe′

)
δe+ t δH, (A1.)

the coefficients

(
δT

δη′

)
being formed by treating all the 3n+k quantities η′1, η

′
2, . . . , η

′
3n+k, as

independent; which was the extension above announced, of the rule for forming the variation
of the characteristic function V .

We cannot, however, immediately decompose this new expression (A1.) for δV , as we
did the expression (Q.), by treating all the variations δη, δe, as independent; but we may
decompose it so, if we previously combine it with the final equations of condition (31.), and
with the analogous initial equations of condition, namely,

0 = Φ1(e1, e2, . . . e3n+k),

0 = Φ2(e1, e2, . . . e3n+k),

· · · · · ·
0 = Φk(e1, e2, . . . e3n+k),

 (39.)

which we may do by adding the variations of the connecting functions φ1, . . . , φk, Φ1, . . . Φk
multiplied respectively by the factors to be determined, λ1, . . . λk, Λ1, . . . Λk. In this manner
the law of varying action takes this new form,

δV = Σ .

(
δT

δη′

)
δη − Σ .

(
δT0

δe′

)
δe+ t δH + Σ .λ δφ+ Σ .Λ δΦ; (B1.)

and decomposes itself into 6n + 2k + 1 separate expressions, for the partial differential coef-
ficients of the first order of the characteristic function V , namely, into the following,

δV

δη1
=

(
δT

δη′1

)
+ λ1

δφ1

δη1
+ λ2

δφ2

δη1
+ · · ·+ λk

δφk
δη1

,

δV

δη2
=

(
δT

δη′2

)
+ λ1

δφ1

δη2
+ λ2

δφ2

δη2
+ · · ·+ λk

δφk
δη2

,

· · · · · ·
δV

δη3n+k
=

(
δT

δη′3n+k

)
+ λ1

δφ1

δη3n+k
+ · · ·+ λk

δφk
δη3n+k

,


(C1.)

and
δV

δe1
= −

(
δT

δe′1

)
+ Λ1

δΦ1

δe1
+ Λ2

δΦ2

δe1
+ · · ·+ Λk

δΦk
δe1

,

δV

δe2
= −

(
δT

δe′2

)
+ Λ1

δΦ1

δe2
+ Λ2

δΦ2

δe2
+ · · ·+ Λk

δΦk
δe2

,

· · · · · ·
δV

δe3n+k
= −

(
δT

δe′3n+k

)
+ Λ1

δΦ1

δe3n+k
+ · · ·+ Λk

δΦk
δe3n+k

,


(D1.)
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besides the old equation (E.). The analogous introduction of multipliers in the canonical
forms of Lagrange, for the differential equations of motion of the second order, by which a

sum such as Σ .λ
δφ

δη
is added to

δU

δη
in the second member of the formula (Y.), is also easily

justified on the principles of the present essay.

Separation of the relative motion of a system from the motion of its centre of gravity; char-
acteristic function for such motion, and law of its variation.

10. As an example of the foregoing transformations, and at the same time as an important
application, we shall now introduce relative coordinates, x′ y′ z′, referred to an internal origin
x′′ y′′ z′′; that is, we shall put

xi = x′i + x′′, yi = y′i + y′′, zi = z′i + z′′, (40.)

and in like manner
ai = a′i + a′′, bi = b′i + b′′, ci = c′i + c′′; (41.)

together with the differentiated expressions

x′i = x′′i + x′′′, y′i = y′′i + y′′′, z′i = z′′i + z′′′, (42.)

and
a′i = a′′i + a′′′, b′i = b′′i + b′′′, c′i = c′′i + c′′′. (43.)

Introducing the expressions (42.) for the rectangular components of velocity, we find that the
value given by (4.) for the living force 2T decomposes itself into the three following parts,

2T = Σ .m(x′2 + y′2 + z′2)

= Σ .m(x′2′ + y′2′ + z′2′ ) + 2(x′′′Σ .mx′′ + y′′′ Σ .my′′ + z′′′ Σ .mz′′)

+ (x′2′′ + y′2′′ + z′2′′ ) Σm;

 (44.)

if then we establish, as we may, the three equations of condition,

Σ .mx′ = 0, Σ .my′ = 0, Σ .mz′ = 0, (45.)

which give by (40.),

x′′ =
Σ .mx

Σm
, y′′ =

Σ .my

Σm
, z′′ =

Σ .mz

Σm
, (46.)

so that x′′ y′′ z′′ are now the coordinates of the point which is called the centre of gravity of
the system, we may reduce the function T to the form

T = T′ + T′′, (47.)

in which
T′ = 1

2 Σ .m(x′2′ + y′2′ + z′2′ ), (48.)
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and
T′′ = 1

2 (x′2′′ + y′2′′ + z′2′′ ) Σm. (49.)

By this known decomposition, the whole living force 2T of the system is resolved into
the two parts 2T′ and 2T′′, of which the former, 2T′, may be called the relative living force,
being that which results solely from the relative velocities of the points of the system, in their
motions about their common centre of gravity x′′ y′′ z′′; while the latter part, 2T′′, results
only from the absolute motion of that centre of gravity in space, and is the same as if all the
masses of the system were united in that common centre. At the same time, the law of living
force, T = U + H, (6.), resolves itself by the law of motion of the centre of gravity into the
two following separate equations,

T′ = U +H′, (50.)

and
T′′ = H′′; (51.)

H′ and H′′ being two new constants independent of the time t, and such that their sum

H′ +H′′ = H. (52.)

And we may in like manner decompose the action, or accumulated living force V , which

is equal to the definite integral

∫ t

0

2T dt, into the two following analogous parts,

V = V′ + V′′, (E1.)

determined by the two equations,

V′ =

∫ t

0

2T′ dt, (F1.)

and

V′′ =

∫ t

0

2T′′ dt. (G1.)

The last equation gives by (51.),
V′′ = 2H′′t; (53.)

a result which, by the law of motion of the centre of gravity, may be thus expressed,

V′′ =
√

(x′′ − a′′)2 + (y′′ − b′′)2 + (z′′ − c′′)2 .
√

2H′′Σm : (H1.)

a′′ b′′ c′′ being the initial coordinates of the centre of gravity, so that

a′′ =
Σ .ma

Σm
, b′′ =

Σ .mb

Σm
, c′′ =

Σ .mc

Σm
. (54.)

And for the variation δV of the whole function V , the rule of the last number gives

δV = Σ .m(x′′ δx′ − a′′ δa′ + y′′ δy′ − b′′ δb′ + z′′ δz′ − c′′ δc′)
+ (x′′′ δx′′ − a′′′ δa′′ + y′′′ δy′′ − b′′′ δb′′ + z′′′ δz′′ − c′′′ δc′′) Σm

+ t δH + λ1 Σ .m δx′ + λ2 Σ .m δy′ + λ3 Σ .m δz′

+ Λ1 Σ .m δa′ + Λ2 Σ .m δb′ + Λ3 Σ .m δc′;

 (I1.)
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while the variation of the part V′′, determined by the equation (H1.), is easily shown to be
equivalent to the part

δV′′ = (x′′′ δx′′ − a′′′ δa′′ + y′′′ δy′′ − b′′′ δb′′ + z′′′ δz′′ − c′′′ δc′′) Σm+ t δH′′; (K1.)

the variation of the other part V′ may therefore be thus expressed,

δV′ = Σ .m(x′′ δx′ − a′′ δa′ + y′′ δy′ − b′′ δb′ + z′′ δz′ − c′′ δc′)
+ t δH′ + λ1 Σ .m δx′ + λ2 Σ .m δy′ + λ3 Σ .m δz′

+ Λ1 Σ .m δa′ + Λ2 Σ .m δb′ + Λ3 Σ .m δc′ :

 (L1.)

and it resolves itself into the following separate expressions, in which the part V′ is considered
as a function of the 6n + 1 quantities x′i y′i z′i a′i b′i c′i H′, of which, however, only 6n− 5
are really independent:
first group,

δV′
δx′1

= m1x
′
′1 + λ1m1; · · · δV′

δx′n
= mnx

′
′n + λ1mn;

δV′
δy′1

= m1y
′
′1 + λ2m1; · · · δV′

δy′n
= mny

′
′n + λ2mn;

δV′
δz′1

= m1z
′
′1 + λ3m1; · · · δV′

δz′n
= mnz

′
′n + λ3mn;


(M1.)

second group,

δV′
δa′1

= −m1a
′
′1 + Λ1m1; · · · δV′

δa′n
= −mna

′
′n + Λ1mn;

δV′
δb′1

= −m1b
′
′1 + Λ2m1; · · · δV′

δb′n
= −mnb

′
′n + Λ2mn;

δV′
δc′1

= −m1c
′
′1 + Λ3m1; · · · δV′

δc′n
= −mnc

′
′n + Λ3mn;


(N1.)

and finally,
δV′
δH′

= t. (O1.)

With respect to the six multipliers λ1 λ2 λ3 Λ1 Λ2 Λ3 which were introduced by the 3
final equations of condition (45.), and by the 3 analogous initial equations of condition,

Σ .ma′ = 0, Σ .mb′ = 0, Σ .mc′ = 0; (55.)

we have, by differentiating these conditions,

Σ .mx′′ = 0, Σ .my′′ = 0, Σ .mz′′ = 0, (56.)

and

Σ .ma′′ = 0, Σ .mb′′ = 0, Σ .mc′′ = 0; (57.)
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and therefore

λ1 =
Σ
δV′
δx′

Σm
, λ2 =

Σ
δV′
δy′

Σm
, λ3 =

Σ
δV′
δz′

Σm
, (58.)

and

Λ1 =
Σ
δV′
δa′

Σm
, Λ2 =

Σ
δV′
δb′

Σm
, Λ3 =

Σ
δV′
δc′

Σm
. (59.)

11. As an example of the determination of these multipliers, we may suppose that the
part V′, of the whole action V , has been expressed, before differentiation, as a function of H′,
and of these other 6n− 6 independent quantities

x′1 − x′n = ξ1, x′2 − x′n = ξ2, . . . x′n−1 − x′n = ξn−1,

y′1 − y′n = η1, y′2 − y′n = η2, . . . y′n−1 − y′n = ηn−1,

z′1 − z′n = ζ1, z′2 − z′n = ζ2, . . . z′n−1 − z′n = ζn−1,

 (60.)

and
a′1 − a′n = α1, a′2 − a′n = α2, . . . a′n−1 − a′n = αn−1,

b′1 − b′n = β1, b′2 − b′n = β2, . . . b′n−1 − b′n = βn−1,

c′1 − c′n = γ1, c′2 − c′n = γ2, . . . c′n−1 − c′n = γn−1;

 (61.)

that is, of the differences only of the centrobaric coordinates; or, in other words, as a function
of the coordinates (initial and final) of n− 1 points of the system, referred to the nth point,
as an internal or moveable origin: because the centrobaric coordinates x′i, y′i, z′i, a′i, b′i, c′i,
may themselves, by the equations of condition, be expressed as a function of these, namely,

x′i = ξi −
Σ .mξ

Σm
, y′i = ηi −

Σ .mη

Σm
, z′i = ζi −

Σ .mζ

Σm
, (62.)

and in like manner,

a′i = αi −
Σ .mα

Σm
, b′i = βi −

Σ .mβ

Σm
, c′i = γi −

Σ .mγ

Σm
; (63.)

in which we are to observe, that the six quantities ξn ηn ζn αn βn γn must be considered
as separately vanishing. When V′ has been thus expressed as a function of the centrobaric
coordinates, involving their differences only, it will evidently satisfy the six partial differential
equations,

Σ
δV′
δx′

= 0, Σ
δV′
δy′

= 0, Σ
δV′
δz′

= 0,

Σ
δV′
δa′

= 0, Σ
δV′
δb′

= 0, Σ
δV′
δc′

= 0;

 (P1.)

after this preparation, therefore, of the function V′, the six multipliers determined by (58.)
and (59.) will vanish, so that we shall have

λ1 = 0, λ2 = 0, λ3 = 0, Λ1 = 0, Λ2 = 0, Λ3 = 0, (64.)
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and the groups (M1.) and (N1.) will reduce themselves to the two following:

δV′
δx′1

= m1x
′
′1;

δV′
δx′2

= m2x
′
′2; · · · δV′

δx′n
= mnx

′
′n;

δV′
δy′1

= m1y
′
′1;

δV′
δy′2

= m2y
′
′2; · · · δV′

δy′n
= mny

′
′n;

δV′
δz′1

= m1z
′
′1; · · · δV′

δz′2
= m2z

′
′2; · · · δV′

δz′n
= mnz

′
′n;


(Q1.)

and
δV′
δa′1

= −m1a
′
′1;

δV′
δa′2

= −m2a
′
′2; · · · δV′

δa′n
= −mna

′
′n;

δV′
δb′1

= −m1b
′
′1;

δV′
δb′2

= −m2b
′
′2; · · · δV′

δb′n
= −mnb

′
′n;

δV′
δc′1

= −m1c
′
′1; · · · δV′

δc′2
= −m2c

′
′2; · · · δV′

δc′n
= −mnc

′
′n;


(R1.)

analogous in all respects to the groups (C.) and (D.). We find, therefore, for the relative
motion of a system about its own centre of gravity, equations of the same form as those
which we had obtained before for the absolute motion of the same system of points in space,
And we see that in investigating such relative motion only, it is useful to confine ourselves to
the part V′ of our whole characteristic function, that is, to the relative action of the system,
or accumulated living force of the motion about the centre of gravity; and to consider this
part as the characteristic function of such relative motion, in a sense analogous to that which
has been already explained.

This relative action, or part V′, may, however, be otherwise expressed, and even in an
infinite variety of ways, on account of the six equations of condition which connect the 6n
centrobaric coordinates; and every different preparation of its form will give a different set
of values for the six multipliers λ1 λ2 λ3 Λ1 Λ2 Λ3. For example, we might eliminate, by a
previous preparation, the six centrobaric coordinates of the point mn from the expression of
V′, so as to make this expression involve only the centrobaric coordinates of the other n− 1
points of the system, and then we should have

δV′
δx′n

= 0,
δV′
δy′n

= 0,
δV′
δz′n

= 0,
δV′
δa′n

= 0,
δV′
δb′n

= 0,
δV′
δc′n

= 0, (S1.)

and therefore, by the six last equations of the groups (M1.) and (N1.), the multipliers would
take the values

λ1 = −x′′n, λ2 = −y′′n, λ3 = −z′′n, Λ1 = a′′n, Λ2 = b′′n, Λ3 = c′′n, (65.)

and would reduce, by (60.) and (61.), the preceding 6n − 6 equations of the same groups
(M1.) and (N1.), to the forms

δV′
δx′1

= m1ξ
′
1,

δV′
δx′2

= m2ξ
′
2, · · · δV′

δx′n−1
= mn−1ξ

′
n−1,

δV′
δy′1

= m1η
′
1,

δV′
δy′2

= m2η
′
2, · · · δV′

δy′n−1
= mn−1η

′
n−1,

δV′
δz′1

= m1ζ
′
1, · · · δV′

δz′2
= m2ζ

′
2, · · · δV′

δz′n−1
= mn−1ζ

′
n−1,


(T1.)
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and

δV′
δa′1

= −m1α
′
1,

δV′
δa′2

= −m2α
′
2, · · · δV′

δa′n−1
= −mn−1α

′
n−1,

δV′
δb′1

= −m1β
′
1,

δV′
δb′2

= −m2β
′
2, · · · δV′

δb′n−1
= −mn−1β

′
n−1,

δV′
δc′1

= −m1γ
′
1, · · · δV′

δc′2
= −m2γ

′
2, · · · δV′

δc′n−1
= −mn−1γ

′
n−1.


(U1.)

12. We might also express the relative action V′, not as a function of the centrobaric,
but of some other internal coordinates, or marks of relative position. We might, for instance,
express it and its variation as functions of the 6n− 6 independent internal coordinates ξ η ζ
α β γ already mentioned, and of their variations, defining these without any reference to the
centre of gravity, by the equations

ξi = xi − xn, ηi = yi − yn, ζi = zi − zn,
αi = ai − an, βi = bi − bn, γi = ci − cn.

}
(66.)

For all such transformations of δV′ it is easy to establish a rule or law, which may be called
the law of varying relative action (exactly analogous to the rule (B1.)), namely, the following:

δV′ = Σ .

(
δT′
δη′′

)
δη′ − Σ .

(
δT′0
δe′′

)
δe′ + t δH′ + Σ .λ′ δφ′ + Σ .Λ′ δΦ′; (V1.)

which implies that we are to express the half T′ of the relative living force of the system as
a function of the rates of increase η′′ of any marks of relative position; and after taking its
variation with respect to these rates, to change their variations to the variations of the marks
of position themselves; then to subtract the initial from the final value of the result, and
to add the variations of the final and initial functions φ′ Φ′, which enter into the equations
of condition, if any, of the form φ′ = 0, Φ′ = 0, (connecting the final and initial marks of
relative position,) multiplied respectively by undetermined factors λ′ Λ′; and lastly, to equate
the whole result to δV′− t δH′, H′ being the quantity independent of the time in the equation
(50.) of relative living force, and V′ being the relative action, of which we desired to express
the variation. It is not necessary to dwell here on the demonstration of this new rule (V1.),
which may easily be deduced from the principles already laid down; or by the calculus of
variations from the law of relative living force, combined with the differential equations of
second order of relative motion.

But to give an example of its application, let us resume the problem already mentioned,
namely to express δV′ by means of the 6n− 5 independent variations δξi δηi δζi δαi δβi δγi
δH′. For this purpose we shall employ a known transformation of the relative living force
2T′, multiplied by the sum of the masses of the system, namely the following:

2T′ Σm = Σ .mimk{(x′i − x′k)2 + (y′i − y′k)2 + (z′i − z′k)2} : (67.)

the sign of summation Σ extending, in the second member, to all the combinations of points
two by two, which can be formed without repetition. This transformation gives, by (66.),

2T′Σm = mn Σ′ .m(ξ′2 + η′2 + ζ ′2)

+ Σ′ .mimk{(ξ′i − ξ′k)2 + (η′i − η′k)2 + (ζ ′i − ζ ′k)2};

}
(68.)
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the sign of summation Σ′ extending only to the first n − 1 points of the system. Applying,
therefore, our general rule or law of varying relative action, and observing that the 6n − 6
internal coordinates ξ η ζ α β γ are independent, we find the following new expression:

δV′ = t δH′ +
mn

Σm
. Σ′ .m(ξ′ δξ − α′ δα+ η′ δη − β′ δβ + ζ ′ δζ − γ′ δγ)

+
1

Σm
. Σ′ .mimk{(ξ′i − ξ′k)(δξi − δξk) + (η′i − η′k)(δηi − δηk)

+ (ζ ′i − ζ ′k)(δζi − δζk)}

− 1

Σm
. Σ′ .mimk{(α′i − α′k)(δαi − δαk) + (β′i − β′k)(δβi − δβk)

+ (γ′i − γ′k)(δγi − δγk)} :


(W1.)

which gives, besides the equation (O1.), the following groups:

δV′
δξi

=
mi

Σm
. Σ .m(ξ′i − ξ′) = mi

(
ξ′i −

Σ′mξ
′

Σm

)
,

δV′
δηi

=
mi

Σm
. Σ .m(η′i − η′) = mi

(
η′i −

Σ′mη
′

Σm

)
,

δV′
δζi

=
mi

Σm
. Σ .m(ζ ′i − ζ ′) = mi

(
ζ ′i −

Σ′mζ
′

Σm

)
,


(X1.)

and
δV′
δαi

=
−mi

Σm
.Σ .m(α′i − α′) = −mi

(
α′i −

Σ′mα
′

Σm

)
,

δV′
δβi

=
−mi

Σm
.Σ .m(β′i − β′) = −mi

(
β′i −

Σ′mβ
′

Σm

)
,

δV′
δγi

=
−mi

Σm
.Σ .m(γ′i − γ′) = −mi

(
γ′i −

Σ′mγ
′

Σm

)
;


(Y1.)

results which may be thus summed up:

δV′ = t δH′ + Σ′ .m(ξ′ δξ − α′ δα+ η′ δη − β′ δβ + ζ ′ δζ − γ′ δγ)

− 1

Σm
(Σ′mξ

′ . Σ′mδξ + Σ′mη
′ . Σ′mδη + Σ′mζ

′ . Σ′mδζ)

+
1

Σm
(Σ′mα

′ . Σ′mδα+ Σ′mβ
′ . Σ′mδβ + Σ′mγ

′ . Σ′mδγ),

 (Z1.)

and might have been otherwise deduced by our rule, from this other known transformation
of T′,

T′ = 1
2 Σ′ .m(ξ′2 + η′2 + ζ ′2)− (Σ′mξ

′)2 + (Σ′mη
′)2 + (Σ′mζ

′)2

2 Σm
. (69.)

And to obtain, with any set of internal or relative marks of position, the two partial dif-
ferential equations which the characteristic function V′ of relative motion must satisfy, and
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which offer (as we shall find) the chief means of discovering its form, namely, the equations
analogous to those marked (F.) and (G.), we have only to eliminate the rates of increase of
the marks of position of the system, which determine the final and initial components of the
relative velocities of its points, by the law of varying relative action, from the final and initial
expressions of the law of relative living force; namely, from the following equations:

T′ = U +H′, (50.)

and
T′0 = U0 +H′. (70.)

The law of areas, or the property respecting rotation which was expressed by the partial
differential equations (P.), will also always admit of being expressed in relative coordinates,
and will assist in discovering the form of the characteristic function V′; by showing that this
function involves only such internal coordinates (in number 6n − 9) as do not alter by any
common rotation of all points final and initial, round the centre of gravity, or round any
other internal origin; that origin being treated as fixed, and the quantity H′ as constant, in
determining the effects of this rotation. The general problem of dynamics, respecting the
motions of a free system of n points attracting or repelling one another, is therefore reduced,
in the last analysis, by the method of the present essay, to the research and differentiation
of a function V′, depending on 6n − 9 internal or relative coordinates, and on the quantity
H′, and satisfying a pair of partial differential equations of the first order and second degree;
in integrating which equations, we are to observe, that at the assumed origin of the motion,
namely at the moment when t = 0, the final or variable coordinates are equal to their initial

values, and the partial differential coefficient
δV′
δH′

vanishes; and, that at a moment infinitely

little distant, the differential alterations of the coordinates have ratios connected with the
other partial differential coefficients of the characteristic function V′, by the law of varying
relative action. It may be here observed, that, although the consideration of the point, called
usually the centre of gravity, is very simply suggested by the process of the tenth number,
yet this internal centre is even more simply indicated by our early corollaries from the law
of varying action; which show that the components of relative final velocities, in any system
of attracting or repelling points, may be expressed by the differences of quantities of the

form
1

m

δV

δx
,

1

m

δV

δy
,

1

m

δV

δz
: and that therefore in calculating these relative velocities, it is

advantageous to introduce the final sums Σmx, Σmy, Σmz, and, for an analogous reason,
the initial sums Σma, Σmb, Σmc, among the marks of the extreme positions of the system,
in the expression of the characteristic function V ; because, in differentiating that expression
for the calculation of relative velocities, those sums may be treated as constant.

On Systems of two Points, in general; Characteristic Function of the motion of any Binary
System.

13. To illustrate the foregoing principles, which extend to any free system of points,
however numerous, attracting or repelling one another, let us now consider, in particular, a
system of two such points. For such a system, the known force-function U becomes, by (2.)

U = m1m2f(r), (71.)
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r being the mutual distance

r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (72.)

between the two points m1, m2, and f(r) being a function of this distance such that its
derivative or differential coefficient f ′(r) expresses the law of their repulsion or attraction,
according as it is positive or negative. The known differential equations of motion, of the
second order, are now, by (1.), comprised in the following formula:

m1(x′′1 δx1 + y′′1 δy1 + z′′ δz1) +m2(x′′2 δx2 + y′′2 δy2 + z′′ δz2) = m1m2 δf(r); (73.)

they are therefore, separately,

x′′1 = m2
δf(r)

δx1
, y′′1 = m2

δf(r)

δy1
, z′′1 = m2

δf(r)

δz1
,

x′′2 = m1
δf(r)

δx2
, y′′2 = m1

δf(r)

δy2
, z′′2 = m1

δf(r)

δz2
.

 (74.)

The problem of integrating these equations consists in proposing to assign, by their
means, six relations between the time t, the masses m1 m2, the six varying coordinates
x1 y1 z1 x2 y2 z2, and their initial values and initial rates of increase a1 b1 c1 a2 b2 c2 a

′
1 b
′
1 c
′
1

a′2 b
′
2 c
′
2. If we knew these six final integrals, and combined them with the initial form of the

law of living force, or of the known intermediate integral

1
2m1(x′21 + y′21 + z′21 ) + 1

2m2(x′22 + y′22 + z′22 ) = m1m2f(r) +H; (75.)

that is, with the following formula,

1
2
m1(a′21 + b′21 + c′21 ) + 1

2
m2(a′22 + b′22 + c′22 ) = m1m2f(r0) +H, (76.)

in which r0 is the initial distance

r0 =
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2, (77.)

and H is a constant quantity, introduced by integration; we could, by the combination of
these seven relations, determine the time t, and the six initial components of velocity a′1 b

′
1 c
′
1

a′2 b
′
2 c
′
2, as functions of the twelve final and initial coordinates x1 y1 z1 x2 y2 z2 a1 b1 c1

a2 b2 c2, and of the quantity H, (involving also the masses:) we could therefore determine
whatever else depends on the manner and time of motion of this system of two points, as
a function of the same extreme coordinates and of the same quantity H. In particular, we
could determine the action, or accumulated living force of the system, namely,

V = m1

∫ t

0

(x′21 + y′21 + z′21 ) dt+m2

∫ t

0

(x′22 + y′22 + z′22 ) dt, (A2.)
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as a function of those thirteen quantities x1 y1 z1 x2 y2 z2 a1 b1 c1 a2 b2 c2 H: and might
then calculate the variation of this function,

δV =
δV

δx1
δx1 +

δV

δy1
δy1 +

δV

δz1
δz1 +

δV

δx2
δx2 +

δV

δy2
δy2 +

δV

δz2
δz2

+
δV

δa1
δa1 +

δV

δb1
δb1 +

δV

δc1
δc1 +

δV

δa2
δa2 +

δV

δb2
δb2 +

δV

δc2
δc2

+
δV

δH
δH.


(B2.)

But the essence of our method consists in forming previously the expression of this variation
by our law of varying action, namely,

δV = m1(x′1 δx1 − a′1 δa1 + y′1 δy1 − b′1 δb1 + z′1 δz1 − c′1 δc1)

+m2(x′2 δx2 − a′2 δa2 + y′2 δy2 − b′2 δb2 + z′2 δz2 − c′2 δc2)

+ t δH;

 (C2.)

and in considering V as a characteristic function of the motion, from the form of which may
be deduced all the intermediate and all the final integrals of the known differential equations,
by resolving the expression (C2.) into the following separate groups, (included in (C.) and
(D.),)

δV

δx1
= m1x

′
1,

δV

δy1
= m1y

′
1,

δV

δz1
= m1z

′
1,

δV

δx2
= m2x

′
2,

δV

δy2
= m2y

′
2,

δV

δz2
= m2z

′
2;

 (D2.)

and
δV

δa1
= −m1a

′
1,

δV

δb1
= −m1b

′
1,

δV

δc1
= −m1c

′
1,

δV

δa2
= −m2a

′
2,

δV

δb2
= −m2b

′
2,

δV

δc2
= −m2c

′
2;

 (E2.)

besides this other equation, which had occurred before,

δV

δH
= t. (E.)

By this new method, the difficulty of integrating the six known equations of motion of
the second order (74.) is reduced to the search and differentiation of a single function V ; and
to find the form of this function, we are to employ the following pair of partial differential
equations of the first order:

1

2m1

{(
δV

δx1

)2

+

(
δV

δy1

)2

+

(
δV

δz1

)2
}

+
1

2m2

{(
δV

δx2

)2

+

(
δV

δy2

)2

+

(
δV

δz2

)2
}

= m1m2f(r) +H,

 (F2.)
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1

2m1

{(
δV

δa1

)2

+

(
δV

δb1

)2

+

(
δV

δc1

)2
}

+
1

2m2

{(
δV

δa2

)2

+

(
δV

δb2

)2

+

(
δV

δc2

)2
}

= m1m2f(r0) +H,

 (G2.)

combined with some simple considerations. And it easily results from the principles already
laid down, that the integral of this pair of equations, adapted to the present question, is

V =
√

(x′′ − a′′)2 + (y′′ − b′′)2 + (z′′ − c′′)2 .
√

2H′′(m1 +m2)

+
m1m2

m1 +m2

(
hϑ+

∫ r

r0

ρ dr

)
;

 (H2.)

in which x′′ y′′ z′′ a′′ b′′ c′′ denote the coordinates, final and initial, of the centre of gravity
of the system,

x′′ =
m1x1 +m2x2

m1 +m2
, y′′ =

m1y1 +m2y2

m1 +m2
, z′′ =

m1z1 +m2z2

m1 +m2
,

a′′ =
m1a1 +m2a2

m1 +m2
, b′′ =

m1b1 +m2b2
m1 +m2

, c′′ =
m1c1 +m2c2
m1 +m2

,

 (78.)

and ϑ is the angle between the final and initial distances r, r0: we have also put for abridge-
ment

ρ = ±

√
2(m1 +m2)

(
f(r) +

H′
m1m2

)
− h2

r2
, (79.)

the upper or the lower sign to be used, according as the distance r is increasing or decreasing,
and have introduced three auxiliary quantities h, H′, H′′, to be determined by this condition,

0 = ϑ+

∫ r

r0

δρ

δh
dr, (I2.)

combined with the two following,

m1m2

m1 +m2

∫ r

r0

δρ

δH′
dr =

√
(x′′ − a′′)2 + (y′′ − b′′)2 + (z′′ − c′′)2 .

√
m1 +m2

2H′′
,

H′ +H′′ = H;

 (K2.)

which auxiliary quantities, although in one view they are functions of the twelve extreme
coordinates, are yet to be treated as constant in calulating the three definite integrals, or
limits of sums of numerous small elements,∫ r

r0

ρ dr,

∫ r

r0

δρ

δh
dr,

∫ r

r0

δρ

δH′
dr.

The form (H2.), for the characteristic function of a binary system, may be regarded as
a central or radical relation, which includes the whole theory of the motion of such a system;
so that all the details of this motion may be deduced from it by the application of our general
method. But because the theory of binary systems has been brought to great perfection
already, by the labours of former writers, it may suffice to give briefly here a few instances
of such deduction.
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14. The form (H2.), for the characteristic function of a binary system, involves explicitly,
when ρ is changed to its value (79.), the twelve quantities x′′ y′′ z′′ a′′ b′′ c′′ r r0 ϑ h H′ H′′,
(besides the masses m1 m2 which are always considered as given;) its variation may therefore
be thus expressed:

δV =
δV

δx′′
δx′′ +

δV

δy′′
δy′′ +

δV

δz′′
δz′′ +

δV

δa′′
δa′′ +

δV

δb′′
δb′′ +

δV

δc′′
δc′′

+
δV

δr
δr +

δV

δr0
δr0 +

δV

δϑ
δϑ+

δV

δH′
δH′ +

δV

δH′′
δH′′.

 (L2.)

In this expression, if we put for abridgement

λ =

√
2H′′(m1 +m2)

(x′′ − a′′)2 + (y′′ − b′′)2 + (z′′ − c′′)2
, (80.)

we shall have

δV

δx′′
= λ(x′′ − a′′),

δV

δy′′
= λ(y′′ − b′′),

δV

δz′′
= λ(z′′ − c′′),

δV

δa′′
= λ(a′′ − x′′),

δV

δb′′
= λ(b′′ − y′′),

δV

δc′′
= λ(c′′ − z′′);

 (M2.)

and if we put

ρ0 = ±
√

2(m1 +m2)

(
f(r0) +

H′
m1m2

)
− h2

r2
0

, (81.)

the sign of the radical being determined by the same rule as that of ρ, we shall have

δV

δr
=

m1m2ρ

m1 +m2
,

δV

δr0
=
−m1m2ρ0

m1 +m2
,

δV

δϑ
=

m1m2h

m1 +m2
; (N2.)

besides, by the equations of condition (I2.), (K2.), we have

δV

δh
= 0, (O2.)

and
δV

δH′′
=

δV

δH′
=

∫ r

r0

dr

ρ
, δH′ + δH′′ = δH. (P2.)

The expression (L2.) may therefore be thus transformed:

δV = λ{(x′′ − a′′)(δx′′ − δa′′) + (y′′ − b′′)(δy′′ − δb′′) + (z′′ − c′′)(δz′′ − δc′′)}

+
m1m2

m1 +m2
(ρ δr − ρ0 δr0 + h δϑ) +

∫ r

r0

δr

ρ
. δH;

 (Q2.)
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and may be resolved by our general method into twelve separate expressions for the final and
initial components of velocities, namely,

x′1 =
1

m1

δV

δx1
=

λ

m1 +m2
(x′′ − a′′) +

m2

m1 +m2

(
ρ
δr

δx1
+ h

δϑ

δx1

)
,

y′1 =
1

m1

δV

δy1
=

λ

m1 +m2
(y′′ − b′′) +

m2

m1 +m2

(
ρ
δr

δy1
+ h

δϑ

δy1

)
,

z′1 =
1

m1

δV

δz1
=

λ

m1 +m2
(z′′ − c′′) +

m2

m1 +m2

(
ρ
δr

δz1
+ h

δϑ

δz1

)
,

x′2 =
1

m2

δV

δx2
=

λ

m1 +m2
(x′′ − a′′) +

m1

m1 +m2

(
ρ
δr

δx2
+ h

δϑ

δx2

)
,

y′2 =
1

m2

δV

δy2
=

λ

m1 +m2
(y′′ − b′′) +

m1

m1 +m2

(
ρ
δr

δy2
+ h

δϑ

δy2

)
,

z′2 =
1

m2

δV

δz2
=

λ

m1 +m2
(z′′ − c′′) +

m1

m1 +m2

(
ρ
δr

δz2
+ h

δϑ

δz2

)
,



(R2.)

and

a′1 =
−1

m1

δV

δa1
=

λ

m1 +m2
(x′′ − a′′) +

m2

m1 +m2

(
ρ0
δr0

δa1
− h δϑ

δa1

)
,

b′1 =
−1

m1

δV

δb1
=

λ

m1 +m2
(y′′ − b′′) +

m2

m1 +m2

(
ρ0
δr0

δb1
− h δϑ

δb1

)
,

c′1 =
−1

m1

δV

δc1
=

λ

m1 +m2
(z′′ − c′′) +

m2

m1 +m2

(
ρ0
δr0

δc1
− h δϑ

δc1

)
,

a′2 =
−1

m2

δV

δa2
=

λ

m1 +m2
(x′′ − a′′) +

m1

m1 +m2

(
ρ0
δr0

δa2
− h δϑ

δa2

)
,

b′2 =
−1

m2

δV

δb2
=

λ

m1 +m2
(y′′ − b′′) +

m1

m1 +m2

(
ρ0
δr0

δb2
− h δϑ

δb2

)
,

c′2 =
−1

m2

δV

δc2
=

λ

m1 +m2
(z′′ − c′′) +

m1

m1 +m2

(
ρ0
δr0

δc2
− h δϑ

δc2

)
;



(S2.)

besides the following expression for the time of motion of the system:

t =
δV

δH
=

∫ r

r0

dr

ρ
, (T2.)

which gives by (K2.), and by (79.), (80.),

t =
m1 +m2

λ
. (U2.)

The six equations (R2.) give the six intermediate integrals, and the six equations (S2.)
give the six final integrals of the six known differential equations of motion (74.) for any
binary system, if we eliminate or determine the three auxiliary quantities h, H′, H′′, by the
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three conditions (I2.) (T2.) (U2.). Thus, if we observe that the distances r, r0, and the
included angle ϑ, depend only on relative coordinates, which may be thus denoted,

x1 − x2 = ξ, y1 − y2 = η, z1 − z2 = ζ,

a1 − a2 = α, b1 − b2 = β, c1 − c2 = γ,

}
(82.)

we obtain by easy combinations the three following intermediate integrals for the centre of
gravity of the system:

x′′′t = x′′ − a′′, y′′′t = y′′ − b′′, z′′′t = z′′ − c′′, (83.)

and the three following final integrals,

a′′′t = x′′ − a′′, b′′′t = y′′ − b′′, c′′′t = z′′ − c′′, (84.)

expressing the well-known law of the rectilinear and uniform motion of that centre. We
obtain also the three following intermediate integrals for the relative motion of one point of
the system about the other:

ξ′ = ρ
δr

δξ
+ h

δϑ

δξ
,

η′ = ρ
δr

δη
+ h

δϑ

δη
,

ζ ′ = ρ
δr

δζ
+ h

δϑ

δζ
,


(85.)

and the three following final integrals,

α′ = ρ0
δr0

δα
− hδϑ

δα
,

β′ = ρ0
δr0

δβ
− hδϑ

δβ
,

γ′ = ρ0
δr0

δγ
− hδϑ

δγ
;


(86.)

in which the auxiliary quantities h, H′ are to be determined by (I2.), (T2.), and in which the
dependence of r, r0, ϑ, on ξ, η, ζ, α, β, γ, is expressed by the following equations:

r =
√
ξ2 + η2 + ζ2, r0 =

√
α2 + β2 + γ2,

rr0 cosϑ = ξα+ ηβ + ζγ.

}
(87.)

If then we put, for abridgement,

A =
ρ

r
+

h

r2 tanϑ
, B =

h

rr0 sinϑ
, C =

−ρ0

r0
+

h

r2
0 tanϑ

, (88.)
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we shall have these three intermediate integrals,

ξ′ = Aξ −Bα, η′ = Aη −Bβ, ζ ′ = Aζ −Bγ, (89.)

and these three final integrals,

α′ = Bξ − Cα, β′ = Bη − Cβ, γ′ = Bζ − Cγ, (90.)

of the equations of relative motion. These integrals give,

ξη′ − ηξ′ = αβ′ − βα′ = B(αη − βξ),
ηζ ′ − ζη′ = βγ′ − γβ′ = B(βζ − γη),

ζξ′ − ξζ ′ = γα′ − αγ′ = B(γξ − αζ),

 (91.)

and
ζ(αβ′ − βα′) + ξ(βγ′ − γβ′) + η(γα′ − αγ′) = 0; (92.)

they contain therefore the known law of equable description of areas, and the law of a plane
relative orbit. If we take for simplicity this plane for the plane ξ η, the quantities ζ ζ ′ γ γ′

will vanish; and we may put,

ξ = r cos θ, η = r sin θ, ζ = 0,

α = r0 cos θ0, β = r0 sin θ0, γ = 0,

}
(93.)

and
ξ′ = r′ cos θ − θ′r sin θ, η′ = r′ sin θ + θ′r cos θ, ζ ′ = 0,

α′ = r′0 cos θ0 − θ′0r0 sin θ0, β′ = r′0 sin θ0 + θ′0r0 cos θ0, γ′ = 0,

}
(94.)

the angles θ θ0 being counted from some fixed line in the plane, and being such that their
difference

θ − θ0 = ϑ. (95.)

These values give

ξη′ − ηξ′ = r2θ′, αβ′ − βα′ = r2
0θ
′
0, αη − βξ = rr0 sinϑ, (96.)

and therefore, by (88.) and (91.),
r2θ′ = r2

0θ
′
0 = h; (97.)

the quantity 1
2
h is therefore the constant areal velocity in the relative motion of the system;

a result which is easily seen to be independent of the directions of the three rectangular
coordinates. The same values (93.), (94.), give

ξ cos θ + η sin θ = r, ξ′ cos θ + η′ sin θ = r′, α cos θ + β sin θ = r0 cosϑ,

α cos θ0 + β sin θ0 = r0, α′ cos θ0 + β′ sin θ0 = r′0, ξ cos θ0 + η sin θ0 = r cosϑ,

}
(98.)
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and therefore, by the intermediate and final integrals, (89.), (90.),

r′ = ρ, r′0 = ρ0; (99.)

results which evidently agree with the condition (T2.), and which give by (79.) and (81.), for
all directions of coordinates,

r′2 +
h2

r2
− 2(m1 +m2)f(r) = r′20 +

h2

r2
0

− 2(m1 +m2)f(r0) = 2H′

(
1

m1
+

1

m2

)
; (100.)

the other auxiliary quantity H′ is therefore also a constant, independent of the time, and

enters as such into the constant part in the expression for

(
r′2 +

h2

r2

)
the square of the

relative velocity. The equation of condition (I2.), connecting these two constants h, H′, with
the extreme lengths of the radius vector r, and with the angle ϑ described by this radius
in revolving from its initial to its final direction, is the equation of the plane relative orbit;
and the other equation of condition (T2.), connecting the same two constants with the same
extreme distances and with the time, gives the law of the velocity of mutual approach or
recess.

We may remark that the part V′ of the whole characteristic function V , which represents
the relative action and determines the relative motion in the system, namely,

V′ =
m1m2

m1 +m2

(
hϑ+

∫ r

r0

ρ dr

)
, (V2.)

may be put, by (I2.), under the form

V′ =
m1m2

m1 +m2

∫ r

r0

(
ρ− hδρ

δh

)
dr, (W2.)

or finally, by (79.)

V′ = 2

∫ r

r0

m1m2f(r) +H′
ρ

dr; (X2.)

the condition (I2.) may also itself be transformed, by (79.), as follows:

ϑ = h

∫ r

r0

dr

r2ρ
: (Y2.)

results which all admit of easy verifications. The partial differential equations connected with
the law of relative living force, which the characteristic function V′ of relative motion must
satisfy, may be put under the following forms:(

δV′
δr

)2

+
1

r2

(
δV′
δϑ

)2

=
2m1m2

m1 +m2
(U +H′),(

δV′
δr0

)2

+
1

r2
0

(
δV′
δϑ

)2

=
2m1m2

m1 +m2
(U0 +H′);

 (Z2.)

and if the first of the equations of this pair have its variation taken with respect to r and
ϑ, attention being paid to the dynamical meanings of the coefficients of the characteristic
function, it will conduct (as in former instances) to the known differential equations of motion
of the second order.
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On the undisturbed Motion of a Planet or Comet about the Sun: Dependence of the Charac-
teristic Function of such Motion, on the chord and the sum of the Radii.

15. To particularize still further, let

f(r) =
1

r
, (101.)

that is, let us consider a binary system, such as a planet or comet and the sun, with the
Newtonian law of attraction; and let us put, for abridgement,

m1 +m2 = µ,
h2

µ
= p,

−m1m2

2H′
= a. (102.)

The characteristic function V′ of relative motion may now be expressed as follows

V′ =
m1m2√

µ

(
ϑ
√
p+

∫ r

r0

±
√

2

r
− 1

a
− p

r2
.dr

)
; (A3.)

in which p is to be considered as a function of the extreme radii vectores r, r0, and of their
included angle ϑ, involving also the quantity a, or the connected quantity H′, and determined
by the condition

ϑ =

∫ r

r0

±dr

r2

√
2

rp
− 1

ap
− 1

r2

(B3.)

that is, by the derivative of the formula (A3.), taken with respect to p; the upper sign being
taken in each expression when the distance r is increasing, and the lower sign when that
distance is diminishing, and the quantity p being treated as constant in calculating the two
definite integrals. It results from the foregoing remarks, that this quantity p is constant also
in the sense of being independent of the time, so as not to vary in the course of the motion;
and that the condition (B3.), connecting this constant with r r0 ϑ a, is the equation of the
plane relative orbit; which is therefore (as it has long been known to be) an ellipse, hyperbola,
or parabola, according as the constant a is positive, negative, or zero, the origin of r being
always a focus of the curve, and p being the semiparameter. It results also, that the time of
motion may be thus expressed:

t =
δV′
δH′

=
2a2

m1m2

δV

δa
, (C3.)

and therefore thus:

t =

∫ r

r0

±dr√
2µ

r
− µ

a
− µp

r2

; (D3.)

which latter is a known expression. Confining ourselves at present to the case a > 0, and
introducing the known auxiliary quantities called excentricity and excentric anomaly, namely,

e =

√
1− p

a
, (103.)
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and

υ = cos−1

(
a− r

ae

)
, (104.)

which give

±
√

2ar − r2 − pa = ae sin υ, (105.)

υ being considered as continually increasing with the time; and therefore, as is well known,

r = a(1− e cos υ), r0 = a(1− e cos υ0),

ϑ = 2 tan−1

{√
1 + e

1− e tan
υ

2

}
− 2 tan−1

{√
1 + e

1− e tan
υ0

2

}
,

 (106.)

and

t =

√
a3

µ
. (υ − υ0 − e sin υ + e sin υ0); (107.)

we find that this expression for the characteristic function of relative motion,

V′ =
m1m2√

µ

∫ r

r0

±
(

2

r
− 1

a

)
dr√

2

r
− 1

a
− p

r2

, (E3.)

deduced from (A3.) and (B3.), may be transformed as follows:

V′ = m1m2

√
a

µ
(υ − υ0 + e sin υ − e sin υ0) : (F3.)

in which the excentricity e, and the final and initial excentric anomalies υ, υ0, are to be
considered as functions of the final and initial radii r, r0, and of the included angle ϑ,
determined by the equations (106.). The expression (F3.) may be thus written:

V′ = 2m1m2

√
a

µ
(υ′ + e′ sin υ′), (G3.)

if we put, for abridgement,

υ′ =
υ − υ0

2
, e′ = e cos

υ + υ0

2
; (108.)

for the complete determination of the characteristic function of the present relative motion,
it remains therefore to determine the two variables υ′ and e′, as functions of r r0 ϑ, or of
some other set of quantities which mark the shape and size of the plane triangle bounded by
the final and initial elliptic radii vectores and by the elliptic chord.
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For this purpose it is convenient to introduce this elliptic chord itself, which we shall call
±τ , so that

τ2 = r2 + r2
0 − 2rr0 cosϑ; (109.)

because this chord may be expressed as a function of the two variables υ′, e′, (involving also
the mean distance a′,) as follows. The value (106.) for the angle ϑ, that is, by (95.), for
θ − θ0, gives

θ − 2 tan−1

{√
1 + e

1− e tan
υ

2

}
= θ0 − 2 tan−1

{√
1 + e

1− e tan
υ0

2

}
= $, (110.)

$ being a new constant independent of the time, namely, one of the values of the polar angle
θ, which correspond to the minimum of radius vector; and therefore, by (106.),

r cos(θ −$) = a(cos υ − e), r sin(θ −$) = a
√

1− e2 sinυ,

r0 cos(θ0 −$) = a(cos υ0 − e), r0 sin(θ0 −$) = a
√

1− e2 sinυ0;

}
(111.)

expressions which give the following value for the square of the elliptic chord:

τ2 = {r cos(θ −$)− r0 cos(θ0 −$)}2 + {r sin(θ −$)− r0 sin(θ0 −$)}2

= a2{(cos υ − cos υ0)2 + (1− e2)(sinυ − sinυ0)2}

= 4a2 sinυ2
′

{(
sin

υ + υ0

2

)2

+ (1− e2)

(
cos

υ + υ0

2

)2
}

= 4a2(1− e2
′ ) sin υ2

′ :


(112.)

we may also consider τ as having the same sign with sinυ′, if we consider it as alternately
positive and negative, in the successive elliptic periods or revolutions, beginning with the
initial position.

Besides, if we denote by σ the sum of the two elliptic radii vectores, final and initial, so
that

σ = r + r0, (113.)

we shall have, with our present abridgements,

σ = 2a(1− e′ cos υ′); (114.)

the variables υ′ e′ are therefore functions of σ, τ , a, and consequently the characteristic
function V′ is itself a function of those three quantities. We may therefore put

V′ =
m1m2w

m1 +m2
, (H3.)

w being a function of σ, τ , a, of which the form is to be determined by eliminating υ′ e′
between the three equations,

w = 2
√
µa(υ′ + e′ sin υ′),

σ = 2a(1− e′ cos υ′),

τ = 2a(1− e2
′ )

1
2 sin υ′;

 (I3.)
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and we may consider this new function w as itself a characteristic function of elliptic motion;
the law of its variation being expressed as follows, in the notation of the present essay:

δw = ξ′ δξ − α′ δα+ η′ δη − β′ δβ + ζ ′ δζ − γ′ δγ +
tµ δa

2a2
. (K3.)

In this expression ξ η ζ are the relative coordinates of the point m1, at the time t, referred
to the other attracting point m2 as an origin, and to any three rectangular axes; ξ′ η′ ζ ′ are
their rates of increase, or the three rectangular components of final relative velocity; α β γ
α′ β′ γ′ are the initial values, or values at the time zero, of these relative coordinates and
components of relative velocity; a is a quantity independent of the time, namely, the mean
distance of the two points m1, m2; and µ is the sum of their masses. And all the properties
of the undisturbed elliptic motion of a planet or comet about the sun may be deduced in a
new way, from the simplified characteristic function w, by comparing its variation (K3.) with
the following other form,

δw =
δw

δσ
δσ +

δw

δτ
δτ +

δw

δa
δa; (L3.)

in which we are to observe that

σ =
√
ξ2 + η2 + ζ2 +

√
α2 + β2 + γ2,

τ = ±
√

(ξ − α)2 + (η − β)2 + (ζ − γ)2.

}
(M3.)

By this comparison we are brought back to the general integral equations of the relative
motion of a binary system, (89.) and (90.); but we have now the following particular values
for the coefficients A, B, C:

A =
1

r

δw

δσ
+

1

τ

δw

δτ
, B =

1

τ

δw

δτ
, C =

1

r0

δw

δσ
+

1

τ

δw

δτ
; (N3.)

and with respect to the three partial differential coefficients,
δw

δσ
,
δw

δτ
,
δw

δa
, we have the

following relation between them:

a
δw

δa
+ σ

δw

δσ
+ τ

δw

δτ
=
w

2
, (O3.)

the function w being homogeneous of the dimension 1
2 with respect to the three quantities a,

σ, τ ; we have also, by (I3.),

δw

δσ
=

√
µ

a
.

sin υ′
e′ − cos υ′

,
δw

δτ
=

√
µ

a
.

√
1− e2

′
cos υ′ − e′

, (P3.)

and therefore
δw

δσ

δw

δτ
=
−2µτ

σ2 − τ2
,

(
δw

δσ

)2

+

(
δw

δτ

)2

+
µ

a
=

4µσ

σ2 − τ2
, (Q3.)

from which may be deduced the following remarkable expressions:(
δw

δσ
+
δw

δτ

)2

=
4µ

σ + τ
− µ

a
,(

δw

δτ
− δw

δσ

)2

=
4µ

σ − τ −
µ

a
.

 (R3.)

These expressions will be found to be important in the application of the present method to
the theory of elliptic motion.
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16. We shall not enter, on this occasion, into any details of such application; but we may
remark, that the circumstance of the characteristic function involving only the elliptic chord
and the sum of the extreme radii, (besides the mean distance and the sum of the masses,)
affords, by our general method, a new proof of the well-known theorem that the elliptic time
also depends on the same chord and sum of radii; and gives a new expression for the law of
this dependence, namely,

t =
2a2

µ

δw

δa
. (S3.)

We may remark also, that the same form of the characteristic function of elliptic motion
conducts, by our general method, to the following curious, but not novel property, of the
ellipse, that if any two tangents be drawn to such a curve, from any common point outside,
these tangents subtend equal angles at one focus; they subtend also equal angles at the other.
Reciprocally, if any plane curve possess this property, when referred to a fixed point in its
own plane, which may be taken as the origin of polar coordinates r, θ, the curve must satisfy
the following equation in mixed differences:

cotan

(
∆θ

2

)
.∆

1

r
= (∆ + 2)

d

dθ

1

r
, (115.)

which may be brought to the following form,(
d

dθ
+

d3

dθ3

)
1

r
= 0, (116.)

and therefore gives, by integration,

r =
p

1 + e cos(θ −$)
; (117.)

the curve is, consequently, a conic section, and the fixed point is one of its foci.
The properties of parabolic are included as limiting cases in those of elliptic motion, and

may be deduced from them by making

H′ = 0, or a =∞; (118.)

and therefore the characteristic function w and the time t, in parabolic as well as in elliptic
motion, are functions of the chord and of the sum of the radii. By thus making a infinite in
the foregoing expressions, we find, for parabolic motion, the partial differential equations(

δw

δσ
+
δw

δτ

)2

=
4µ

σ + τ
,

(
δw

δσ
− δw

δτ

)2

=
4µ

σ − τ ; (T3.)

and in fact the parabolic form of the simplified characteristic function w may easily be shown
to be

w = 2
√
µ(
√
σ + τ ∓

√
σ − τ), (U3.)
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τ being, as before, the chord, and σ the sum of the radii; while the analogous limit of the
expression (S3.), for the time, is

t =
1

6
√
µ
{(σ + τ)

3
2 ∓ (σ − τ)

3
2 } : (V3.)

which latter is a known expression.
The formulæ (K3.) and (L3.), to the comparison of which we have reduced the study of

elliptic motion, extend to hyperbolic motion also; and in any binary system, with Newton’s
law of attraction, the simplified characteristic function w may be expressed by the definite
integral

w =

∫ τ

−τ

√
µ

σ + τ
− µ

4a
. dτ, (W3.)

this function w being still connected with the relative action V′ by the equation (H3.); while
the time t, which may always be deduced from this function, by the law of varying action, is
represented by this other connected integral,

t =
1

4

∫ τ

−τ

(
µ

σ + τ
− µ

4a

)− 1
2

dτ : (X3.)

provided that, within the extent of these integrations, the radical does not vanish nor become
infinite. When this condition is not satisfied, we may still express the simplified characteristic
function w, and the time t, by the following analogous integrals:

w =

∫ σ′

τ′

±
√

2µ

σ′
− µ

a
dσ′, (Y3.)

and

t =

∫ σ′

τ′

±
(

2µ

σ′
− µ

a

)− 1
2

dσ′, (Z3.)

in which we have put for abridgement

σ′ =
σ + τ

2
, τ′ =

σ − τ
2

, (119.)

and in which it is easy to determine the signs of the radicals. But to treat fully of these various
transformations would carry us too far at present, for it is time to consider the properties of
systems with more points than two.

On Systems of three Points, in general; and on their Characteristic Functions.

17. For any system of three points, the known differential equations of motion of the
2nd order are included in the following formula:

m1(x′′1 δx1 + y′′1 δy1 + z′′1 δz1) +m2(x′′2 δx2 + y′′2 δy2 + z′′2 δz2)

+m3(x′′3 δx3 + y′′3 δy3 + z′′3 δz3) = δU,

}
(120.)
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the known force-function U having the form

U = m1m2f
(1,2) +m1m3f

(1,3) +m2m3f
(2,3), (121.)

in which f (1,2), f (1,3), f (2,3), are functions respectively of the three following mutual distances
of the points of the system:

r(1,2) =
√

(x1 − x2)2 + (y1 − y2)2 − (z1 − z2)2,

r(1,3) =
√

(x1 − x3)2 + (y1 − y3)2 − (z1 − z3)2,

r(2,3) =
√

(x2 − x3)2 + (y2 − y3)2 − (z2 − z3)2 :

 (122.)

the known differential equations of motion are therefore, separately, for the point m1,

x′′1 = m2
δf (1,2)

δx1
+m3

δf (1,3)

δx1
,

y′′1 = m2
δf (1,2)

δy1
+m3

δf (1,3)

δy1
,

z′′1 = m2
δf (1,2)

δz1
+m3

δf (1,3)

δz1
,


(123.)

with six other analogous equations for the pointsm2 andm3: x′′1 , &c., denoting the component
accelerations of the three points m1 m2 m3, or the second differential coefficients of their
coordinates, taken with respect to the time. To integrate these equation is to assign, by
their means, nine relations between the time t, the three masses m1 m2 m3, the nine varying
coordinates x1 y1 z1 x2 y2 z2 x3 y3 z3, and their nine initial values and nine initial rates of
increase, which may be thus denoted, a1 b1 c1 a2 b2 c2 a3 b3 c3 a

′
1 b
′
1 c
′
1 a
′
2 b
′
2 c
′
2 a
′
3 b
′
3 c
′
3.

The known intermediate integral containing the law of living force, namely,

1
2
m1(x′21 + y′21 + z′21 ) + 1

2
m2(x′22 + y′22 + z′22 ) + 1

2
m3(x′23 + y′23 + z′23 )

= m1m2f
(1,2) +m1m3f

(1,3) +m2m3f
(2,3) +H,

}
(124.)

gives the following initial relation:

1
2
m1(a′21 + b′21 + c′21 ) + 1

2
m2(a′22 + b′22 + c′22 ) + 1

2
m3(a′23 + b′23 + c′23 )

= m1m2f
(1,2)
0 +m1m3f

(1,3)
0 +m2m3f

(2,3)
0 +H,

}
(125.)

in which f
(1,2)
0 , f

(1,3)
0 , f

(2,3)
0 are composed of the initial coordinates, in the same manner

as f (1,2) f (1,3) f (2,3) are composed of the final coordinates. If then we knew the nine final
integrals of the equations of motion of this ternary system, and combined them with the
initial form (125.) of the law of living force, we should have ten relations to determine the
ten quantities t a′1 b

′
1 c
′
1 a
′
2 b
′
2 c
′
2 a
′
3 b
′
3 c
′
3, namely, the time and the nine initial components

of the velocities of the three points, as functions of the nine final and nine initial coordinates,
and of the quantity H, involving also the masses; we could therefore determine whatever else
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depends on the manner and time of motion of the system, from its initial to its final position,
as a function of the same extreme coordinates, and of H. In particular, we could determine
the action V , or the accumulated living force of the system, namely,

V = m1

∫ t

0

(x′21 + y′21 + z′21 ) dt+m2

∫ t

0

(x′22 + y′22 + z′22 ) dt+m3

∫ t

0

(x′23 + y′23 + z′23 ) dt, (A4.)

as a function of these nineteen quantities, x1 y1 z1 x2 y2 z2 x3 y3 z3 a1 b1 c1 a2 b2 c2 a3 b3 c3 H;
and might then calculate the variation of this function,

δV =
δV

δx1
δx1 +

δV

δy1
δy1 +

δV

δz1
δz1 +

δV

δa1
δa1 +

δV

δb1
δb1 +

δV

δc1
δc1

+
δV

δx2
δx2 +

δV

δy2
δy2 +

δV

δz2
δz2 +

δV

δa2
δa2 +

δV

δb2
δb2 +

δV

δc2
δc2

+
δV

δx3
δx3 +

δV

δy3
δy3 +

δV

δz3
δz3 +

δV

δa3
δa3 +

δV

δb3
δb3 +

δV

δc3
δc3

+
δV

δH
δH.


(B4.)

But the law of varying action gives, previously, the following expression for this variation:

δV = m1(x′1 δx1 − a′1 δa1 + y′1 δy1 − b′1 δb1 + z′1 δz1 − c′1 δc1)

+m2(x′2 δx2 − a′2 δa2 + y′2 δy2 − b′2 δb2 + z′2 δz2 − c′2 δc2)

+m3(x′3 δx3 − a′3 δa3 + y′3 δy3 − b′3 δb3 + z′3 δz3 − c′3 δc3)

+ t δH;

 (C4.)

and shows, therefore, that the research of all the intermediate and all the final integral equa-
tions, of motion of the system, may be reduced, reciprocally, to the search and differentiation
of this one characteristic function V ; because if we knew this one function, we should have
the nine intermediate integrals of the known differential equations, under the forms

δV

δx1
= m1x

′
1,

δV

δy1
= m1y

′
1,

δV

δz1
= m1z

′
1,

δV

δx2
= m2x

′
2,

δV

δy2
= m2y

′
2,

δV

δz2
= m2z

′
2,

δV

δx3
= m3x

′
3,

δV

δy3
= m3y

′
3,

δV

δz3
= m3z

′
3,


(D4.)

and the nine final integrals under the forms

δV

δa1
= −m1a

′
1,

δV

δb1
= −m1b

′
1,

δV

δc1
= −m1c

′
1,

δV

δa2
= −m2a

′
2,

δV

δb2
= −m2b

′
2,

δV

δc2
= −m2c

′
2,

δV

δa3
= −m3a

′
3,

δV

δb3
= −m3b

′
3,

δV

δc3
= −m3c

′
3,


(E4.)
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the auxiliary constant H being to be eliminated, and the time t introduced, by this other
equation, which has often occurred in this essay,

t =
δV

δH
. (E.)

The same law of varying action suggests also a method of investigating the form of this
characteristic function V , not requiring the previous integration of the known equations of
motion; namely, the integration of a pair of partial differential equations connected with the
law of living force; which are,

1

2m1

{(
δV

δx1

)2

+

(
δV

δy1

)2

+

(
δV

δz1

)2
}

+
1

2m2

{(
δV

δx2

)2

+

(
δV

δy2

)2

+

(
δV

δz2

)2
}

+
1

2m3

{(
δV

δx3

)2

+

(
δV

δy3

)2

+

(
δV

δz3

)2
}

= m1m2f
(1,2) +m1m3f

(1,3) +m2m3f
(2,3) +H,


(F4.)

and

1

2m1

{(
δV

δa1

)2

+

(
δV

δb1

)2

+

(
δV

δc1

)2
}

+
1

2m2

{(
δV

δa2

)2

+

(
δV

δb2

)2

+

(
δV

δc2

)2
}

+
1

2m3

{(
δV

δa3

)2

+

(
δV

δb3

)2

+

(
δV

δc3

)2
}

= m1m2f
(1,2)
0 +m1m3f

(1,3)
0 +m2m3f

(2,3)
0 +H.


(G4.)

And to diminish the difficulty of thus determining the function V , which depends on 18
coordinates, we may separate it, by principles already explained, into a part V′′ depending
only on the motion of the centre of gravity of the system, and determined by the formula
(H1.), and another part V′, depending only on the relative motions of the points of the
system about this internal centre, and equal to the accumulated living force, connected with
this relative motion only. In this manner the difficulty is reduced to determining the relative
action V′; and if we introduce the relative coordinates

ξ1 = x1 − x3, η1 = y1 − y3, ζ1 = z1 − z3,

ξ2 = x2 − x3, η2 = y2 − y3, ζ2 = z2 − z3,

}
(126.)

and
α1 = a1 − a3, β1 = b1 − b3, γ1 = c1 − c3,
α2 = a2 − a3, β2 = b2 − b3, γ2 = c2 − c3,

}
(127.)

we easily find, by the principles of the tenth and following numbers, that the function V′
may be considered as depending only on these relative coordinates and on a quantity H′
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analogous to H (besides the masses of the system); and that it must satisfy two partial
differential equations, analogous to (F4.) and (G4.), namely

1

2m1

{(
δV′
δξ1

)2

+

(
δV′
δη1

)2

+

(
δV′
δζ1

)2
}

+
1

2m2

{(
δV′
δξ2

)2

+

(
δV′
δη2

)2

+

(
δV′
δζ2

)2
}

+
1

2m3

{(
δV′
δξ1

+
δV′
δξ2

)2

+

(
δV′
δη1

+
δV′
δη2

)2

+

(
δV′
δζ1

+
δV′
δζ2

)2
}

= m1m2f
(1,2) +m1m3f

(1,3) +m2m3f
(2,3) +H′;


(H4.)

and

1

2m1

{(
δV′
δα1

)2

+

(
δV′
δβ1

)2

+

(
δV′
δγ1

)2
}

+
1

2m2

{(
δV′
δα2

)2

+

(
δV′
δβ2

)2

+

(
δV′
δγ2

)2
}

+
1

2m3

{(
δV′
δα1

+
δV′
δα2

)2

+

(
δV′
δβ1

+
δV′
δβ2

)2

+

(
δV′
δγ1

+
δV′
δγ2

)2
}

= m1m2f
(1,2)
0 +m1m3f

(1,3)
0 +m2m3f

(2,3)
0 +H′ :


(I4.)

the law of the variation of this function being, by (Z1.),

δV′ = t δH′ +m1(ξ′1 δξ1 − α′1 δα1 + η′1 δη1 − β′1 δβ1 + ζ ′1 δζ1 − γ′1 δγ1)

+m2(ξ′2 δξ2 − α′2 δα2 + η′2 δη2 − β′2 δβ2 + ζ ′2 δζ2 − γ′2 δγ2)

− 1

m1 +m2 +m3



(m1ξ
′
1 +m2ξ

′
2)(m1 δξ1 +m2 δξ2)

−(m1α
′
1 +m2α

′
2)(m1 δα1 +m2 δα2)

+(m1η
′
1 +m2η

′
2)(m1 δη1 +m2 δη2)

−(m1β
′
1 +m2β

′
2)(m1 δβ1 +m2 δβ2)

+(m1ζ
′
1 +m2ζ

′
2)(m1 δζ1 +m2 δζ2)

−(m1γ
′
1 +m2γ

′
2)(m1 δγ1 +m2 δγ2)





(K4.)

which resolves itself in the same manner as before into the six intermediate and six final
integrals of relative motion, namely, into the following equations:

1

m1

δV′
δξ1

= ξ′1 −
m1ξ

′
1 +m2ξ

′
2

m1 +m2 +m3
;

1

m2

δV′
δξ2

= ξ′2 −
m1ξ

′
1 +m2ξ

′
2

m1 +m2 +m3
;

1

m1

δV′
δη1

= η′1 −
m1η

′
1 +m2η

′
2

m1 +m2 +m3
;

1

m2

δV′
δη2

= η′2 −
m1η

′
1 +m2η

′
2

m1 +m2 +m3
;

1

m1

δV′
δζ1

= ζ ′1 −
m1ζ

′
1 +m2ζ

′
2

m1 +m2 +m3
;

1

m2

δV′
δζ2

= ζ ′2 −
m1ζ

′
1 +m2ζ

′
2

m1 +m2 +m3
;


(L4.)
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and
−1

m1

δV′
δα1

= α′1 −
m1α

′
1 +m2α

′
2

m1 +m2 +m3
;
−1

m2

δV′
δα2

= α′2 −
m1α

′
1 +m2α

′
2

m1 +m2 +m3
;

−1

m1

δV′
δβ1

= β′1 −
m1β

′
1 +m2β

′
2

m1 +m2 +m3
;
−1

m2

δV′
δβ2

= β′2 −
m1β

′
1 +m2β

′
2

m1 +m2 +m3
;

−1

m1

δV′
δγ1

= γ′1 −
m1γ

′
1 +m2γ

′
2

m1 +m2 +m3
;
−1

m2

δV′
δγ2

= γ′2 −
m1γ

′
1 +m2γ

′
2

m1 +m2 +m3
;


(M4.)

which must be combined with our old formula,

δV′
δH′

= t. (O1.)

18. The quantity H′ in V′, and the analogous quantity H′′ in V′′, are indeed independent
of the time, and do not vary in the course of the motion; but it is required by the spirit of our
method, that in deducing the absolute action or original characteristic function V from the
two parts V′ and V′′, we should consider these two parts H′ and H′′ of the original quantity
H′ as functions involving each the nine initial and nine final coordinates of the points of the
ternary system; the forms of these two functions, of the eighteen coordinates and of H, being
determined by the two conditions,

δV′
δH′

=
δV′′
δH′′

, H′ +H′′ = H. (N4.)

However it results from these conditions, that in taking the variation of the whole original
function V , of the first order, with respect to the eighteen coordinates, we may treat the
two auxiliary quantities H′ and H′′ as constant; and therefore that we have the following
expressions for the partial differential coefficients of the first order of V , taken with respect
to the coordinates parallel to x,

δV

δx1
=
δV′
δξ1

+
m1

m1 +m2 +m3

δV′′
δx′′

,
δV

δa1
=
δV′
δα1

+
m1

m1 +m2 +m3

δV′′
δa′′

,

δV

δx2
=
δV′
δξ2

+
m2

m1 +m2 +m3

δV′′
δx′′

,
δV

δa2
=
δV′
δα2

+
m2

m1 +m2 +m3

δV′′
δa′′

,

δV

δx3
= −δV′

δξ1
− δV′
δξ2

+
m3

m1 +m2 +m3

δV′′
δx′′

,
δV

δa3
= − δV′

δα1
− δV′
δα2

+
m3

m1 +m2 +m3

δV′′
δa′′

,


(O4.)

together with analogous expressions for the partial differential coefficients of the same order
taken with respect to the other coordinates. Substituting these expressions in the equations
of the form (O.), namely, in the following,

δV

δx1
+
δV

δx2
+
δV

δx3
+
δV

δa1
+
δV

δa2
+
δV

δa3
= 0,

δV

δy1
+
δV

δy2
+
δV

δy3
+
δV

δb1
+
δV

δb2
+
δV

δb3
= 0,

δV

δz1
+
δV

δz2
+
δV

δz3
+
δV

δc1
+
δV

δc2
+
δV

δc3
= 0,


(P4.)
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we find that these equations become identical, because

δV′′
δx′′

+
δV′′
δa′′

= 0,
δV′′
δy′′

+
δV′′
δb′′

= 0,
δV′′
δz′′

+
δV′′
δc′′

= 0, (Q4.)

But substituting, in like manner, the expressions (O4.) in the equations of the form (P.), of
which the first is, for a ternary system,

x1
δV

δy1
− y1

δV

δx1
+ x2

δV

δy2
− y2

δV

δx2
+ x3

δV

δy3
− y3

δV

δx3

+ a1
δV

δb1
− b1

δV

δa1
+ a2

δV

δb2
− b2

δV

δa2
+ a3

δV

δb3
− b3

δV

δa3
;

 (R4.)

and observing that we have

x′′
δV′′
δy′′
− y′′

δV′′
δx′′

+ a′′
δV′′
δb′′
− b′′

δV′′
δa′′

= 0, (S4.)

along with two other analogous conditions, we find that the part V′, or the characteristic
function of relative motion of the ternary system, must satisfy the three following conditions,
involving its partial differential coefficients of the first order and in the first degree,

0 = ξ1
δV′
δη1
− η1

δV′
δξ1

+ ξ2
δV′
δη2
− η2

δV′
δξ2

+ α1
δV′
δβ1
− β1

δV′
δα1

+ α2
δV′
δβ2
− β2

δV′
δα2

,

0 = η1
δV′
δζ1
− ζ1

δV′
δη1

+ η2
δV′
δζ2
− ζ2

δV′
δη2

+ β1
δV′
δγ1
− γ1

δV′
δβ1

+ β2
δV′
δγ2
− γ2

δV′
δβ2

,

0 = ζ1
δV′
δξ1
− ξ1

δV′
δζ1

+ ζ2
δV′
δξ2
− ξ2

δV′
δζ2

+ γ1
δV′
δα1
− α1

δV′
δγ1

+ γ2
δV′
δα2
− α2

δV′
δγ2

,


(T4.)

which show that this function can depend only on the shape and size of a pentagon, not
generally plane, formed by the point m3 considered as fixed, and by the initial and final
positions of the other two points m1 and m2; for example, the pentagon, of which the corners
are, in order, m3 (m1) (m2) m2 m1; (m1) and (m2) denoting the initial positions of the points
m1 and m2, referred to m3 as a fixed origin. The shape and size of this pentagon may be
determined by the ten mutual distances of its five points, that is, by the five sides and five
diagonals, which may be thus denoted:

m3(m1) =
√
s1, (m1)(m2) =

√
s2, (m2)m2 =

√
s3, m2m1 =

√
s4, m1m3 =

√
s5,

m3(m2) =
√
d1, (m1)m2 =

√
d2, (m2)m1 =

√
d3, m2m3 =

√
d4, m1(m1) =

√
d5;

}
(128.)

the values of s1 . . . d5 as functions of the twelve relative coordinates being

s1 = α2
1 + β2

1 + γ2
1 , s2 = (α2 − α1)2 + (β2 − β1)2 + (γ2 − γ1)2,

s3 = (ξ2 − α2)2 + (η2 − β2)2 + (ζ2 − γ2)2,

s5 = ξ2
1 + η2

1 + ζ2
1 , s4 = (ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2,

d1 = α2
2 + β2

2 + γ2
2 , d2 = (ξ2 − α1)2 + (η2 − β1)2 + (ζ2 − γ1)2,

d3 = (ξ1 − α2)2 + (η1 − β2)2 + (ζ1 − γ2)2,

d4 = ξ2
2 + η2

2 + ζ2
2 , d5 = (ξ1 − α1)2 + (η1 − β1)2 + (ζ1 − γ1)2.


(129.)

These ten distances
√
s1, &c., are not, however, all independent, but are connected by one

equation of condition, namely,

46



0 = s2
1s

2
3 +s2

2s
2
4 +s2

3s
2
5 +s2

4s
2
1 +s2

5s
2
2

+s2
1d

2
3 +s2

2d
2
4 +s2

3d
2
5 +s2

4d
2
1 +s2

5d
2
2

+d2
1d

2
2 +d2

2d
2
3 +d2

3d
2
4 +d2

4d
2
5 +d2

5d
2
1

−2s2
1s3s4 −2s2

2s4s5 −2s2
3s5s1 −2s2

4s1s2 −2s2
5s2s3

−2s2
1s3d3 −2s2

2s4d4 −2s2
3s5d5 −2s2

4s1d1 −2s2
5s2d2

−2s2
1s4d3 −2s2

1s5d4 −2s2
1s1d5 −2s2

1s2d1 −2s2
1s3d2

−2s1d2d
2
3 −2s2d3d

2
4 −2s3d4d

2
5 −2s4d5d

2
1 −2s5d1d

2
2

−2s1d
2
3d4 −2s2d

2
4d5 −2s3d

2
5d1 −2s4d

2
1d2 −2s5d

2
2d3

−2d1d
2
2d3 −2d2d

2
3d4 −2d3d

2
4d5 −2d4d

2
5d1 −2d5d

2
1d2

−4s1s3s4d3 −4s2s4s5d4 −4s3s5s1d5 −4s4s1s2d1 −4s5s2s3d2

−4s1d2d3d4 −4s2d3d4d5 −4s3d4d5d1 −4s4d5d1d2 −4s5d1d2d3

−2s1s2s3d4 −2s2s3s4d5 −2s3s4s5d1 −2s4s5s1d2 −2s5s1s2d3

−2s1s3d1d2 −2s2s4d2d3 −2s3s5d3d4 −2s4s1d4d5 −2s5s2d5d1

−2s1d1d3d5 −2s2d2d4d1 −2s3d3d5d2 −2s4d4d1d3 −2s5d5d2d4

+2s1s2s3s4 +2s2s3s4s5 +2s3s4s5s1 +2s4s5s1s2 +2s5s1s2s3

+2s1s2s4d3 +2s2s3s5d4 +2s3s4s1d5 +2s4s5s2d1 +2s5s1s3d2

+2s1s3s4d1 +2s2s4s5d2 +2s3s5s1d3 +2s4s1s2d4 +2s5s2s3d5

+2s1s2d3d4 +2s2s3d4d5 +2s3s4d5d1 +2s4s5d1d2 +2s5s1d2d3

+2s1s3d2d3 +2s2s4d3d4 +2s3s5d4d5 +2s4s1d5d1 +2s5s2d1d2

+2s1s4d1d2 +2s2s5d2d3 +2s3s1d3d4 +2s4s2d4d5 +2s5s3d5d1

+2s1s4d1d3 +2s2s5d2d4 +2s3s1d3d5 +2s4s2d4d1 +2s5s3d5d2

+2s1s4d2d3 +2s2s5d3d4 +2s3s1d4d5 +2s4s2d5d1 +2s5s3d1d2

+2s1s4d3d4 +2s2s5d4d5 +2s3s1d5d1 +2s4s2d1d2 +2s5s3d2d3

+2s1d1d2d3 +2s2d2d3d4 +2s3d3d4d5 +2s4d4d5d1 +2s5d5d1d2

+2s1d3d4d5 +2s2d4d5d1 +2s3d5d1d2 +2s4d1d2d3 +2s5d2d3d4

+2d1d2d3d4 +2d2d3d4d5 +2d3d4d5d1 +2d4d5d1d2 +2d5d1d2d3;



(130.)

they may therefore be expressed as functions of nine independent quantities; for example,

of four lines and five angles, r(1) r
(1)
0 r(2) r

(2)
0 , θ(1) θ

(1)
0 θ(2) θ

(2)
0 ι, on which they depend as

follows:

s1 = r
(1)2
0 ,

s2 = r
(1)2
0 + r

(2)2
0 − 2r

(1)
0 r

(2)
0 (cos θ

(1)
0 cos θ

(2)
0 + sin θ

(1)
0 sin θ

(2)
0 cos ι),

s3 = r(2)2 + r
(2)2
0 − 2r(2)r

(2)
0 cos(θ(2) − θ(2)

0 ),

s4 = r(2)2 + r(1)2 − 2r(2)r(1)(cos θ(1) cos θ(2) + sin θ(1) sin θ(2) cos ι),

s5 = r(1)2,

d1 = r
(2)2
0 ,

d2 = r(2)2 + r
(1)2
0 − 2r(2)r

(1)
0 (cos θ(2) cos θ

(1)
0 + sin θ(2) sin θ

(1)
0 cos ι),

d3 = r
(2)2
0 + r(1)2 − 2r

(2)
0 r(1)(cos θ

(2)
0 cos θ(1) + sin θ

(2)
0 sin θ(1) cos ι),

d4 = r(2)2,

d5 = r(1)2 + r
(1)2
0 − 2r(1)r

(1)
0 cos(θ(1) − θ(1)

0 ),



(131.)
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the two line-symbols r(1) r(2) denoting, for abridgement, the same two final radii vectores

which were before denoted by r(1,3) r(2,3), and r
(1)
0 r

(2)
0 representing the initial values of these

radii; while θ(1) θ(2) θ
(1)
0 θ

(2)
0 are angles made by these four radii, with the line of intersection

of the two planes r
(1)
0 r(1), r

(2)
0 r(2); and ι is the inclination of these two planes to each other.

We may therefore consider the characteristic function V′ of relative motion, for any ternary
system, as depending only on these latter lines and angles, along with the quantity H′.

The reasoning which it has been thought useful to develope here, for any system of three
points, attracting or repelling one another according to any functions of their distances, was
alluded to, under a more general form, in the twelth number of this essay; and shows, for
example, that the characteristic function of relative motion in a system of four such points,
depends on the shape and size of a heptagon, and therefore only on the mutual distances of

its seven corners, which are in number

(
7× 6

2
=

)
21, but are connected by six equations of

condition, leaving only fifteen independent. It is easy to extend these remarks to any multiple
system.

General method of improving an approximate expression for the Characteristic Function of
motion of a System in any problem of Dynamics.

19. The partial differential equation (F.), which the characteristic function V must
satisfy, in every dynamical question, may receive some useful general transformations, by the
separation of this function V into any two parts

V1 + V2 = V. (U4.)

For if we establish, for abridgement, the two following equations of definition,

T1 = Σ .
1

2m

((
δV1

δx

)2

+

(
δV1

δy

)2

+

(
δV1

δz

)2
)
,

T2 = Σ .
1

2m

((
δV2

δx

)2

+

(
δV2

δy

)2

+

(
δV2

δz

)2
)
,

 (V4.)

analogous to the relation

T = Σ .
1

2m

((
δV

δx

)2

+

(
δV

δy

)2

+

(
δV

δz

)2
)
, (W4.)

which served to transform the law of living force into the partial differential equation (F.);
we shall have, by (U4.),

T = T1 + T2 + Σ .
1

m

(
δV1

δx

δV2

δx
+
δV1

δy

δV2

δy
+
δV1

δz

δV2

δz

)
; (X4.)
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and this expression may be further transformed by the help of the formula (C.), or by the
law of varying action. For that law gives the following symbolic equation,

Σ .
1

m

(
δV

δx

δ

δx
+
δV

δx

δ

δy
+
δV

δx

δ

δz

)
=

d

dt
, (Y4.)

the symbols in both members being prefixed to any one function of the varying coordinates
of a system, not expressly involving the time; it gives therefore by (U4.), (V4.),

Σ .
1

m

(
δV1

δx

δV2

δx
+
δV1

δy

δV2

δy
+
δV1

δz

δV2

δz

)
=
dV2

dt
− 2T2. (Z4.)

In this manner we find the following general and rigorous transformation of the equation (F.),

dV2

dt
= T − T1 + T2; (A5.)

T being here retained for the sake of symmetry and conciseness, instead of the equal expression
U +H. And if we suppose, as we may, that the part V1, like the whole function V , is chosen
so as to vanish with the time, then the other part V2 will also have that property, and may
be expressed by the definite integral,

V2 =

∫ t

0

(T − T1 + T2) dt. (B5.)

More generally, if we employ the principles of the seventh number, and introduce any 3n
marks η1, η2, . . . η3n, of the varying positions of the n points of any system, (whether they be
the rectangular coordinates themselves, or any functions of them,) we shall have

T = F

(
δV

δη1
,
δV

δη2
, . . .

δV

δη3n

)
, (C5.)

and may establish by analogy the two following equations of definition,

T1 = F

(
δV1

δη1
,
δV1

δη2
, . . .

δV1

δη3n

)
,

T2 = F

(
δV2

δη1
,
δV2

δη2
, . . .

δV2

δη3n

)
,

 (D5.)

the function F being always rational and integer, and homogeneous of the second dimension;
and being therefore such that (besides other properties)

T = T1 + T2 +
δT1

δ
δV1

δη1

δV2

δη1
+

δT1

δ
δV1

δη2

δV2

δη2
+ · · ·+ δT1

δ
δV1

δη3n

δV2

δη3n
, (E5.)
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δT

δ
δV

δη1

=
δT1

δ
δV1

δη1

+
δT2

δ
δV2

δη1

, . . .
δT

δ
δV

δη3n

=
δT1

δ
δV1

δη3n

+
δT2

δ
δV2

δη3n

, (F5.)

and
δT2

δ
δV2

δη1

δV2

δη1
+

δT2

δ
δV2

δη2

δV2

δη2
+ · · ·+ δT2

δ
δV2

δη3n

δV2

δη3n
= 2T2. (G5.)

By the principles of the eighth number, we have also,

δT

δ
δV

δη1

= η′1,
δT

δ
δV

δη2

= η′2, . . .
δT

δ
δV

δη3n

= η′3n; (H5.)

and since the meanings of η′1, . . . η
′
3n give evidently the symbolical equation,

η′1
δ

δη1
+ η′2

δ

δη2
+ · · ·+ η′3n

δ

δη3n
=

d

dt
, (I5.)

we see that the equation (A5.) still holds with the present more general marks of position of
a moving system, and gives still the expression (B5.), supposing only, as before, that the two
parts of the whole characteristic function are chosen so as to vanish with the time.

It may not at first sight appear, that this rigorous transformation (B5.), of the partial
differential equation (F.), or of the analogous equation (T.) with coordinates not rectangular,
is likely to assist much in discovering the form of the part V2 of the characteristic function V ,
(the other part V1 being supposed to have been previously assumed;) because it involves
under the sign of integration, in the term T2, the partial differential coefficients of the sought
part V2. But if we observe that these unknown coefficients enter only by their squares and
products, we shall perceive that it offers a general method of improving an approximation in
any problem of dynamics. For if the first part V1 be an approximate value of the whole sought
function V , the second part V2 will be small, and the term T2 will not only be also small,
but will be in general of a higher order of smallness; we shall therefore in general improve an
approximate value V1 of the characteristic function V , by adding to it the definite integral,

V2 =

∫ t

0

(T − T1) dt; (K5.)

though this is not, like (B5.), a perfectly rigorous expression for the remaining part of the
function. And in calculating this integral (K5.), for the improvement of an approximation
V1, we may employ the following analogous approximations to the rigorous formulæ (D.) and
(E.),

δV1

δa1
= −m1a

′
1;

δV1

δa2
= −m2a

′
2; . . .

δV1

δan
= −mna

′
n;

δV1

δb1
= −m1b

′
1;

δV1

δb2
= −m2b

′
2; . . .

δV1

δbn
= −mnb

′
n;

δV1

δc1
= −m1c

′
1;

δV1

δc2
= −m2c

′
2; . . .

δV1

δcn
= −mnc

′
n;


(L5.)
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and
δV1

δH
= t; (M5.)

or with any other marks of final and initial position, (instead of rectangular coordinates,) the
following approximate forms of the rigorous equations (S.),

δV1

δe1
= −δT0

δe′1
,

δV1

δe2
= −δT0

δe′2
, . . .

δV1

δe3n
= − δT0

δe′3n
, (N5.)

together with the formula (M5.); by which new formulæ the manner of motion of the system
is approximately though not rigorously expressed.

It is easy to extend these remarks to problems of relative motion, and to show that in
such problems we have the rigorous transformation

V′2 =

∫ t

0

(T′ − T′1 + T′2) dt, (O5.)

and the approximate expression

V′2 =

∫ t

0

(T′ − T′1) dt, (P5.)

V′1 being any approximate value of the function V′ of relative motion, and V′2 being the
correction of this value; and T′1, T′2, being homogeneous functions of the second dimension,
composed of the partial differential coefficients of these two parts V′1, V′2, in the same way
as T′ is composed of the coefficients of the whole function V′. These general remarks may
usefully be illustrated by a particular but extensive application.

Application of the foregoing method to the case of a Ternary or Multiple System, with any
laws of attraction or repulsion, and with one predominant mass.

20. The value (68.), for the relative living force 2T′ of a system, reduces itself successively

to the following parts, 2T
(1)
′ , 2T

(2)
′ , . . . 2T

(n−1)
′ , when we suppose that all the n−1 first masses

vanish, with the exception of each successively; namely, to the part

2T
(1)
′ =

m1mn

m1 +mn
(ξ′21 + η′21 + ζ ′21 ), (132.)

when only m1, mn, do not vanish; the part

2T
(2)
′ =

m2mn

m2 +mn
(ξ′22 + η′22 + ζ ′22 ), (133.)

when all but m2, mn, vanish; and so on, as far as the part

2T
(n−1)
′ =

mn−1mn

mn−1 +mn
(ξ′2n−1 + η′2n−1 + ζ ′2n−1), (134.)
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which remains, when only the two last masses are retained. The sum of these n − 1 parts
is not, in general, equal to the whole relative living force 2T′ of the system, with all the n
masses retained; but it differs little from that whole when the first n− 1 masses are small in
comparison with the last mass mn; for the rigorous value of this difference is, by (68.), and
by (132.) (133.) (134.),

2T′ − 2T
(1)
′ − 2T

(2)
′ − · · · − 2T

(n−1)
′

=
2m1

mn
(T

(1)
′ − T′) +

2m2

mn
(T

(2)
′ − T′) + · · ·+ 2mn−1

mn
(T

(n−1)
′ − T′)

+
1

mn
Σ′ .mimk{(ξ′i − ξ′k)2 + (η′i − η′k)2 + (ζ ′i − ζ ′k)2} :


(135.)

an expression which is small of the second order when the n− 1 first masses are small of the

first order. If, then, we denote by V
(1)
′ , V

(2)
′ , . . . V

(n−1)
′ , the relative actions, or accumulated

relative living forces, such as they would be in the n−1 binary systems, (m1 mn), (m2mn), . . .
(mn−1 mn), without the perturbations of the other small masses of the entire multiple system
of n points; so that

V
(1)
′ =

∫ t

0

2T
(1)
′ dt, V

(2)
′ =

∫ t

0

2T
(2)
′ dt, · · · V

(n−1)
′ =

∫ t

0

2T
(n−1)
′ dt, (Q5.)

the perturbations being neglected in calculating these n− 1 definite integrals; we shall have,
as an approximate value for the whole relative action V′ of the system, the sum V′1 of its
values for these separate binary systems,

V′1 = V
(1)
′ + V

(2)
′ + · · ·+ V

(n−1)
′ . (R5.)

This sum, by our theory of binary systems, may be otherwise expressed as follows:

V′1 =
m1mnw

(1)

m1 +mn
+
m2mnw

(2)

m2 +mn
+ · · ·+ mn−1mnw

(n−1)

mn−1 +mn
, (S5.)

if we put for abridgement

w(1) = h(1)ϑ(1) +

∫ r(1)

r
(1)
0

r′(1) dr(1),

w(2) = h(2)ϑ(2) +

∫ r(2)

r
(2)
0

r′(2) dr(2),

· · ·

w(n−1) = h(n−1)ϑ(n−1) +

∫ r(n−1)

r
(n−1)
0

r′(n−1) dr(n−1).


(T5.)

In this expression,

r′(1) = ±
√

2(m1 +mn)f (1) + 2g(1) − h(1)2

r(1)2
,

· · ·

r′(n−1) = ±
√

2(mn−1 +mn)f (n−1) + 2g(n−1) − h(n−1)2

r(n−1)2
,

 (U5.)
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r(1), . . . r(n−1) being abridged expressions for the distances r(1,n), . . . r(n−1,n), and f (1), . . .
f (n−1) being abridgements for the functions f (1,n), . . . f (n−1,n), of these distances, of which
the derivatives, according as they are negative or positive, express the laws of attraction or
repulsion: we have also introduced 2n− 2 auxiliary quantities h(1) g(1) . . . h(n−1) g(n−1), to
be eliminated or determined by the following equations of condition:

0 = ϑ(1) +

∫ r(1)

r
(1)
0

δr′(1)

δh(1)
dr(1),

0 = ϑ(2) +

∫ r(2)

r
(2)
0

δr′(2)

δh(2)
dr(2),

· · ·

0 = ϑ(n−1) +

∫ r(n−1)

r
(n−1)
0

δr′(n−1)

δh(n−1)
dr(n−1),


(V5.)

and ∫ r(1)

r
(1)
0

dr(1)

r′(1)
=

∫ r(2)

r
(2)
0

dr(2)

r′(2)
= · · · =

∫ r(n−1)

r
(n−1)
0

dr(n−1)

r′(n−1)
, (W5.)

or
δw(1)

δg(1)
=
δw(2)

δg(2)
= · · · = δw(n−1)

δg(n−1)
, (X5.)

along with this last condition,

m1g
(1)

m1 +mn
+

m2g
(2)

m2 +mn
+

m3g
(3)

m3 +mn
+ · · ·+ mn−1g

(n−1)

mn−1 +mn
=

H′
mn

; (Y5.)

and we have denoted by ϑ(1), . . . ϑ(n−1), the angles which the final distances r(1), . . . r(n−1),
of the first n− 1 points from the last or nth point of the system, make respectively with the

initial distances corresponding, namely, r
(1)
0 , . . . r

(n−1)
0 . The variation of the sum V′1 is, by

(S5.),

δV′1 =
m1mnδw

(1)

m1 +mn
+
m2mnδw

(2)

m2 +mn
+ · · ·+ mn−1mnδw

(n−1)

mn−1 +mn
; (Z5.)

in which, by the equations of condition, we may treat all the auxiliary quantities h(1) g(1) . . .
h(n−1) g(n−1) as constant, if H′ be considered as given: so that the part of this variation δV′1,
which depends on the variations of the final relative coordinates, may be put under the form,

δξ,η,ζV′1 =
m1mn

m1 +mn

(
δw(1)

δξ1
δξ1 +

δw(1)

δη1
δη1 +

δw(1)

δζ1
δζ1

)
+

m2mn

m2 +mn

(
δw(2)

δξ2
δξ2 +

δw(2)

δη2
δη2 +

δw(2)

δζ2
δζ2

)
+ · · ·

+
mn−1mn

mn−1 +mn

(
δw(n−1)

δξn−1
δξn−1 +

δw(n−1)

δηn−1
δηn−1 +

δw(n−1)

δζn−1
δζn−1

)
.


(A6.)
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By the equations (T5.) (U5.), or by the theory of binary systems, we have, rigorously,

(
δw(1)

δξ1

)2

+

(
δw(1)

δη1

)2

+

(
δw(1)

δζ1

)2

= 2(m1 +mn)f (1) + 2g(1);(
δw(2)

δξ2

)2

+

(
δw(2)

δη2

)2

+

(
δw(2)

δζ2

)2

= 2(m2 +mn)f (2) + 2g(2);

· · ·(
δw(n−1)

δξn−1

)2

+

(
δw(n−1)

δηn−1

)2

+

(
δw(n−1)

δζn−1

)2

= 2(mn−1 +mn)f (n−1) + 2g(n−1);


(B6.)

and the rigorous law of relative living force for the whole multiple system, is

T′ = U +H′, (50.)

in which
U = mn(m1f

(1) +m2f
(2) + · · ·+mn−1f

(n−1)) + Σ′ .mimkf
(i,k), (C6.)

and

T′ =
1

2

(
1

m1
+

1

mn

){(
δV′
δξ1

)2

+

(
δV′
δη1

)2

+

(
δV′
δζ1

)2
}

+
1

2

(
1

m2
+

1

mn

){(
δV′
δξ2

)2

+

(
δV′
δη2

)2

+

(
δV′
δζ2

)2
}

+ · · ·

+
1

2

(
1

mn−1
+

1

mn

){(
δV′
δξn−1

)2

+

(
δV′
δηn−1

)2

+

(
δV′
δζn−1

)2
}

+
1

mn
Σ′

(
δV′
δξi

δV′
δξk

+
δV′
δηi

δV′
δηk

+
δV′
δζi

δV′
δζk

)
.



(D6.)

We have therefore, by changing in this last expression the coefficients of the characteristic
function V′ to those of its first part V′1, and by attending to the foregoing equations,

T′1 = mn Σ′ .mif
(i) +H′

+mn Σ′ .
mi

mn +mi

mk

mn +mk

(
δw(i)

δξi

δw(k)

δξk
+
δw(i)

δηi

δw(k)

δηk
+
δw(i)

δζi

δw(k)

δζk

)
;

 (E6.)

and consequently

T′ − T′1 = Σ′mimk

{
f (i,k)

− mn

(mn +mi)(mn +mk)

(
δw(i)

δξi

δw(k)

δξk
+
δw(i)

δηi

δw(k)

δηk
+
δw(i)

δζi

δw(k)

δζk

)}
.

 (F6.)
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The general transformation of the foregoing number gives therefore, rigorously, for the re-
maining part V′2 of the characteristic function V′ of relative motion of the multiple system,
the equation

V′2 =

∫ t

0

T′2 dt

+ Σ′ .mimk

∫ t

0

f (i,k) −

δw(i)

δξi

δw(k)

δξk
+
δw(i)

δηi

δw(k)

δηk
+
δw(i)

δζi

δw(k)

δζk
1

mn
(mn +mi)(mn +mk)

 dt;


(G6.)

and, approximately, the expression

V′2 = Σ′ .mimk

∫ t

0

{
f (i,k) − 1

mn
(ξ′iξ

′
k + η′iη

′
k + ζ ′iζ

′
k)

}
dt : (H6.)

with which last expression we may combine the following approximate formulæ belonging in
rigour to binary systems only,

ξ′i =
δw(i)

δξi
, η′i =

δw(i)

δηi
, ζ ′i =

δw(i)

δζi
, (I6.)

α′i = −δw
(i)

δαi
, β′i = −δw

(i)

δβi
, γ′i = −δw

(i)

δγi
, (K6.)

and

t =
δw(i)

δg(i)
. (L6.)

We have also, rigorously, for binary systems, the following differential equations of motion
of the second order,

ξ′′i = (mn +mi)
δf (i)

δξi
; η′′i = (mn +mi)

δf (i)

δηi
; ζ ′′i = (mn +mi)

δf (i)

δζi
; (M6.)

which enable us to transform in various ways the approximate expression (H6.). Thus, in the
case of a ternary system, with any laws of attraction or repulsion, but with one predominant
mass m3, the disturbing part V′2 of the characteristic function V′ of relative motion, may be
put under the form

V′2 = m1m2W, (N6.)

in which the coefficient W may be approximately be expressed as follows:

W =

∫ t

0

{
f (1,2) − 1

m3
(ξ′1ξ

′
2 + η′1η

′
2 + ζ ′1ζ

′
2)

}
dt, (O6.)
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or thus:

W =

∫ t

0

(
f (1,2) + ξ2

δf (1)

δξ1
+ η2

δf (1)

δη1
+ ζ2

δf (1)

δζ1

)
dt

− 1

m3

(
ξ2
δw(1)

δξ1
+ η2

δw(1)

δη1
+ ζ2

δw(1)

δζ1
+ α2

δw(1)

δα1
+ β2

δw(1)

δβ1
+ γ2

δw(1)

δγ1

)
,

 (P6.)

or finally,

W =

∫ t

0

(
f (1,2) + ξ1

δf (2)

δξ2
+ η1

δf (2)

δη2
+ ζ1

δf (2)

δζ2

)
dt

− 1

m3

(
ξ1
δw(2)

δξ2
+ η1

δw(2)

δη2
+ ζ1

δw(2)

δζ2
+ α1

δw(2)

δα2
+ β1

δw(2)

δβ2
+ γ1

δw(2)

δγ2

)
.

 (Q6.)

In general, for a multiple system, we may put

V′2 = Σ′ .mimkW
(i,k); (R6.)

and approximately,

W (i,k) =

∫ t

0

(
f (i,k) + ξk

δf (i)

δξi
+ ηk

δf (i)

δηi
+ ζk

δf (i)

δζi

)
dt

− 1

mn

(
ξk
δw(i)

δξi
+ ηk

δw(i)

δηi
+ ζk

δw(i)

δζi
+ αk

δw(i)

δαi
+ βk

δw(i)

δβi
+ γk

δw(i)

δγi

)
,

 (S6.)

or

W (i,k) =

∫ t

0

(
f (i,k) + ξi

δf (k)

δξk
+ ηi

δf (k)

δηk
+ ζi

δf (k)

δζk

)
dt

− 1

mn

(
ξi
δw(k)

δξk
+ ηi

δw(k)

δηk
+ ζi

δw(k)

δζk
+ αi

δw(k)

δαk
+ βi

δw(k)

δβk
+ γi

δw(k)

δγk

)
.

 (T6.)

Rigorous transition from the theory of Binary to that of Multiple Systems, by means of the
disturbing part of the whole Characteristic Function; and approximate expressions for the
perturbations.

21. The three equations (K6.) when the auxiliary constant g(i) is eliminated by the
formula (L6.) are rigorously (by our theory) the three final integrals of the three known
equations of the second order (M6.), for the relative motion of the binary system (mimn);
and give, for such a system, the three varying relative coordinates ξi ηi ζi, as functions of their
initial values and initial rates of increase αi βi γi α

′
i β
′
i γ
′
i, and of the time t. In like manner the

three equations (I6.), when g(i) is eliminated by (L6.), are rigorously the three intermediate
integrals of the same known differential equations of motion of the same binary system. These
integrals, however, cease to be rigorous when we introduce the perturbations of the relative
motion of this partial or binary system (mimn), arising from the attractions or repulsions of
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the other points mk, of the whole proposed multiple system; but they may be corrected and
rendered rigorous by employing the remaining part V′2 of the whole characteristic function
of relative motion V′, along with the principal part or approximate value V′1.

The equations (X1.), (Y1.) of the twelfth number, give rigorously

ξ′i =
1

mi

δV′
δξi

+
1

mn
Σ′
δV′
δξi

, η′i =
1

mi

δV′
δηi

+
1

mn
Σ′
δV′
δηi

, ζ ′i =
1

mi

δV′
δζi

+
1

mn
Σ′
δV′
δζi

, (U6.)

and

−α′i =
1

mi

δV′
δαi

+
1

mn
Σ′

δV′
δαi

, −β′i =
1

mi

δV′
δβi

+
1

mn
Σ′

δV′
δβi

, −γ′i =
1

mi

δV′
δγi

+
1

mn
Σ′
δV′
δγi

,

(V6.)
and therefore, by (A6.),

δw(i)

δξi
= ξ′i −Σ′′ .

mk

mk +mn

δw(k)

δξk
− 1

mi

δV′2
δξi
− 1

mn
Σ′
δV′2
δξi

,

δw(i)

δηi
= η′i −Σ′′ .

mk

mk +mn

δw(k)

δηk
− 1

mi

δV′2
δηi
− 1

mn
Σ′
δV′2
δηi

,

δw(i)

δζi
= ζ ′i −Σ′′ .

mk

mk +mn

δw(k)

δζk
− 1

mi

δV′2
δζi
− 1

mn
Σ′
δV′2
δζi

,


(W6.)

and similarly

−δw
(i)

δαi
= α′i + Σ′′ .

mk

mk +mn

δw(k)

δαk
+

1

mi

δV′2
δαi

+
1

mn
Σ′
δV′2
δαi

,

−δw
(i)

δβi
= β′i + Σ′′ .

mk

mk +mn

δw(k)

δβk
+

1

mi

δV′2
δβi

+
1

mn
Σ′
δV′2
δβi

,

−δw
(i)

δγi
= γ′i + Σ′′ .

mk

mk +mn

δw(k)

δγk
+

1

mi

δV′2
δγi

+
1

mn
Σ′
δV′2
δγi

,


(X6.)

the sign of summation Σ′′ referring only to the disturbing masses mk, to the exclusion of mi

and mn; and these equations (W6.), (X6.) are the rigorous formulæ, corresponding to the
approximate relations (I6.), (K6.). In like manner, the formula (L6.) for the time of motion in
a binary system, which is only an approximation when the system is considered as multiple,
may be rigorously corrected for perturbation by adding to it an analogous term deduced
from the disturbing part V′2 of the whole characteristic function; that is, by changing it to
the following:

t =
δw(i)

δg(i)
+
δV′2
δH′

, (Y6.)

which gives, for this other coefficient of w(i), the corrected and rigorous expression

δw(i)

δg(i)
= t− δV′2

δH′
: (Z6.)
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V′2 being here supposed so chosen as to be rigorously the correction to V′1. If therefore, by
the theory of binary systems, or by eliminating g(i) between the four equations (K6.) (L6.),
we have deduced expressions for the three varying relative coordinates ξi ηi ζi as functions
of the time t, and of the six initial quantities αi βi γi α

′
i β
′
i γ
′
i, which may be thus denoted,

ξi = φ1(αi, βi, γi, α
′
i, β
′
i, γ
′
i, t),

ηi = φ2(αi, βi, γi, α
′
i, β
′
i, γ
′
i, t),

ζi = φ3(αi, βi, γi, α
′
i, β
′
i, γ
′
i, t);

 (A7.)

we shall know that the following relations are rigorously and identically true,

ξi = φ1

(
αi, βi, γi,−

δw(i)

δαi
,−δw

(i)

δβi
,−δw

(i)

δγi
,
δw(i)

δg(i)

)
,

ηi = φ2

(
αi, βi, γi,−

δw(i)

δαi
,−δw

(i)

δβi
,−δw

(i)

δγi
,
δw(i)

δg(i)

)
,

ζi = φ3

(
αi, βi, γi,−

δw(i)

δαi
,−δw

(i)

δβi
,−δw

(i)

δγi
,
δw(i)

δg(i)

)
,


(B7.)

and consequently that these relations will still be rigorously true when we substitute for the
four coefficients of w(i) their rigorous values (X6.) and (Z6.) for the case of a multiple system.
We may thus retain in rigour for any multiple system the final integrals (A7.) of the motion
of a binary system, if only we add to the initial components α′i β

′
i γ
′
i of relative velocity, and

to the time t, the following perturbational terms:

∆α′i = Σ′′ .
mk

mk +mn

δw(k)

δαk
+

1

mi

δV′2
δαi

+
1

mn
Σ′
δV′2
δαi

,

∆β′i = Σ′′ .
mk

mk +mn

δw(k)

δβk
+

1

mi

δV′2
δβi

+
1

mn
Σ′
δV′2
δβi

,

∆γ′i = Σ′′ .
mk

mk +mn

δw(k)

δγk
+

1

mi

δV′2
δγi

+
1

mn
Σ′
δV′2
δγi

,


(C7.)

and

∆t = −δV′2
δH′

. (D7.)

In the same way, if the theory of binary systems, or the elimination of g(i) between the
four equations (I6.) (L6.), has given three intermediate integrals, of the form

ξ′i = ψ1(ξi, ηi, ζi, αi, βi, γi, t),

η′i = ψ2(ξi, ηi, ζi, αi, βi, γi, t),

ζ ′i = ψ3(ξi, ηi, ζi, αi, βi, γi, t),

 (E7.)
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we can conclude that the following equations are rigorous and identical,

δw(i)

δξi
= ψ1

(
ξi, ηi, ζi, αi, βi, γi,

δw(i)

δg(i)

)
,

δw(i)

δηi
= ψ2

(
ξi, ηi, ζi, αi, βi, γi,

δw(i)

δg(i)

)
,

δw(i)

δζi
= ψ3

(
ξi, ηi, ζi, αi, βi, γi,

δw(i)

δg(i)

)
,


(F7.)

and must therefore be still true, when, in passing to a multiple system, we change the coeffi-
cients of w(i) to their rigorous values (W6.) (Z6.). The three intermediate integrals (E7.) of
the motion of a binary system may therefore be adapted rigorously to the case of a multiple
system, by first adding to the time t the perturbational term (D7.), and afterwards adding
to the resulting values of the final components of relative velocity the terms

∆ξ′i = Σ′′ .
mk

mk +mn

δw(k)

δξk
+

1

mi

δV′2
δξi

+
1

mn
Σ′
δV′2
δξi

,

∆η′i = Σ′′ .
mk

mk +mn

δw(k)

δηk
+

1

mi

δV′2
δηi

+
1

mn
Σ′
δV′2
δηi

,

∆ζ ′i = Σ′′ .
mk

mk +mn

δw(k)

δζk
+

1

mi

δV′2
δζi

+
1

mn
Σ′
δV′2
δζi

.


(G7.)

22. To derive now, from these rigorous results, some useful approximate expressions, we
shall neglect, in the perturbations, the terms which are of the second order, with respect to
the small masses of the system, and with respect to the constant 2H′ of relative living force,
which is easily seen to be small of the same order as the masses: and then the perturbations
of these coordinates, deduced by the method that has been explained, become

∆ξi =
δξi
δα′i

∆α′i +
δξi
δβ′i

∆β′i +
δξi
δγ′i

∆γ′i +
δξi
δt

∆t,

∆ηi =
δηi
δα′i

∆α′i +
δηi
δβ′i

∆β′i +
δηi
δγ′i

∆γ′i +
δηi
δt

∆t,

∆ζi =
δζi
δα′i

∆α′i +
δζi
δβ′i

∆β′i +
δζi
δγ′i

∆γ′i +
δζi
δt

∆t,


(H7.)

in which we may employ, instead of the rigorous values (C7.) for ∆α′i, ∆β′i, ∆γ′i, the following
approximate values:

∆α′i = Σ′′
mk

mn

δw(k)

δαk
+

1

mi

δV′2
δαi

,

∆β′i = Σ′′
mk

mn

δw(k)

δβk
+

1

mi

δV′2
δβi

,

∆γ′i = Σ′′
mk

mn

δw(k)

δγk
+

1

mi

δV′2
δγi

.


(I7.)
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To calculate the four coefficients

δV′2
δαi

,
δV′2
δβi

,
δV′2
δγi

,
δV′2
δH′

,

which enter into the values (I7.) (D7.), we may consider V′2, by (R6.) (T6.), and by the
theory of binary systems, as a function of the initial and final relative coordinates, and initial
components of relative velocities, involving also expressly the time t and the n− 2 auxiliary
quantities of the form g(k); and then we are to consider those initial components and auxiliary
quantities and the time, as depending themselves on the initial and final coordinates, and on
H′. But it is not difficult to prove, by the foregoing principles, that when t and g(k) are thus
considered, their variations are, in the present order of approximation,

δt =
Σ′ .m

(
δ2w

δg2

)−1

δ′
δw

δg
+ δH′

Σ′ .m

(
δ2w

δg2

)−1 (K7.)

and

δg(k) =

(
δ2w(k)

δg(k)2

)−1 (
δt− δ′

δw(k)

δg(k)

)
, (L7.)

the sign of variation δ′ referring only to the initial and final coordinates; and also that

δ2w(i)

δg(i)2

δξi
δt

=
δ2w(i)

δαi δg(i)

δξi
δα′i

+
δ2w(i)

δβi δg(i)

δξi
δβ′i

+
δ2w(i)

δγi δg(i)

δξi
δγ′i

, (M7.)

along with two other analogous relations between the coefficients of the two other coordinates
ηi, ζi; from which it follows that t and g(k), and therefore α′k β′k γ′k, may be treated as
constant, in taking the variation of the disturbing part V′2, for the purpose of calculating the
perturbations (H7.): and that the terms involving ∆t are destroyed by other terms. We may
therefore put simply

∆ξi =
δξi
δα′i

∆α′i +
δξi
δβ′i

∆β′i +
δξi
δγ′i

∆γ′i,

∆ηi =
δηi
δα′i

∆α′i +
δηi
δβ′i

∆β′i +
δηi
δγ′i

∆γ′i,

∆ζi =
δζi
δα′i

∆α′i +
δζi
δβ′i

∆β′i +
δζi
δγ′i

∆γ′i,


(N7.)

employing for ∆α′i the following new expression,

∆α′i = Σ′′ .mk

{∫ t

0

δR(i,k)

δαi
dt+

δα′i
δαi

∫ t

0

δR(i,k)

δα′i
dt

+
δβ′i
δαi

∫ t

0

δR(i,k)

δβ′i
dt+

δγ′i
δαi

∫ t

0

δR(i,k)

δγ′i
dt

}
 (O7.)
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together with analogous expressions for ∆β′i, ∆γ′i, in which the sign of summation Σ′′ refers
to the disturbing masses, and in which the quantity

R(i,k) = f (i,k) + ξi
δf (k)

δξk
+ ηi

δf (k)

δηk
+ ζi

δf (k)

δζk
(P7.)

is considered as depending on αi βi γi α
′
i β
′
i γ
′
i αk βk γk α

′
k β
′
k γ
′
k t by the theory of binary

systems, while α′i β
′
i γ
′
i, are considered as depending, by the same rules, on αi βi γi ξi ηi ζi

and t.
It may also be easily shown, that

δξi
δα′i

δα′i
δαi

+
δξi
δβ′i

δα′i
δβi

+
δξi
δγ′i

δα′i
δγi

= − δξi
δαi

; (Q7.)

with other analogous equations: the perturbation of the coordinates ξi may therefore be thus
expressed,

∆ξi = Σ′′ .mk

{
δξi
δα′i

∫ t

0

δR(i,k)

δαi
dt− δξi

δαi

∫ t

0

δR(i,k)

δα′i
dt

+
δξi
δβ′i

∫ t

0

δR(i,k)

δβi
dt− δξi

δβi

∫ t

0

δR(i,k)

δβ′i
dt

+
δξi
δγ′i

∫ t

0

δR(i,k)

δγi
dt− δξi

δγi

∫ t

0

δR(i,k)

δγ′i
dt

}
,


(R7.)

and the perturbations of the two other coordinates may be expressed in an analogous manner.
It results from the same principles, that in taking the first differentials of these pertur-

bations (R7.), the integrals may be treated as constant; and therefore that we may either
represent the change of place of the disturbed point mi, in its relative orbit about mn, by
altering a little the initial components of velocity without altering the initial position, and
then employing the rules of binary systems; or calculate at once the perturbations of place
and of velocity, by employing the same rules, and altering at once the initial position and
initial velocity. If we adopt the former of these two methods, we are to employ the expressions
(O7.), which may be thus summed up,

∆α′i = Σ′′ .mk
δ

δαi

∫ t

0

R(i,k)dt,

∆β′i = Σ′′ .mk
δ

δβi

∫ t

0

R(i,k)dt,

∆γ′i = Σ′′ .mk
δ

δγi

∫ t

0

R(i,k)dt;


(S7.)

and if we adopt the latter method, we are to make,

∆α′i = Σ′′ .mk

∫ t

0

δR(i,k)

δαi
dt, ∆αi = −Σ′′ .mk

∫ t

0

δR(i,k)

δα′i
dt,

∆β′i = Σ′′ .mk

∫ t

0

δR(i,k)

δβi
dt, ∆βi = −Σ′′ .mk

∫ t

0

δR(i,k)

δβ′i
dt,

∆γ′i = Σ′′ .mk

∫ t

0

δR(i,k)

δγi
dt, ∆γi = −Σ′′ .mk

∫ t

0

δR(i,k)

δγ′i
dt.


(T7.)
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The latter was the method of Lagrange: the former is suggested more immediately by the
principles of the present essay.

General introduction of the Time into the expression of the Characteristic Function in any
dynamical problem.

23. Before we conclude this sketch of our general method in dynamics, it will be proper
to notice briefly a transformation of the characteristic function, which may be used in all
applications. This transformation consists in putting, generally,

V = tH + S, (U7.)

and considering the part S, namely, the definite integral

S =

∫ t

0

(T + U) dt, (V7.)

as a function of the initial and final coordinates and of the time, of which the variation is, by
our law of varying action,

δS = −H δt+ Σ .m(x′ δx− a′ δa+ y′ δy − b′ δb+ z′ δz − c′ δc). (W7.)

The partial differential coefficients of the first order of this auxiliary function S, are hence,

δS

δt
= −H; (X7.)

δS

δxi
= mix

′
i,

δS

δyi
= miy

′
i,

δS

δzi
= miz

′
i; (Y7.)

and
δS

δai
= −mia

′
i,

δS

δbi
= −mib

′
i,

δS

δci
= −mic

′
i. (Z7.)

These last expressions (Z7.) are forms for the final integrals of motion of any system, cor-
responding to the result of elimination of H between the equations (D.) and (E.); and the
expressions (Y7.) are forms for the intermediate integrals, more convenient in many respects
than the forms already employed.

24. The limits of the present essay do not permit us here to develope the consequences
of these new expressions. We can only observe, that the auxiliary function S must satisfy the
two following equations, in partial differentials of the first order, analogous to, and deduced
from, the equations (F.) and (G.):

δS

δt
+ Σ .

1

2m

{(
δS

δx

)2

+

(
δS

δy

)2

+

(
δS

δz

)2
}

= U, (A8.)
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and
δS

δt
+ Σ .

1

2m

{(
δS

δa

)2

+

(
δS

δb

)2

+

(
δS

δc

)2
}

= U0; (B8.)

and that to correct an approximate value S1 of S, in the integration of these equations, or to
find the remaining part S2, if

S = S1 + S2, (C8.)

we may employ the symbolic equation

d

dt
=

δ

δt
+ Σ .

1

m

(
δS

δx

δ

δx
+
δS

δy

δ

δy
+
δS

δz

δ

δz

)
; (D8.)

which gives, rigorously,

dS2

dt
= U − U1 + Σ .

1

2m

{(
δS2

δx

)2

+

(
δS2

δy

)2

+

(
δS2

δz

)2
}

(E8.)

if we establish by analogy the definition

U1 =
δS1

δt
+ Σ .

1

2m

{(
δS1

δx

)2

+

(
δS1

δy

)2

+

(
δS1

δz

)2
}

; (F8.)

and therefore approximately

S2 =

∫ t

0

(U − U1) dt, (G8.)

the parts S1 S2 being chosen so as to vanish with the time. These remarks may all be
extended easily, so as to embrace relative and polar coordinates, and other marks of position,
and offer a new and better way of investigating the orbits and perturbations of a system, by
a new and better form of the function and method of this Essay.

March 29, 1834.
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